

The IT Measurement Compendium

Manfred Bundschuh • Carol Dekkers

The IT Measurement
Compendium

Estimating and Benchmarking Success
with Functional Size Measurement

© 2008 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,

in its current version, and permissions for use must always be obtained from Springer-Verlag.
Violations are liable for prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not

laws and regulations and therefore free for general use.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

imply, even in the absence of a specific statement, that such names are exempt from the relevant protective

Manfred Bundschuh

51465 Bergisch Gladbach
Germany
manfred.bundschuh@netcologne.de

Carol Dekkers
8430 Egret Lane
Seminole, FL 33776
USA
dekkers@qualityplustech.com

ISBN 978-3-540-68187-8

or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,

ACM Computing Classification (1998): D.2.8, D.2.9, K.6.3, K.6.1

e-ISBN 978-3-540-68188-5

reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication

Sander Höhe 5

Library of Congress Control Number: 2008926632

Cover design: KünkelLopka GmbH, Heidelberg

Preface

“As projects get more complicated, managers stop learning from their ex-
perience. It is important to understand how that happens and how to change
it….Fallible estimates: In software development, initial estimates for a project
shape the trajectory of decisions that a manager makes over its life. For exam-
ple, estimates of the productivity of the team members influence decisions
about the size of the team, which in turn affect the team’s actual output. The
trouble is that initial estimates usually turn out to be wrong.” (Sengupta, 2008)

This book aims directly to increase the awareness among managers and
practitioners that estimation is as important as the work to be done in soft-
ware and systems development. You can manage what you can measure!

Readers will find in this book a collection of lessons learned from the
worldwide “metrics community,” which we have documented and enhanced
with our own experiences in the field of software measurement and estimating.
Our goal is to support our readers to harvest the benefits of estimating and im-
prove their software development processes. We present the 5 ISO/IEC-
acknowledged Functional Sizing Methods with variants, experiences, counting
rules, and case studies – and most importantly, illustrate through practical ex-
amples how to use functional size measurement to produce realistic estimates.
The book is written in a practical manner, especially for the busy practitioner
community. It is aimed to be used as a manual and an assistant for everyday
work.

Estimation can be a win–lose job: it has to be done professionally to enable
transparency, efficiency, and control of IT projects.

Software project estimation is the first step to determine how successful
projects, processes, and product goals will develop and also how they will be
measured and how their goals will be reached.

The thesis presented in this book is that software project estimation can be
done in a highly professional manner and that it can be done accurately. The
authors also point out that the process of estimation and the required time for
it must be planned “a priori”!

The first step for the success of a software project is to ensure that it is
started in a professional manner. This requires a planning period supported by

vi

not gain the respect it deserves when it is done using only paper and pencil
support – when the software engineers who provide the input data work pro-
fessionally with the newest technologies.

The application of an estimation method as well as the use of estimation
tools and benchmarking data are nowadays “sine qua non” conditions for
best practices in software engineering. In the unanimous opinion of estimation
experts, this is the worldwide “state of the art.”

Software project managers must also monitor and actualize their estimates
during the project. Estimates and project measures provide key risk indicators
and hence are excellent for the tracking of the progress of a software project
and the monitoring of its success – that is, they can provide valuable early
warning signals if set up properly! Fire fighting can be exciting, but does not
help in fire prevention nor in the avoidance of significant costs and delays. A
proper estimation process presents an opportunity for people tired of fire fight-
ing to correctly plan and manage their software projects.

Estimation is an activity of the right brain: (the right brain being known for
emotions and imagination, and ideas about the future and the unknown). Esti-
mation can also be performed with the left brain (where logic and experience,
and ideas about the past and known reside).

History of This Book

This book has a history as long as it took to implement a software measurement
and metrics program in the IT department of an international insurance com-
pany in Germany. The initial text was published as the diploma thesis of Axel
Fabry, when he was a student of Manfred Bundeschuh, working in a practicum
project to plan and initiate the estimation program for the IT department.
Fabry’s thesis reported lessons learned about the trip wires involved with the
implementation of estimating and laid the foundation for the first edition of
this book. Regrettably, Mr. Fabry could not support the second edition, and its
actualizations were done by Manfred Bundschuh.

The translation of the second edition into English was triggered by the
German publisher Springer, who asked for an English translation and update,
which has become the version you now possess. This led to the involvement
and beneficial improvement, enhancement and actualization of the book done
by the American author Carol Dekkers.

Why did Springer ask for an English translation and further updating of the
successful German book on software estimation?

Preface

a highly professional estimation process to ensure a solid foundation for pro-
ject planning. Accurate estimates require quantitative measurements, ideally
tool-based, to reduce measurement variations. Furthermore, estimating does

vii

trove of data that are of interest in the whole of the English-speaking metrics
community.

related facets, augmented by many practical experiences of both of the authors.
The book is aimed for beginners as well as experienced colleagues working with
software -estimation, -measurement, and -metrics.

Last but not least, themes like productivity measurement, estimation tools,
software reuse and redevelopment, and estimation in the maintenance process
as well as in Object-Oriented-, Data Warehouse-, or Web- environments are
dealt with in this book.

The Books’ Content

This book delivers a framework for novices who are getting started in software
project estimation, and also offers to the practitioner practical information for
transfer into the profession. The text is derived from years of experience by
the authors in software development and project management, and supported
by a national and international networking in European and worldwide metrics-
and standards- organizations.

Chapter 1 provides an entrance portal into the theme and introduces the first
concepts. Chapter 2 lays the fundamental concepts, and together with Chapter 3
presents an overview for the reader desiring quick access to the information.
The remaining chapters present topics on estimation in more detail, progress-
ing in several steps:

Estimation prerequisites and implementation, together with methods of esti-
mation
Estimation of maintenance effort
Software measurement and metrics fundamentals, and product and process
metrics
Measurement communities and resources for measurement and benchmarking
The IFPUG Function Point Method and the other four ISO/IEC-acknowledged
Functional Size Measurement Methods
Function point related measurement variants, experiences, counting rules,
and case studies

Preface

-metrics, -measurement, -measurement standards, and -benchmarking, with all
Thirdly, this book presents an orderly overview of software -estimation,

Initially, the demand emanated from colleagues at the European metrics or-
ganizations in Spain and Italy, and later from others who heard about the
benefits gained by introducing metrics in Germany over the past years.

Secondly, the ISBSG collection of figures published as The Benchmark and
other products are featured prominently in this book. These form a treasure

viii Preface

Acknowledgements

An ambitious book translation and actualization project like this one (about
700 pages), which was performed as a hobby besides family, profession, lec-
tureship of the German author at the University of Applied Sciences and his
commitments in the German metrics organization DASMA over a 10-year time-
frame and the commitments of the American author to her consulting business,
international speaking engagements, and ongoing leadership endeavors, undoubt-
edly produces some loss by friction. The more important are the positive direct
and indirect contributors each author would like to acknowledge and thank:

Manfred’s family in Germany (who had to live some time with his conscious
absence and the partial occupation of the living room as author)
Carol’s two grown children, Corinne and Alex, who continue to be a source
of inspiration and support in her international business
Good managers who backed Manfred during the introduction of the metrics
program at the international insurance corporation
Ambitious colleagues at the same organization who were willing to widen
their horizon and did not fear the additional effort to embrace estimation with
Manfred during the management of their projects; colleagues who maintain
an active network in professional and metrics organizations and who gene-
rously shared their own experiences. These include especially Luigi Buglione
(GUFPI-ISMA), Ton Dekkers (NESMA), Peter Fagg (UKSMA), Peter Hill
(ISBSG), Capers Jones, Roberto Meli (GUFPI-ISMA), Jolijn Onvlee
(NESMA), Tony Rollo (UKSMA), Luca Santillo (GUFPI-ISMA), Charles
Symons (UKSMA), Frank Vogelezang (NESMA), as well as Professors
Alain Abran, Reiner Dumke, and Eberhard Rudolph. A special thanks also
to Pekka Forselius, president of ISBSG and senior advisor to the Finnish
Software Measurement Association (FiSMA), who provided essential con-
tributions including the FiSMA Functional Size Measurement Method, ex-
periences with ISBSG, and expertise about the practical implementation of
estimating and software measurement
Numerous students who committed their practical term and thesis to the in-
troduction of a metrics program in their organizations. These students man-
aged great effort and complex investigations of large amounts of data, some
of them being rewarded with a DASMA students thesis award

Each chapter ends with a management summary for the reader who wants a
quick synopsis or a list of important internet addresses for further reading.

Measurement and metrics in object-oriented environments and data ware-
house environments, and in software reuse and redevelopment
A chapter about tools and their methods
An appendix with examples and checklists.

ix

One final note: during the writing of this book we have used information and
communications technology (ICT), information technology (IT), software
intensive systems, and similar terms in an approachable and some-times in-
terchangeable manner. For readers desiring a more formal treatise on the use
of these and other industry terms, the reader is referred to the foreword and
appendix of the American author’s April 2008 book: Program Management
Toolkit for software and systems development, co-authored with Pekka

 Manfred Bundschuh
 Carol Dekkers

Bergisch Gladbach and Tampa
Spring 2008

Preface

Forselius et al. by Talentum (ISBN: 978-952-14-1338-4).

lated in a very pronounced manner to foster an awareness that proven methods
should be professionally used

Note that the experiences herein are provided from the personal experiences
of both authors. Our belief in the importance of professional estimating and
benchmarking is passionate and results in opinions that are sometimes articu-

Contents

1

1.1 The Basics of Software Estimation…………………………………8

1.1.4
1.1.5
1.1.6
1.1.7 Measurement of Effort…………………………………...24

1.1.9
1.2

1.2.2

1.2.5
1.2.6

1.3
1.4 Internet Links for Software Measurement Associations

2.1
2.1.1 Adjusting the Estimate to Take into Account Project

2.1.2 Project Goals and the Devils Square of Project

2.1.3

The Estimation Challenges…………………………………………….…1

1.1.2 Estimation…….…………………………………………..13
1.1.3 Estimation Precision……………………………………...16

The Object of Estimation………………………………...20
Requirements (Scope) Creep………………………….… 22
Measurement and Estimation…………………………….25

1.1.8 Documentation…………………………………………...27
The Problem of Historic Data……………………………28

Rules for Estimation……………………………………………… 29
1.2.1 Basic Principles…………………………………………..29

1.2.3 Estimation Errors………………………………………... 31
1.2.4 Political Estimates………………………………………..32

Underestimation and Overestimation…………………….33
The Estimation Conference………………………………36

A Checklist for Estimating……………………………………….. 38

1.2.8 Estimation Culture………………………………………. 37
1.2.9 Training for Estimation…………………………………..38

and Estimation……………………………………………………. 39
1.5 Management Summary…………………………………………… 41

2 Estimation Fundamentals……………………………………………… 45

Estimation in a Project Controlling Environment…………………46

Environment Factors……………………………………..47

Management……………………………………………...49
Estimation and Quality………………………………….. 50

1.2.7 Estimation Honesty……………………………..………..36

1.1.1 Measurement………………………………………………9

xxiii List of Figures...…………………….…………………………….………
List of Tables..………………….………………………………………… xxix

v

Do’s and Don’ts When Estimating……………………… 30

Preface........…………………….………………………………………......…

Contents

2.2.3

3

3.1

3.1.2

3.1.4
3.1.5
3.1.6
3.1.7
3.1.8

3.2
3.2.1
3.2.2 The Documentation of Project Estimates………………...77

4

4.1
4.2
4.3

4.3.1
4.3.2 The Right Time to Implement a Formal Estimation

4.3.3

4.4.1
4.4.2
4.4.3

4.5
4.6
4.7

xii

The Right Time for Estimation…………………………..58
2.2.4 Tracking of Estimates…………………………………… 61

2.3 Management Summary…………………………………………… 62

Prerequisites for Estimation…………………………………………… 65

The Information Basis of Estimation……………………………... 65
3.1.1 Prerequisites for Estimation……………………………... 65

Prerequisites for Estimation of Effort……………………66
3.1.3 Time Accounting…………………………………………68

The Problem of Overtime Work………………………… 70
The Definition of the Application Boundary……………. 70
The Type of Estimation…………………………………. 71
Customizing of Standard Software (Packages)…………. 72
Documentation of the Development Environment………74

3.1.9 Validation of Estimates…………………………………..76
The Process of Estimation…………………………………………76

Distribution of Estimated Effort Across Project Phases… 77

3.3 Management Summary…………………………………………… 80

The Implementation of Estimation……………………………………. 85

Report About a Successful Implementation……………………….87
Positive and Negative Aspects of Software Measurement……….. 90
Frequently Asked Questions……………………………………… 93

The Pros and Cons of a Competence Center……………..95

Counter the Counterarguments………………………….. 98
Resistance……………………………………………… 101

Counting of Historical Projects…………………………………..109

4.4 Acceptance Challenges…………………………………………… 98

Estimation as an Early Warning System…………………………110

The Effort for Estimation………………………………...93

4.8 Management Summary………………………………………….. 112

Goals for an Estimation Process………………………………… 107
Information and Participation………………………….. 105

Process…………………………………………………... 94

2.1.4
2.1.5

2.2
2.2.1
2.2.2

ISO/IEC 9126 Quality Attributes and IFPUG GSC…….. 51
The Cybernetic Estimation Control Circuit……………... 53

Determining Parameters of Estimation……………………………56
The Purpose of Estimation……………………………….57
The Goals of Estimation………………………………… 58

 Contents

5.2.3
5.2.4

5.3.2
5.4

5.4.1
5.4.2
5.4.3
5.4.4

6.1
6.1.1
6.1.2
6.1.3
6.1.4

6.1.5 UKSMA: United Kingdom Software Metrics

6.3
6.4
6.5

7

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5

5.3.1

NESMA: Netherlands Software Metrieken Gebruikers

xiii

Estimation with an Expert System……………………... 129
Backfiring……………………………………………….132

5.3 Overview of Methods…………………………………………….137
Heuristic Methods……………………………………… 137
Size-Based Methods…………………………………….143

Evaluation of an Estimation Method……………………………..147
User Comfort……………………………………………148
Project Management…………………………………….149
Quality of Result……………………………………….. 150
Precision of Estimation Methods………………………. 151

5.5 Management Summary………………………………………….. 154

6 Estimating Maintenance Effort………………………………………. 159

International Standards for Software Maintenance………………160
ISO/IEC standards………………………………………160
FiSMA: Finnish Software Measurement Association…..160
IFPUG: International Function Point Users Group……..160

Associatie………………………………………………. 163

Association……………………………………………...163
6.2 Enhancement Projects…………………………………………… 164

Software Metrics for Maintenance……………………………….167
Estimation of Maintenance Effort after Delivery………………...169
Estimation of Small Changes.....................………………………170

6.6 Management Summary………………………………………….. 176

Software Measurement and Metrics: Fundamentals……………….. 179

7.1 Terminology……………………………………………………...180
Formal Definitions……………………………………...180

Metrics…………………………………………………. 182
Indicators………………………………………………..183
Metrics…………………………………………………..185

Basic Measures (Measures)……………………………. 182

5.1
5.2

5.2.1
5.2.2

5 Estimation Methods……………………………………………………117

The Challenges of Estimation Methods………………………….118
Determination of the Effort………………………………………126

Estimation Based on an Experience Curve…………….. 126
Estimation Using an Estimation Equation……………....127

Contents

8

8.1.1
8.1.2
8.1.3
8.1.4
8.1.5

8.2
8.2.1
8.2.2

8.4.1
8.4.2
8.4.3

9.1

8.5.2 Productivity…………………………………………..…

9.1.1
9.1.2
9.1.3 Capers Jones’ Object-Oriented Cost, Defect,

9.1.4
9.1.5 Metrics for Defects and Size by Cartwright

Product- and Process-Metrics………………………………………..

xiv

207
8.1 Product Metrics…………………………………………………..208

Size of the Software Product………………………….…208
Source Code Metrics………………………………….…209
Source Lines of Code…………………………………...210
Functional Size……………………………………….…211
Project Size Categories……………………………….…213

Software Quality ………………………………………………... 215
Defect Metrics…………………………………………..217

8.3 Documentation…………………………………………………... 222
8.4 System Complexity…………………………………………….…222

Structural and Data Complexity………………………...223

 Function Points and Defects…………………………... 220

Halstead’s Metrics…………………………………….…223
McCabe’s Cyclomatic Complexity………………….….224

8.5 Process Metrics……………………………………………….…. 225
8.5.1 Work Effort……………………………………………..226

226
8.5.3 PDR……………………………………………………..229

8.5.5 Cost………………………………………………….…. 232
8.5.6 Project Duration…………………………………….….. 235

8.6 Management Summary………………………………………….. 236

8.5.4 Efficiency…………………………………………….…231

9 Object-Oriented Metrics……………………………………………… 241
Examples of Object-Oriented Metrics…………………………... 243

Design metrics by Lorenz (1993)……………………….244
The Metrics Suite from Chidamber and Kemerer, 1994…244

and Productivity Metrics………………………………..245

and Shepperd……………………………………………247

The Survey of Xenos et al. ……………………………..245

7.2
7.2.1
7.2.2

7.3
7.3.1
7.3.2
7.3.3

Goals of Metrics………………………………………... 187
Benefits of Metrics……………………………………...188

Start and Implementation of a Metrics Initiative………………... 190
Establishing a Metrics Initiative………………………...191
Establishing a Metrics Database……………………….. 196
The Structure of a Metrics System……………………...198

7.4 Management Summary………………………………………….. 203

Goals and Benefits of Metrics……………………………………187

 Contents

9.3
9.3.1 IFPUG Function Points and OOA According

9.3.2
9.3.3

10.1
10.2
10.3

10.5
10.5.1

10.5.3
10.5.4
10.5.5
10.5.6
10.5.7 International Software Benchmarking Standards

10.5.8
10.5.9
10.5.10 Software Engineering Institute at Carnegie Mellon

10.6

11.2

xv

Function Points and Object-Oriented System Development……. 251

to the Jacobsen Approach……………………………… 251
IFPUG Function Points and UML……………………... 252
COSMIC and UML……………………………………..253

9.4 Management Summary…………………………………..……… 254

10 Measurement Communities and Resources…………………………. 257
The ISO Standards………………………………………………. 258
The Capability Maturity Model Integration……………………...261
The Goal Question Metric Method…………………………….... 264

10.4 The Balanced Scorecard……………………………………….....266
Important Software and Systems Measurement Organizations…. 268

Computer Measurement Group (CMG)………………...269
10.5.2 COSMIC Consortium………………………………..… 269

Finnish Software Measurement Association (FiSMA)…271
German Metrics Organization: DASMA……………….273
German GI Interest Group on Software Metrics………. 273
International Function Point Users Group (IFPUG)……274

Group…………………………………………………... 277
International Organization for Standardization…………280
Metrics Association’s International Network (MAIN)… 282

University in Pittsburgh, PA, USA…………………….. 283
10.5.11 Standard Performance Evaluation Corporation (SPEC)..284
10.5.12 Transaction Processing Performance Council (TPC)….. 284
Internet Links to Measurement Communities……………………285

10.7 Management Summary………………………………………..… 286

11 Benchmarking of IT Projects……………………………………….…289

11.1 Benchmarking Fundamentals…………………………………….290
Practical Benchmarking Experiences………………….…………293

11.3 Benchmarking Databases……………………………………...…297

9.1.6
9.1.7 Class Metrics from Silvia Regina Vergilio

9.1.8
9.1.9 Further Examples of Object-Oriented Measures

9.2 Projects that were Developed Using Object-Oriented

Methods for Size from Catherwood et al. ……………... 247

and Chaves……………………………………………... 248
Use Case Points…………………………………………248

and Metrics…………………………………………….. 250

Approaches in the ISBSG Benchmarking Database…………..… 250

Contents

12.1
12.2

12.2.1 Leveraging the Use of Function Points
(and the Analytical Approach) in Software

12.2.2 Function Points as Part of a Pricing Evaluation

12.2.3
12.3
12.4
12.5
12.6

12.6.1
12.6.2 Step 2: Define the Scope of the Count and the

12.6.3
12.6.4

12.6.5
12.6.6
12.6.7 Step 7: Quality Assurance of the Count

12.7 The Process to Implement the IFPUG Function Point Counting

12.8 The Limitations of the IFPUG Function Point Counting

13.1

11.5

xvi

Internet Links to Benchmarking Organizations……………….… 317
11.6 Management Summary………………………………………….. 318

12 The IFPUG Function Point Counting Method……………….………323

Functional Size Measurement Methods History………………… 325

Development.. 327

Process…………………………………………………. 329
Function Points as the Basis for Contract Metrics……...330

Application Areas for Function Points…………………………...332

The Benefits of the IFPUG FPM………………………………... 326

The Evaluation of Function Point-Based Estimation Methods…..334
The Optimum Time to Count FPs……………………………….. 336
The Process of Function Point Counting………………………... 338

Step 1: Define the Type of Count……………………… 339

Application Boundary…………………………………. .341
Step 3: Count Unadjusted FPs…………………………. 342

Step 5: Calculate the Adjusted FPs…………………….. 351
Step 6: Document the Count…………………………… 353

the 14 GSCs……………………………………………. 350

by the Competence Center……………………………... 355

12.9 Management Summary………………………………………….. 359

13 Functional Size Measurement Methods (FSMMs)………………….. 365

Short Characterizations of ISO/IEC-Conformant FSMMs……… 366
13.2 COSMIC ………………………………………………………... 367

Method…………………………………………………………... 358

Method…………………………………………………………... 356

Step 4: Calculate the VAF After Determining

11.3.1

11.4
11.4.1

11.4.4

Academic Comparison of Measurement Databases.……297
11.3.2 The ESA/INSEAD Database…………………………... 297

Demographics of ISBSG Repositories………………….299
ISBSG and Its Products……………………………………….….299

11.4.2 ISBSG Products………………………………………... 302
11.4.3 Project Characteristics…………………………………..304

Further Results of the ISBSG Research………………...317

 Contents

13.4

Similarities and Differences Between NESMA

13.6

14.1

14.3
14.4
14.5
14.6

14.6.1

14.6.3
14.6.4
14.6.5
14.6.6

15.1

13.3.1
13.3.2
13.3.3

13.5.2

13.5.1

14.6.2

15.1.1
15.1.2
15.1.3
15.1.4

15.2 Estimation of Person Months of Work Effort Based

xvii

The FiSMA 1.1 Measurement Process………………… 379
FiSMA 1.1 Components …………………………....…. 380
Research Related to FiSMA 1.1 FSMM……………….. 386

Mark II Function Point Method…………………………………. 387
13.5 NESMA FPA……………………………………………………. 389

and IFPUG Function Point Standards………………….. 389
NESMA Function Points for Enhancements…………... 392

Outlook for Functional Size Measurement Methods……………. 393
13.7 Management Summary………………………………………….. 394

14 Variants of the IFPUG Function Point Counting Method…………..397

The Data Point Method………………………………………….. 398
14.2 Feature Points…………………………………………………….399

Object Point Methods…………………………………………….399
SPR Function Points…………………………………………….. 400
3D Function Points……………………………………………….401
Use Case Points…………………………………………………..401

Unadjusted Use Case Weight (UUCW)………………...402
Unadjusted Actor Weight (UAW)……………………... 403
Unadjusted Use Case Points (UUCP)………………….. 403

Calculate Adjusted Use Case Points …………………... 404

Technical Complexity Factor…………………………...403

14.7 Outlook…………………………………………………………...405

Environmental Complexity Factor……………………...403

14.8 Management Summary………………………………………….. 406

Function Point Proportions…………………………….. 412

Benefits of Early Function Point Estimates…………….416

15 Using Functional Size Measurement Methods………………………. 409

IFPUG General Systems Characteristics (GSC)………..416

Function Point Prognosis………………………………………... 409

Other Early Function Point Proposals…………………. 414

on Function Points………………………………………………. 417

13.2.1
13.2.2
13.2.3
13.2.4 Comparison Between Counts Done Using COSMIC

13.3

The COSMIC Counting Process……………………….. 369
Software Layers in COSMIC…………………………...371
ISBSG Data with Respect to COSMIC…………………374

and IFPUG FPA………………………………………... 374
FiSMA 1.1 Functional Size Measurement Method……………... 376

Contents

16.1
16.1.1 Experiences of Star Schema Design Function Point

16.1.2 Recommendations for Function Point Counting

16.2
16.2.1 Enhancement of Existing Applications with Web

16.2.2 New Development of Complete Web-Based

16.2.4
16.2.5 Estimating Web Development with the CoBRA

16.2.6
16.3

17.1

17.2
17.3 Determine the Purpose and Scope of the Count

17.4

15.4.5
15.4.6

17.4.1
17.4.2

17.5
17.5.1
17.5.2

16 Estimation of Data Warehouses, Web-Based Applications:
Software Reuse and Redevelopment………………………………….

xviii

Overview of IFPUG CPM Release 4.2 (Also known as

External Output (EO)…………………………………... 425
External Inquiries (EQ)………………………………… 427

15.5 Management Summary………………………………………….. 429

433

Function Point Counts of Data Warehouse Projects……………. 433

Counts………………………………………………….. 434

of OLAP Cube Design…………………………………. 436
Estimating Web Development…………………………………... 439

Front-Ends………………….………………………….. 440

Applications……………………………………………. 441
16.2.3 Static Web Pages………………………………………. 442

Function Point Counts of Web Applications…………... 443

Method…………………………………………………. 446
The WEBMO Estimation Method……………………... 447

Software Reuse and Redevelopment……………………………..448
16.4 Management Summary………………………………………….. 451

17 IFPUG Function Point Counting Rules……………………………… 453

IFPUG 4.2)…………………………………………………........ 453

Count Unadjusted FPs……………………………………………457
and the Application (System) Boundary…………………………456

Calculate the Adjusted FPs………………………………………468

Determine the Type of Count………………………………….…455

The 14 GSCs…………………………………………… 469

Classification of the Data Function Types……………...458

Determining the VAF…………………………………...469

Classification of the Transaction Function Types………461

15.4

15.4.2
15.4.3
15.4.4

15.3 Productivity Analysis…………………………………………….418
Typical Function Point Counting Experiences………………….. 420
15.4.1 Business Functions Overview…………………………. 421

Internal Logical Files (ILF)……………………………. 421
External Interface Files (EIF)………………………….. 422
External Input (EI)……………………………………... 422

 Contents

18.1.3
18.1.4

18.1.6

18.1.9
18.2

18.3

Identify Data Movements – Candidate Functional

18.4
18.4.1

18.4.6
18.5

18.5.1 IFPUG Step 1: Determine the Type of Function Point

18.5.2 IFPUG Step 2: Identify the Counting Scope

18.5.3 IFPUG Step 3: Count the Data Functions to Determine
Their Contribution to the Unadjusted Function

18.5.4 IFPUG Step 4: Count the Transactional Functions
to Determine Their Contribution to the Unadjusted

xix

Select/Deselect Courses to Teach……………………… 486
Maintain Student Information…………………………..487

18.1.5 Register for Courses………………………………….…488
Monitor for Course Full………………………………... 490

18.1.7 Close Registration……………………………………....490
18.1.8 Submit Grades…………………………………………..492

View Report Card……………………………………… 492
Use Case Diagram……………………………………………..…493

COSMIC (Cfp) Count of Course Registration system………….. 497
18.3.1 Identification of Layers…………………………………497
18.3.2 Identification of Users…………………………………..497

18.3.4
18.3.5
18.3.6
18.3.7

18.2.1

18.3.3 Application Boundary…………………………………..497

Assumptions regarding the Use Cases.....................……494

Identification of Triggering Events – Step 1…………....498
Identification of Data Groups – Step 1………………… 498
Identification of Functional Processes – Step 1………...501

Processes – Step 1………………………………………502
FiSMA (Ffp) Count of Course Registration System……………. 510

Step 1 and Step 2………………………………………..510
18.4.2 Step 3…………………………………………………....511
18.4.3 Step 4 …………………………………………………...511
18.4.4 Steps 5–7……………………………………………….. 511
18.4.5 KISS Quick…………………………………………….. 512

FiSMA 1.1 Detailed Measurement…………………..… 514
IFPUG (FP) Count of Course Registration System……………... 516

Count……………………………………………………516

and Application Boundary……………………………... 516

Point Count…………………………………………….. 516

Function Point Count…………………………………... 519

17.5.3

18.1

18.1.2

Calculation of the Adjusted Function Points…………... 478
17.6 Management Summary………………………………………..… 481

18 Functional Size Measurement Case Studies……………………….…483

Case Study Description: Course Registration System…………... 483
18.1.1 Logon…………………………………………………...484

Maintain Professor Information………………………...484

Contents

19.1
19.1.1
19.1.2

19.1.4
19.2

19.2.1

20.1

20.3
20.3.1 A Survey About the Usage of Productivity

20.3.2
20.4

20.4.3

20.4.6
20.4.7
20.4.8

20.5 Experience® Pro Project Sizing, Estimating, and Scope

20.5.1
20.5.2
20.5.3
20.5.4
20.5.5

19.2.2

xx

19 Functional Size Measurement: Additional Case Studies…………… 533

COSMIC Case Study……………………………………………. 533
Valve Control System…………………………………..533
Measurement Viewpoint, Purpose, and Scope………….533

19.1.3 Requirements…………………………………………... 534
COSMIC Measurement Procedure…………………..… 536

IFPUG Function Point Case Studies……………………………..540
Function Point Calculator…………………………….... 540
Training Administration Application……………..…….542

20 Tools for Estimation…………………………………………………... 547

The Benefits of Estimation Tools……………………………….. 549
20.2 Effort Estimation Tools………………………………………..…550

The Use of Estimation Tools……………………………………. 552

The Process of Estimating with Tool Support…………. 553
Checkpoint for Windows (CKWIN)……………………………..555
20.4.1 Early Estimates.. 556
20.4.2 Input: Hard Data……………………………………….. 558

Input: Soft Data………………………………………... 559
20.4.4 Estimation Modes……………………………………… 561
20.4.5 Estimation Results………………………………………562

Customizing and Calibrating the Software Tool………. 564
Simulations of Estimates with an Automated Tool……. 565

Measurement Tools……………………………………..553

Estimation Portfolios and Templates…………………...567

Experience® Pro Improved Estimate………………….. 574

Experience® Pro Project Portfolio Management……….576
Experience® Pro Application Maintenance Estimating..577

Experience® Pro First Estimate………………………...573
Management Software…………………………………………... 573

Experience® Pro Final Review…………………………576

18.5.5 IFPUG Summary Unadjusted FP Count for Course

18.6
18.7

18.7.1
18.7.2

18.8

Registration System……………………………………. 522
Mark II Function Point Count of Course Registration System….. 523
NESMA Count of Course Registration System………………….526

NESMA FP Count of Data Functions…………………..527
NESMA FP Count of Transactional Functions………... 528

Comparison of Results of FSM Methods……………………….. 530

 Contents

20.9

A.1

A.3

xxi

Website URLs for Estimation Tools…………………………….. 584
20.10 Management Summary………………………………………….. 586

Appendix……………………….………………………………………….. 587

A Logbook for Function Point Counts…………………………...587
A.2 Checklists………………………………………………………... 589

Experience Situation Analysis Model MT22…………………….599

Literature...…………………….………………………………………….. 611

Index...…………………….…………........……………………………….. 629

20.7
20.7.1

20.8
20.8.1 A Tool for Cost and Effort Estimation of OO Software

20.8.2

Tools that Support Functional Size Measurement……………….578

Tools for Object Oriented Metrics and Estimation………………581

20.6 Other Estimation Tools…………………………………………..577

The Function Point Workbench (FPW)………………...578

Projects………………………………………………….581
Tools for Object Oriented Quality Metrics……………..582

List of Figures

Fig. 1.1.
Fig. 1.2.
Fig. 1.3.
Fig. 1.4. Effort estimation depends on software size plus many

Fig. 1.5.
Fig. 1.6.
Fig. 1.7.
Fig. 1.8.
Fig. 1.9.

Fig. 2.1.
Fig. 2.2.
Fig. 2.3.
Fig. 2.4.
Fig. 2.5.
Fig. 2.6.
Fig. 2.7.
Fig. 3.1.

Fig. 3.2.
Fig. 3.3. Effort distribution estimates for a project before and after

Fig. 3.4.
Fig. 3.5.
Fig. 4.1.
Fig. 4.2.
Fig. 4.3.
Fig. 4.4.
Fig. 4.5.
Fig. 4.6.
Fig. 5.1.

other influencing factors……………………………………....... 15
Pragmatic estimating rules………………………………....……16
Precision of estimation………………………………………......18
Precision of estimates as a project progresses………………….. 19
Object of estimation……………………………………………..20
Connection between measurement, estimation, and control….....23

Fig. 1.10. Under- and overestimation factors…………………………........33
Fig. 1.11. Estimation culture…………………………………………….....37
Fig. 1.12. Professional estimation……………………………………….....38

Fig. 1.14. The estimation challenge……………………………………….. 39
The devils square of project management……………………… 50
The ISO/IEC 9126 quality attributes………………………........ 52
Mapping of the ISO/IEC quality attributes and IFPUG GSC…...52
The cybernetic control circuit of estimation………………….....55
Cybernetic control circuit for estimation……………………….. 55
The determining parameters of estimation…………………....... 57
Milestones for estimations in IT projects……………………..... 60
Determination of the application boundary for the IFPUG
function point method……………………………………..... 71
The process of estimation……………………………………..... 77

interface work is included………………………………………...78
Phase relevant effort…………………………………………......79
Comparison of productivity of eight IT projects……………….. 81
A roadmap for successful implementation of estimation…..........87
Implementation challenges………………………………..........106
Goals for implementation of estimation……………………......107
Measured data per project……………………………………...108
Actual results…………………………………………………...108
Measurement of historical data………………………………...110
Steps of the process of estimation……………………………...118

The estimation challenges……………..…………..……………...1

Fig. 1.13. Efficient organization of estimation…………………………..... 39

The most important concepts of software estimation…................. 8
The basic ingredients for software estimation………………….. 14

Fig. 5.2.
Fig. 5.3.
Fig. 6.1. “Bathtub” curve for postdelivery support of applications

Fig. 6.2. Maintenance estimates (using the Excel spreadsheets)
by Application Development Department during

Fig. 6.3. Comparison of maintenance effort estimated with the Excel
spreadsheets to actual effort, for 93 projects during

Fig. 7.1.
Fig. 7.2.
Fig. 7.3. Basili’s GQM and Kaner’s factors for choosing

Fig. 7.4.
Fig. 7.5.
Fig. 8.1. Distribution of project size in ISBSG r8 database for IFPUG,

Fig. 8.2.

Fig. 10.4. General model of the Balanced Scorecard as used from

Fig. 10.5.
development and enhancement (AD&E) benchmarking

Fig. 11.1.
Fig. 11.2.
Fig. 11.3.
Fig. 11.4.
Fig. 11.5.
Fig. 11.6.
Fig. 11.7.
Fig. 11.8.
Fig. 11.9. Project team effort ratios for new development projects

Fig. 11.10. Project team effort ratios for enhancement projects with six

Fig. 12.1.

xxiv List of Figures

IBM experience curve…………………………………….........127
Estimation with an expert system……………………………... 132

at Volkswagen AG, 1994……………………………………….169

the first 2 years.………………………………………………...170

first 2 years.…………………………………………………….171
Steps to establish a metrics initiative………………..................191
Steps to implement software metrics (Dekkers 2000)…………192

a metric (Dekkers et al. 2002)………………………………….196
Basic structure of a metrics system……………………….........199
Earned Value Method figures (McKinlay 2006)………………202

Mark II, and COSMIC units of measure (Rule, 2005)................ 214
Interactions of the components of system complexity…………223

Process of data submission to the ISBSG application

The ISO/IEC JTC1 SC7 framework for software

The five levels of the CMMI® (source: www.sei.cmu.edu).
(Note that level 1 is initial and progress up an integer level

Fig. 10.1.

Fig. 10.2.
and systems measurement……………………………………...259

at a time to the highest level 5 which is the optimizing level).....261
Fig. 10.3. A roadmap for implementation of the CMMI………………….264

the German author in his lectures...…………………………….267

repository………...281

Internal and external benchmarking……………………………291
Benchmarking model development…………………………….292

ISBSG CD r10 demographics: projects by country of origin…..300
ISBSG CD r10 projects by business type……………………....300
ISBSG CD r10 projects by project type………………………..301
Functional mix for new development projects…………………307

with six phases recorded (ISBSG 2007)……………………..... 312

phases recorded (ISBSG 2007)………………..……………….313
Counting a software application………………..……………....323

“Trip-wires” when analyzing with benchmarking data………..294

Benchmarking of IT projects…………………………………...289

Fig. 12.5.
Fig. 12.6. “Make-or-Buy” decision based on using FP size as part

Fig. 12.7.
Fig. 12.8.
Fig. 12.9.
Fig. 12.10. Example of an internal corporate standard for the definition

Fig. 13.1. Common purposes of functional size measurement

Fig. 13.2. Relationship between the various ISO standards and the
functional size measure ment methods presented

Fig. 13.4.
Fig. 13.5.

Fig. 13.6.

Fig. 13.7. COSMIC software layers for four-tier architecture from

Fig. 13.8.
Fig. 13.9.
Fig. 14.1. UCP software sizing method (note: the productivity factor

Fig. 15.1.

Fig. 15.2. Comparison of the values of 14 GSCs (IT department of an

Fig. 15.3.

Fig. 15.5.
Fig. 15.6. Check
Fig. 15.7.
Fig. 15.8.
Fig. 16.1.
Fig. 16.2.

xxvList of Figures

COSMIC software layers for business applications from

COSMIC software layers for three-tier architecture from

Areas of application of the FPM and/or functional size……......329

of the pricing equation………………………………………… 330
Counter points to prejudices against Function Points………….337
The process IFPUG of Function Point Counting…………...….338
Types of Function Point counts according to IFPUG………….340

of application software…………………………………………341
Fig. 12.11. Defining the application boundary……………………..............342
Fig. 12.12. Internal Logical File complexity example…….……………….347
Fig. 12.13. Transactions example………………………………..................348

(FiSMA 1.1)……………………………………………………366

in this chapter…………………………………………………..368
Fig. 13.3. The process of counting COSMIC Function Points……………370

COSMIC model for measurement……………………………...370

end-user view…………………………………………………..373

developer view – example 1……………………………………..373

developer view – example 2……………………………………..373
FiSMA 1.1 links between users and a piece of software………378
FiSMA 1.1 BFC classes and BFC types………………...……..378

converts UCP into an effort estimate)………………………….402

Prognosis……...411

international insurance company – 2001)…………………........416
ISBSG: The early estimate checker (version 5.0)……………...420

Fig. 15.4. Typical counting situations……………………………………. 421

Regression analysis for development of the Function Point

boxes……………………………………………….….. 424
Drop-down list fields………………………………………...... 428

Star schema for a data warehouse system………………….......435
OLAP specific concepts………………………………………..437

Radio buttons…………………………………………………..424

Example of dialogue customer data……………………………429

Fig. 12.2.
Fig. 12.3.
Fig. 12.4.

History of Functional Size Measurement (FSM) methods…......326
Leveraging Function Points to benefit software development…327
Mind map of benefits of the Function Point Method (FPM)…..328

Fig. 17.1. Types of IFPUG FP counts and their relationships

Fig. 17.2.
Fig. 17.3. Example of a company standard for definition of application

Fig. 17.4. IFPUG method base functional components: data function

Fig. 17.5.
Fig. 17.6.
Fig. 17.7.
Fig. 17.8.
Fig. 18.1.
Fig. 18.2. The Application Boundary for the Course Registration

Fig. 18.3.
Fig. 18.4. Application boundary for IFPUG counting of Course

Fig. 18.5. Mark II steps for size measurement of the Course

Fig. 19.1.
Fig. 19.2.
Fig. 19.3.
Fig. 20.1.
Fig. 20.2.
Fig. 20.3.
Fig. 20.4.

Fig. 20.5.
Fig. 20.6.
Fig. 20.7.
Fig. 20.8.
Fig. 20.9.

Fig. 20.14. Experience®

Fig. 20.15. Project initiating screen (before the First estimate is performed)
in Experience®

Fig. 20.16. Experience®

List of Figures xxvi

to each other……………………………………………………455
Defining the application boundary…………………………..... 457

system (AS)...457

types and transaction function types…..………………………458
Rules of thumb to distinguish EIF and EI……………………...461
Rules of thumb to distinguish EO and EQ……………………..462
Function Points for new development projects………………...479
Function Points of enhancement projects………………….….. 479
Use case diagram for the Count Registration System………….493

System………………………………………………………….497
FiSMA 1.1 process (FiSMA, 2008)……………………………511

Registration System…………………………………………….524

Registration System…………………………………………… 517

Valve control (case study) software boundary…………………537
Valve control (case study) message sequence diagram………...539
Function Point Calculator (case study) requirements……….....541

Estimation parameters for quality and productivity

Tool-based effort estimation…………………………………...548
Example of an integrated tool environment……………………552
Estimation with an expert system……… …………………….. 557

of software……………………………………………………...560
Risk/value analysis example…………………………………...561
CKWIN quick estimate menu: required input………………… 562

Simulation results overview example……………………….....567

Fig. 20.11. New program development PC – productivity parameters….....571
Fig. 20.12. New program development PC – quality parameters…............. 571
Fig. 20.13. Enhancement host – staff parameters…………………............. 572

Pro estimating model…………………….............. 574

Fig. 20.10. Templates……………………………………………………....570
Project postmortems…………………………………………... 569

 Pro……………………………………………...575

CKWIN estimation results: view totals………………………...563

 Pro improved estimate mode……………………..575

Fig. 16.3.
Fig. 16.4. Counting components for the web objects method

Three-tier architecture for a web-based application…….…….. 442

(Refer, 2000)………...448

Fig. A.1. Example application boundary of ZAR for inclusion

Fig. A.2. Example count result of application ZAR for inclusion

List of Figures xxvii

Fig. 20.20. FPW hierarchy diagram………………………………….......... 580
Fig. 20.21. FPW classification of a transaction……………………............ 581

in the corporate logbook…………………………………......... 588

in the corporate logbook………………………………………. 589

Fig. 20.17. Experience®

Fig. 20.18. Experience®

Fig. 20.19. Function Point Workbench approach to IFPUG function

 Pro final review (closed and completed project)…576
 Pro project portfolio management………………..577

point counting………………………………………………..... 579

List of Tables

Table 1.1. Basic scaffolding for measurement of actual data……….......... 27
Table 1.2. Further information resources in internet………………........... 40
Table 2.1. Factors influencing software engineering estimation……......... 48
Table 2.2. Evaluation of IFPUG GSC and ISO/IEC quality attributes…....53
Table 2.3. Add-ons of the SEL (NASA) for estimate uncertainty…….......61
Table 3.1. Example time accounting………………………………............68
Table 3.2. Accounting model 1………………………………………........69
Table 3.3. Accounting model 2………………………………………........69
Table 3.4. Accounting model 3………………………………………........69
Table 3.5. Accounting error………………………………………….........70
Table 3.6. Standard software implementations…………………………....74
Table 3.7. Standard packaged software implementation effort and

duration………………………………………..……………….74
Table 3.8. Effort to project phase distribution in ISBSG release 9

2005………………………………………………….................79
Table 4.1. Perceived general positive aspects of software measurement

as reported by Hall et al……………………………………...... 91
Table 4.2. Favorite aspects of software measurement as reported by

Table 4.3. Perceived general negative aspects of software measurement

Table 4.4. Least favorite aspects of software measurement as reported

Table 4.5. Function point coordinator role description………………....... 96
Table 4.6. Function point counter role description……………………......97
Table 4.7. Estimation coordinator role description……………………......97
Table 4.8. Tackling the many forms of resistance………………………. 102
Table 5.1. IBM’s language level equivalents to 1 SLOC in Assembler….134

Table 5.4. Part of an index table for estimating with the relation

Table 5.6. Table for determination of FE…………………………….......141

method………………………………………………………...139

by Hall et al…………………………………………………….92

as reported by Hall et al……………………………………….. 91

Table 5.5. Example of a weight table used for a specific organization…. 141

Hall et al.…………………………………………….................91

Table 5.3. Code size adjustment factor…………………………………..136
Table 5.2. Average expansion rate……………………………………….135

List of Tables

Table 5.7. Example of mapping the ISO/IEC 12207 life cycle
phases to ISBSG…………………………………………....... 142

Table 5.8. Example COCOMO II……………………………………......145
Table 5.9. Results of various estimating methods for a 500 FP

software project……………………………………………… 146
Table 5.10. Costs in US-$ per instruction stratified by type of software

and degree of complexity (Wolverton 1974)……………........147
Table 5.11. Precision of estimation in the Granja/Oller case study……….154
Table 5.12. ISBSG study: Precision of costs, size, and duration based

on 400 completed projects………………………………........154
Table 6.1. IFPUG categories of maintenance and their relationship

with function points………………………………………......161
Table 6.2. The UKSMA activity based model of support and

maintenance………………………………………………......164
Table 6.3. Major kinds of work performed under the generic term

“maintenance” (Jones 2007)…………………………….........165
Table 6.4. ISBSG function point component percentage profile

for enhancement projects…………………………………......166
Table 6.5. Analyses of changes in enhancement projects………………. 166
Table 6.6. Factors influencing software support rates…………...............167
Table 6.7. The estimation spreadsheet used to estimate effort to do host

maintenance tasks.……………………………………….…...172
Table 6.8. The FP counting spreadsheet for small customer maintenance

orders……………………………………………………........ 173
Table 6.9. The estimating spreadsheet as tailored for PC-based

maintenance tasks……………………………………….........174
Table 7.1. Metrics viewpoints………………………………................... 179
Table 7.2. Overview of metrics types………………………………........184
Table 7.3. Example project metrics report……………………………….189
Table 7.4. Kaner’s 10 considerations for selecting a measure…….......... 194
Table 7.5. Fink and Hampp’s consolidated overview of surveys……..... 198
Table 8.1. Examples of product and process measures and metrics…......207
Table 8.2. Paradox of SLOC metrics…………………………………….211
Table 8.3. Development and enhancement project size categories

(Natale et al., 2004)………………………………….............. 213
Table 8.4. Rule’s (2005) relative size scale (Rule considered highlighted

cells to be within reasonable limits)…………………………. 214
Table 8.5. Relationship between a quality model and quality metrics…..216
Table 8.6. Defect potential per phase according to Jones (1994)……......218
Table 8.7. Defect measures according to the four defect severity levels

(Lubashevsky, 2002)……………………………….................. 219
Table 8.8. Defect metrics by various categories from the ISBSG

Table 8.9. ISBSG Software Metrics Compendium effort equations…….22

xxx

6
Software Metrics Compendium (2002) …………………....... 221

 List of Tables

Table 8.10. Productivity metrics for various types of software and
systems development (or maintenance) work……………….. 227

Table 8.11. PDR by project type from Finnish Experience Database
(Shepperd et al., 2006)……………………………………......229

Table 8.12. PDR by organization type from Finnish Experience
Database (Shepperd et al., 2006)…………………………......230

Table 8.13. PDR by type of project and Web- or non-Web-based
development (ISBSG, 2008)………………………………….. 230

Table 8.15. Duration……………………………………………………....235
Table 8.16. Boehm’s COCOMO II based equations for project

duration (2000)…... 235
Table 9.1. Components of object-oriented software according to Sneed

(1996)……..242
Table 9.2. The Metrics Suite (MOOSE) from Chidamber

and Kemerer…………………………………………………. 244
Table 9.3.

metrics……………………………………………………….. 246
Table 9.4. Basic measures of C++ programs…………………………….248
Table 9.5. Metrics derived from basic measures of C++ programs….......248
Table 9.6. Project delivery rate (PDR) of object-oriented projects

in the ISBSG benchmarking database……………………….. 251
Table 9.7. Results of applying functional size measurement on OOA

projects (Fetcke, 1998)…………………................................. 252
Table 9.8. Proposed approach for translating UML components into

Function Point components (Myerson, 1999)……………….. 252
Table 9.9. COSMIC and UML equivalences in the Rational Unified

Process – RUP (Azzouz et al., 2004)……………...................253
Table 10.1. CMMI® levels………………………………………………...262
Table 10.2. Goal/question/metric example……………………………...... 266
Table 10.3. Internet links to measurement communities………………….285
Table 11.1. The growth of the ISBSG application development

and enhancement repository………………………….............303
Table 11.2. Programming language……………………………………….304
Table 11.3. Programming language generations………………………..... 304
Table 11.4. Development platforms……………………………………… 305
Table 11.5. Development techniques …………………………………......305
Table 11.6. Regional distribution of average Function Point components

of new developments………………………………………… 309
Table 11.7. Ratios of Function Point components by geographic

location... 310
Table 11.8. ISBSG levels for measured effort…………………………….310
Table 11.9. Number and proportion of projects by level of measured

effort…………………………………………………............. 3

Capers Jones’ object-oriented cost, defect, and productivity

’Table 8.14. Capers Jones (2007) US cost per FP in 2007……….............. 234

xxxi

11

List of Tables

Table 11.10. Effort and size relationships for COBOL, NATURAL,
and C………………………………………………………….311

Table 11.11. PDRs regarding development platforms……….......................314
Table 11.12. PDRs by programming language and platform…………….... 315
Table 11.13. Project duration and its relationship to functional Size

(ISBSG 2002)……………………………………………....... 316
Table 11.14. Project duration dependent on effort (ISBSG 2002)……….... 316
Table 11.15. Function Point responsibility per person in relation to team

size……………………………………………………………317
Table 11.16. Internet links to benchmarking organizations……….............. 318

...334
Table 12.2. IFPUG function types………………………………...............343
Table 12.3. Summary of a Function Point Count…………………………344
Table 12.4. Complexity of IFPUG data functions: ILF and EIF………….346
Table 12.5. Unadjusted Function Points based on logical file

complexity…………………………………………………… 346
Table 12.6. Complexity of EIs…………………………………………….349
Table 12.7. Complexity of EOs and EQs………………………………… 349
Table 12.8. Unadjusted Function Points of transactions…………………. 350
Table 13.1. ISO/IEC Functional Size Measurement Method standards…..367
Table 13.2. Data manipulation and movement classification per

Table 13.3. Differences between COSMIC real-time- and MIS- systems
ISBSG R8……………………………………………………. 374

for the four components of the COSMIC……………………..374
Table 13.5. Comparison of the concepts of IFPUG FP counting method

Table 13.6. ISBSG CD release 10 breakdown by sizing method……........393
Table 14.1. Computing UUCW………………………………...…………402
Table 14.2. Computing UAW…………………………………………......403
Table 14.3. Technical complexity factor………………………………….404
Table 14.4. Environmental complexity factors………………………....... 404
Table 14.5. Variants of the Function Point Method in comparison………
Table 15.1. Function Point Prognosis formulae of the IT department

of an international insurance company (Bundschuh,

Table 15.2. Proportions of the Function Point components from
the IT department of an international insurance
company………………………………………………………413

component………………………………………………........ 4

Table 12.1. Test protocol from Noth and Kretzschmar (1984)

and COSMIC concepts……………………………………….375

Table 13.4. CFP breakdown from ISBSG: The Benchmark release 8

Table 15.3. Number of average Function Points by IFPUG functional

1997–2002)..411

xxxii

405

15

COSMIC (Santillo, 2005)…………………………………….372

of estimating models based on size measurement using
Function Points..............

 List of Tables

Table 15.4. Maintained entities (ILF) proportion compared with other
IFPUG Functional Components………………………...…… 415

Table 15.5. Input (EI) and output (EO) proportions compared with
other IFPUG Functional Components………………….......... 415

Table 16.1. Comparison of transaction oriented systems vs.
data warehouse systems (Santillo 2001)…….………………434

Table 16.2. Proportions of FP components in redevelopment projects….. 450
Table 16.3. Phase proportions for the various types of software

development………..450
Table 16.4. Defect density expressed as defects per FP………………......451
Table 16.5. Project Delivery Rate (PDR) in hours per FP for various

types of software development……………………………….451
Table 17.1. IFPUG FP counting steps overview…………………............. 454
Table 17.2. Complexity of data (IFPUG CPM)…………………...............460
Table 17.3. Unadjusted Function Points for files (IFPUG CPM)………....460
Table 17.4. The primary intent of a transaction (IFPUG CPM)………......462
Table 17.5. Forms of processing logic (IFPUG CPM)………………........ 463
Table 17.6. Decision table for undefined cases with IIC internal

company standard……………………………………............. 463
Table 17.7. Complexity of EIs (IFPUG CPM)………………….……....... 468
Table 17.8. Complexity of EOs and EQs (IFPUG CPM)……………........ 468
Table 17.9. Unadjusted function points of EI, EO, or EQ (IFPUG CPM).. 468
Table 17.10. Degrees of Influence (DI) (IFPUG CPM)………………........ 470
Table 17.11. Data communications…………………………....................... 470
Table 17.12. Distributed data processing………………………………….. 471
Table 17.13. Performance………………………………………….............. 471
Table 17.14. Heavily used configuration……………………....................... 472
Table 17.15. Transaction rate……………………………………………… 472
Table 17.16. Online data entry…………………………………………….. 473
Table 17.17. End-user efficiency ……………………………………......... 473
Table 17.18. Online update………………………………………................474
Table 17.19. Complex processing……………………………..................... 475
Table 17.20. Reusability……………………………………….................... 475
Table 17.21. Installation ease……………………………………………… 476
Table 17.22. Operational ease……………………………........................... 476
Table 17.23. Multiple sites……………………………………………........ 477
Table 17.24. Facilitate change………………………………....................... 477
Table 18.1. Use case requirements for the new Course Registration

System……………………………………………………….. 484
Table 18.2. List of candidate triggering events – step 1………………..... 498
Table 18.3. List of objects of interest and data groups – step 1………….. 499
Table 18.4. COSMIC count summary for Course Registration System

project (COSMIC, 2007)………………………….................. 502
Table 18.5. KISS Quick results………………………………...………… 5

xxxiii

12

List of Tables

Table 18.6. FiSMA 1.1 results…………………………………………….514
Table 18.7. IFPUG FP counting approach………………………...............516
Table 18.8. Data function results for IFPUG FP count of Course

Registration System…………………………………..............517
Table 18.9. Course Registration use cases……………………...……........519
Table 18.10. IFPUG FP transactional function type summary for Course

Registration System Project…………………………..............520
Table 18.11. IFPUG FSM results……………………………...................... 522
Table 18.12. Mark II FSM results………………………………………..... 524
Table 18.13. Data functions for NESMA count of Course Registration

System……….. 527
Table 18.14. NESMA FSM transactional function type summary

for Course Registration System Project………………............528
Table 18.15. NESMA FSM count of Course Registration System……....... 531
Table 18.16. Summary of FSM sizes of the Course Registration System

using the ISO/IEC-conformant FSMMs……..........................531
Table 19.1. Valve control (case study) data groups……………………….537
Table 19.2. Valve control (case study): time-based control……................ 539
Table 19.3. Valve control (case study) data movements………………….540
Table 19.4. Function Point Calculator (case study) result………...............541
Table 19.5. Function Point Calculator (case study) GSCs and VAF….......542
Table 19.6. Training Administration (case study) quality restrictions….... 5
Table 19.7. Training Administration (case study) result using

IFPUG FSM………………………………………………......544
Table 20.1. Number of projects in the CKWIN project database……........556
Table 20.2. Evaluation of soft data……………………………………......560
Table 20.3. Tools and object oriented quality attributes………………..... 583
Table 20.4. Website URLs for estimation tools………………….............. 585
Table A.1. Header for inclusion in the corporate logbook……….…........ 587
Table A.2. FP count kickoff checklist………………………………........ 590
Table A.3. FP count assessment checklist……………………………......591
Table A.4. Project postmortem checklist……………………………....... 594
Table A.5. Estimation assessment checklist…………………...................596
Table A.6. Categories and names of MT22 productivity factors…........... 599
Table A.7. Release and version policy factors…………………............... 600
Table A.8. Resource and availability for future needs factors……........... 600
Table A.9. Contracting procedure……………………………………….. 601
Table A.10. Number of stakeholders…………………………………........601
Table A.11. Priority setting and control of changes………………………. 601
Table A.12. Organizational culture……………………………………….. 602
Table A.13. Source code edition methods and tools…………………........ 602
Table A.14. Testing methods and tools………………………………........ 603
Table A.15. Documentation methods and tools………………................... 603
Table A.16. Communication mechanisms……………….…………...........

xxxiv

43

604

 List of Tables

Table A.17. Roll-out methods and tools…………………….......................604
Table A.18. Functionality requirements…………………........................... 604
Table A.19. Reliability requirements………………………....................... 605
Table A.20. Usability requirements………………………………….......... 605
Table A.21. Efficiency requirements………………………………............606
Table A.22. Maintainability requirements…………………………............606
Table A.23. Portability requirements………………………....................... 607
Table A.24. Development environment skills of staff skills of staff………607
Table A.25. Application knowledge of staff…………………………........ 608
Table A.26. Networking skills of staff……………………………………. 608
Table A.27. Motivation and responsibility of staff……………………….. 609
Table A.28. Team atmosphere……………………………………………..609

xxxv

 1 The Estimation Challenges

Fig. 1.1. The estimation challenges

The statements depicted in Fig. 1.1 hint at a few of the innate problems asso-
ciated with estimating. Beyond these realities, we also issue a semi-serious
warning for the reader:

Every IT project should commence with an estime of effort, cost, schedule
dates and duration, as a basis of project planning as well as for the mea-
surement of project success at the end of the project. Early estimates before
project initiation are not only challenging, but rely on the collective corporate
knowledge of similar past projects. To produce sound estimates, estimating

Engaging in estimating increases the risk of becoming addicted to the
practice. Many people dealing professionally with estimation will be
fascinated by the clever application of estimation methods and tools and
can quickly get drawn into an addiction with the whole estimation sub-
culture.

Estimation has to do with uncertainty

For estimation you need
Information about the object of estimation

Dangerously often
estimation is mistaken for negotiation

1 The Estimation Challenges 2

professionals need knowledge garnered from market trends and trend interrup-
tions, as well as from vendors touting the latest in technological developments.
In addition, estimators must rely on historical experiences and scenarios from
their own project portfolios. Unfortunately, until recently, there existed little
published data to support such early estimation.

The output of the estimating process is typically a line in the sand estimate
of cost and/or effort hours to develop or enhance a piece of software. As such,
the progress of the project can be gauged, and corrective action can be taken
when identified that the project deviates from the plan. Control and tracking
against the plan (estimates) is an important component of successful project
management. This enables controlling of project size (also called project scope)
as well as the measurement of success. Paradoxically, project leaders do not
measure adequately either at the beginning or during their projects, yet it is
precisely the measurement activity and resultant numbers that create a project
conscience. The lack of quantification of project progress hinders the ability
of even the best project managers to react and recover because often they will
not detect in time an out-of-control project. Measures such as effort expended
versus effort budgeted, size delivered versus size estimated, project scope creep
(planned versus actual), and earned value management measures can easily be
collected during a project and provide project managers with a project dash-
board on which to gauge the direction and speed of the project underway.

Even with tools available to perform accurate project estimation, the result-
ant estimates are far too often overridden or ignored by project management in
favor of artificially determined delivery dates set by their customers or pro-
mised by their management. As the software industry frequently emboldens the
term software engineering when describing the increased rigor associated with
software development processes, it is astounding that the psychology of con-
flict avoidance and unrealistic optimism pervades software estimating. Date-
driven estimating is one of the most prevalent estimating techniques employed
in the software development professions today (McConnell, 2004) whereby a
preset date governs the delivery of an often undetermined product. Software
engineers routinely balk at overly optimistic delivery dates, yet succumb to
management and customer pressure to meet such dates – even when they are
set sometimes even before the project is named. “Engineers can wait until the
end of design to perform production estimates, yet software engineers routinely
must estimate software delivery before the end of the requirements phase” (Card,
1998). Can you imagine a construction manager announcing that a building will
be set for occupancy within 6 months when not only the type of building, but
also the location, floor plans, and intended usage are not yet known? To do so
prior to a meeting with the owners and contractors would be obviously foolish,
yet it is fairly common for software development management to commit their
teams to such proposals simply as a matter of course.

1 The Estimation Challenges 3

This book does not purport that solid estimating principles will change the
overoptimistic nature of development managers or customers, nor alter the
course of history currently being written. It is our fervent hope, however, that if
even one software project disaster is averted by the words or practices outlined
here, then our work is a success. Software projects are simply too expensive and
too wrought with human interaction to leave the science of estimating to date-
driven proponents. There is a better way, and this book aims to shed light on
the many techniques and methods for fact-based estimating of software projects.

Why do software professionals and managers reject solid software-estimating
techniques? Reasons vary, but include the following:

Everyone is doing the best job he/she can today – given his/her training,
experience, and job demands. There simply is not a lot of time to read up on
the best practices for software estimating
There is no one size that fits all approach to software estimating, and it is
difficult to figure out which method would be better than the expert or guru
model we use today, whereby our developers each give their best guess to
the work they think has to be done. Besides, according to some developers, the
customers will never agree to our estimates no matter how they are derived
Software development is still viewed as an artistic venture by many com-
panies, and therefore standardized methods are often ignored
Project teams are often rewarded based on their adherence to current pro-
cesses no matter how arbitrary. An example of this is the practice of can be
illustrated as: if you can get the project done by this <artificially set> date
within the <artificially set> budget, then you will be promoted
Project success is often gauged based on artificially set and managed to dates,
regardless of how impossible the resultant schedule may be
There is an inherent misunderstanding and mistrust of software developers.
In fact, in some organizations, it is assumed that software developers inflate
their estimates so that they can do less productive work. In such cases, what-
ever estimate the project experts submit for a project, it is routinely cut by
50% thinking that it will motivate project teams to become more productive
Engineers and computer scientists are experts at technical work, and less so
in the area of communication. While it is human nature to avoid conflict, it
is even more so in the technical professions where communication is not a
strong competency. The is exacerbated when the software project manager
must tell the customer that the cost and schedule are inadequate to deliver a
quality software product
The attitude that nothing ever changes. Project professionals over the past
15 years are change-weary – that is they have been subject to so many
changes in process, technology, methodologies, and programming languages
that it seems futile to fight management and customers about the need to
adopt “new” practices for creating solid estimates

1 The Estimation Challenges 4

Users and customers do not understand their own role in software projects,
and therefore do not realize the impact of their non-participation, changes,
or rework demands on project estimates
The gap between software developers and customers, despite years of lip
service to business analysis and user-focused approaches, is simply not closing
in many organizations. There is still the customer is always right mentality
held by some of those who acquire software
The lack of clear communication, solid requirements, and a line in the sand
upon which to base a firm estimate compounds the whole notion of soft-
ware estimating. Without jelled software requirements that are mutually
agreed upon by both the customers and the software developers, it is virtu-
ally impossible to arrive at a reliable or semiaccurate estimate
The duration estimates that come out of even sophisticated software estima-
ting tools often seem so elongated or unrealistic that we are prone to cut
down the estimate based on our own gut feel.
It is likely that you have encountered many other reasons why software esti-

mating seems to remain more of an art than a science. By such (mis)behavior,
chances for project success are often carelessly reduced even before the project
starts. According to the 2003 Standish Group’s CHAOS Report more than 2/3
(66%) of all projects are declared as failures/unsuccessful. With the current cli-
mate of continuing threats of outsourcing, layoffs, and continued fiscal restraint,
it would seem no better time for project leaders to see themselves critically
and aim to improve the success rates of their projects through good estimating
practices, among others. Attributes of a good problem solver and project leader
are needed more than ever today. The following capabilities of a professional
problem solver are also unrestrictedly valid for professional project leaders:

A talented project leader

Handles himself and the actual project progress critically. He has the ability
of self-reflection without undue hardship to his self-esteem
Can step back from the everyday details of the project to view it from an
objective and whole perspective
Can manage the project with the bare minimum of given information since
he is an expert himself and has access to qualified experts on his project
team who augment any weak areas of his experience
Can separate the project wheat from the chaff – in other words, filter the
essential and necessary information from that which is peripheral or distract-
ing from the project. He has the ability to view complex matters in a con-
densed form
Can formulate objectives precisely to attain the highest level of success given
the project attributes. He has communicative talents allowing him to express
the objectives in a manner understandable to other project stake-holders

1 The Estimation Challenges 5

Is able to proceed in a structured manner and to decide consequently. He
has the capacity to think logically and the capability to recognize connec-
tions and evaluate their importance to the project
Is able to progressively elaborate problems to a workable and attainable
solution. He is able to also incorporate lessons learned from the past in new
situations.
While it might appear that the ideal project leader almost has to walk on

water, there are also other prerequisites that must be in place for solid esti-
mating processes to be successful. These are outlined in the paragraphs that
follow:

1. Availability of historical project data
2. Organizational acceptance of best practices
3. Availability of appropriate supporting software tools.
Availability of historical data: an important prerequisite for the professional

application of estimating techniques. Not only must there be availability of
historical project data, but also it must be relevant and applicable historical
project data.

This leads to an estimation paradox: estimates are most relevant and deman-
ded at a point in time when there is a minimal of measurable information (at
project initiation), and when one is able to perform the estimation with abso-
lute exactness (at project postmortem) it is no longer required.

IT estimation is done for an object of estimation that is, per definition, unique.
For this reason, it can be a burden for IT professionals to collect and evaluate
empirical data during the progress of IT project, even though such data is easi-
est and most accurate to collect at that time. Far too often, data collection tasks
during the project create additional effort that is seen to be of minimal value
and overhead – an effort that is most likely to be avoided. But the value of
such data collection to future project estimates can be enormous because data
captured at the source and in the heat of a project can be more precise and re-
flect true project circumstances than to collect data after the project has closed.
The issue becomes: how to incorporate effortless and transparent project data
collection during a project – especially on a project that was underestimated
and challenged with unrealistic schedules? This is where a few industry best
practices are useful. It is well known that data are most accurate when they are
still fresh.

Organizational acceptance of best practices: Before management will embrace
a new way of doing business, even proven industry best practices, there must be a
formidable likelihood that the new practice will aid the organization to move for-
ward. Formalized estimating processes often fail to gain acceptance, in practice,
due to the following situations or experiences:

1 The Estimation Challenges 6

Even the best method(s) without tool support have only scanty chances for
survival.

This means that the implementation of an estimating method in and of itself
is often insufficient to gain the buy-in and trust of an organization – it must be
supported by adequate tools, and if the organization is lacking in historical
project data, also a prepopulated database of relevant industry project data.
Hence, most of the following practical experiences and examples are often
based on the application of tools for estimation or for support of single methods.

Note: While there are many commercially available estimating tools avail-
able to the software professional today, we have restricted our treatise to those
with which the authors have had direct and successful experiences. This is not
to say that these are the only and best tools available at the time of this printing
and thereafter; only that we have experience with particular estimating appro-
aches which work(ed) successful in our own practices. The reader is urged to
be aware that there will always be newer and more promising estimating tools
on the market; however, the ones we have included by means of example herein
are those whose manufacturers and authors we know personally, and who stand
faithfully behind their products. There is no slight intended to any software ven-
dor whose toolset has not been included in our select list of successful experi-
ences. One can never be complete and all inclusive with such lists.

The software estimating support tools we will profile and mention here include
the following:

Function Point Workbench (FPW) by Charismatek Software, based in
Melbourne, Australia (www.charismatek.com). This award-winning functional-
size measurement repository software stores the details of the functions
included in the functional size of a software project. FPW does not support
project estimating; however, it provides support for scoping and sizing the
software project to be estimated.

Software Productivity Research of Cambridge, MA, USA (www.spr.com).
This software package relies on a database of historical projects that number
over 8,000 together with user input of functional size (function points) or
other sizing mechanisms, plus project attributes to arrive at an estimate of
project effort. The KnowledgePLAN database is augmented by the data
from the International Software Benchmarking Standards Group (ISBSG)
repository of completed project data.

tool for functional sizing, software estimating, and scope management pro-
vides development life cycle support for sizing, estimating, and tracking of
a project’s functionality, and is based on a validated database of completed
software projects. The Experience® repository is also augmented by the
data from the ISBSG repository of completed project data.

Experience® Pro by 4SUM Partners (www.4sumpartners.com). This robust

®KnowledgePLAN (and its predecessor: Checkpoint for Windows) by

1 The Estimation Challenges 7

SLIM suite of tools by QSM (www.qsm.com/database.html), where project
data is collected (250–500 per year) and added to the SLIM database. SLIM
measurement and estimating products are based on QSMs own research and
estimating algorithms, and the QSM database is maintained at QSM.
The present experiences in this book can be easily transferred to other esti-

mation tools without any problem. Thus, the mentioning of this or other tools
should not be taken as an endorsement or advice to buy any of the aforemen-
tioned tools. In the upcoming chapter “Tools for Estimation,” more tools are
presented with their URL addresses so that the reader can make his/her own
informed choice.

Availability of appropriate supporting software tools: The software func-
tionality (i.e., the number of appropriate and supporting tools) available to the
project team members to allow them to work efficiently and effectively is the
third prerequisite to software estimating (besides time and money). Automated
support for project estimating is a critical time saver that can be a critical pre-
requisite to overcome the resistance and skepticism about embracing the new
processes. Manual estimating techniques, while useful for small projects, become
an arduous and untenable set of tasks, which quickly lose momentum and sup-
port as soon as projects get underway. Without adequate tool support, historical
data becomes difficult to track and associate with the original estimates. In
addition, project estimates can quickly become lost, misplaced, and untraceable
– rendering the process more work than it is worth. Such situations often result
in a failed estimating initiative – even with sound and proven estimating
methods – because the data are not integrated and available for sub-sequent
project estimates. In these situations, it becomes even more difficult to try to
implement software-estimating techniques at a future point – even when there
may be tool support available to the project team. It is similar to the saying
Fool me once, shame on you – fool me twice, shame on me. It is difficult enough
to get an organization to embrace best practices the first time – it is almost
impossible to do so after a botched first attempt.

Further to the three prerequisites, it is the authors’ experiences that software
estimating and metrics initiatives succeed more often when there is the support
of a Competence Center. Such a group of specialists delivers, besides others,
services and benefits for the project leaders by doing the following:

Securing uniform procedures for estimation
Creating consistency
Providing a central and homogeneous collection and evaluation of project
experience data
Delivering estimating know-how – in other words, the Competence Center
is the central repository of knowledge for the estimating methods.

1 The Estimation Challenges 8

The advantages and disadvantages of a Competence Center for estimation
and Information Technology (IT) metrics will be discussed in the chapter “The
Implementation of Estimation – Frequently Asked Questions (FAQs).”

Fig. 1.2. The most important concepts of software estimation

Figure 1.2 depicts the most important concepts of software estimation at a
glance. It is integral to the whole of software estimating that there be informa-
tion available about the Object of estimation (what the software product will do)
and defined milestones for performing project estimates (and revising those esti-
mates) during the project. Estimating precision is also a central theme, as well as
the concept of estimation error (underestimation, overestimation). The effort to
perform project estimates must also be taken into account. Where and when esti-
mates are to be performed, tracked, and reestimated during the project (as a matter
of course or when scope changes arise) must also be defined and planned accord-
ingly. This makes the availability of appropriate supporting software estimation
tools even more critical, as essential estimation parameters have to be documented
along the way. Those persons performing project estimates have to do so consis-
tently and honestly in order to gain worthwhile estimation experience. Each of
these concepts is an important consideration if a successful estimation culture
is to be established.

The remainder of this chapter deals with the basic principles and regulations
for performing software estimation.

1.1 The Basics of Software Estimation

There are a number of different approaches and methods in use today to
estimate the cost, effort, and duration of IT projects (see chapter “Estimation

estimation
Knowing what is the Object of estimation

The precision of estimates
Estimation errors
The effort to perform estimation processes

Tracking estimates
Estimation tools
Estimation parameters (input variables)
Realistic (honest) estimates
Estimation experience and historical data
Introduction of formalized estimation
Culture supportive to estimation

!!
The right point(s) in time for estimation

The right estimating method for the purpose

The most important concepts of software

9

Methods”). However, only a handful of these have gained any significant market
share. Our starting point, therefore, is the practical experiences of the authors,
particularly those that include functional size measurement (FSM) – also known
colloquially as the Function Point Methods (FPM). It should be noted that our
experiences can easily be transferred to apply to any other functional measure.

Here we explain only the general principles of the most commonly used
techniques (for further detail, see also the chapter “Estimation Fundamentals”)
and address the important concepts of software estimating: precision of esti-
mates, the object of estimation, sizing the estimation object, and measurement,
documentation, and the problem of applicable and relevant historical data.

During the estimating processes, one must use care to distinguish between
the two essential estimating activities as follows:

1. Measurement
Determination of the functional size of the object of estimation (e.g., size
of the software application in place, or the size of the software to be de-
veloped or enhanced in a project); and the impact of the non-functional
(quality and performance) requirements.
But: What is that?

2. Estimation of the following:

But: On what basis?

1.1.1 Measurement

It is generally understood that the size of the object of estimation (i.e., the size
of the software application or the size of the software construction “area”
developed or enhanced in a project as applicable) is one of the most important
correlation factors that drive project effort and productivity! Hence, the mea-
surement of software size is a major core discipline of IT project planning!
Another important driver is the impact of non-functional requirements (similar
to a “building code” for the software which can according to Barry Boehm,
originator of the COCOMO II cost estimation model and Watts Humphrey of
Capability Maturity Model (CMMI(SM)) fame – double the effort estimate for
the development or enhancement of a piece of software.

It is impossible to estimate any project in any industry if one does not know
the size of the object or product being developed. For example, in manufacturing,
one cannot estimate the cost to manufacture an new item unless the particulars
of the said item are known. It is similar in building construction – if the size of

1.1 The Basics of Software Estimation

(a) Effort
(b) Duration
(c) Resources
(d) Cost

1 The Estimation Challenges 10

known whether it is a renovation or a construction project), it is impossible to
perform an estimate worth the paper on which it is written. IT projects are no
different.

IT projects cannot be estimated without an assessment of the software or sys-
tems to be built. One of the oldest methods to evaluate software size involves
estimating the number of (non-comment) Source Lines of Code (SLOC) or
1,000 SLOC (known as KLOC or KSLOC). In recent years, the source lines of
code approach to software sizing has come under fire, most notably due to the
fact that SLOC is difficult to estimate at the beginning of a project, particularly
when multiple technologies or programming languages are involved. Addi-
tionally, SLOC-based software sizing suffers from the inverse productivity
dilemma – the more lines of code that are produced to implement a certain set
of software functions, the more productive the team appears to be – when, in
fact, the number of lines of code may be programmed and stylistically dependent
on the programmer’s way of coding. Software estimating industry guru, Capers
Jones, has been often quoted for his hardline stance on this issue whereby he
states that any manager who bases their performance measures (e.g., delivery
rates, productivity or quality) on source-lines-of-code can be considered to be
guilty of management malpractice. While the authors tend to agree with Capers’
position, we have also seen evidence in some homogeneous software develop-
ment environments where lines-of-code measures were of value to the customer
and supplier relationships.

Another emerging standardized approach to evaluate software size is called
Functional Size Measurement or FSM, which is independent of the program-
ming language because it is based on an assessment of the functional user re-
quirements to be implemented in the software. Further details on FSM and how
to derive software’s functional size can be found in the following chapters about
Function Points.

Hence, in this book, estimation is always understood to be based on a mea-
surable size of the object of estimation, augmented by an assessment of the non-
functional and technical requirements for the software. The widespread expert
estimation technique (also called the guru method in some publications) is to the
authors’ convictions better than no estimation (that is, if it is well documented
and therefore, transparent and traceable), but it is not considered to be state of
the art in the professions of project management or software engineering. This
book focuses on the best practices for software estimation and illustrates the
advantages of using formal, structured methods as we have experienced through
our projects, as well as those collected by leading software metrics organizations
and practitioners.

a construction or building renovation is unknown (or furthermore if it is not

11

Expert Estimation Techniques

The expert estimation techniques employed by software development organiza-
tions worldwide range from none to ad hoc to formally documented. While
we understand that some organizations enjoy the luxurious market position
whereby they have a monopoly and do not see the value of doing any project
estimation, this book does not address those companies. Ad hoc approaches
may be standardized in the head of the expert estimator, but are rarely written
down or shared among experts. Formally documented techniques are becom-
ing more common especially with the advent of the Capability Maturity Models
(CMMs) and software process improvement (SPI) movements (see the chapter
about Measurement Communities and Resources). Expert estimation in these
cases usually involves a variation of the following steps (if done professionally):

Specification that the estimating following steps are to be performed inde-
pendently by at least two estimation experts before any comparison of results
is done
Subdivision of the work to be performed into discrete software applications
or functional projects (i.e., if there are multiple pieces of software to be deve-
loped and/or renovated, each one would comprise a separate subproject or
separate piece of software to be estimated) Note: The Program Management
Toolkit for software and systems developers (2008) by Forselius, Dekkers et al.,
outlines a structured approach to divide of IT programs into (sub)projects. See
the bibliography for further details.
Definition of the project type, structure and identification of the work tasks
(also called Work Breakdown Structure or WBS) to be performed
Determination of the situational constraints and environmental factors
involved in the project(s) to be estimated (also called the non-functional and
technical requirements)
Performance of an independent effort estimate for each work task identified
for the project(s)
Roll-up (summation) of the total effort for all the tasks and all of the sub-
projects involved in the project (as applicable)
Comparison of estimation results and building consensus between all esti-
mation experts involved
Addition of add-on tasks to accommodate uncertainty (e.g., instability of
requirements, novelty of software or subject matter), as well as for known
risks, and requirements/scope creep (Note: scope creep is also addressed
separately in subsequent sections due to its potential impact on estimates
throughout the project)
Agreement on the precision probability (confidence level) and range of the
estimates for total effort. The precision probability or confidence level for an
estimate will increase as more information is known about the project as the
project progresses. In addition, the range surrounding the estimated effort will

1.1 The Basics of Software Estimation

1 The Estimation Challenges 12

narrow as more information becomes known during the project. (A graphic
showing the increasing accuracy of estimates as the software development
life cycle progresses is also called the cone of uncertainty as depicted in
Fig. 1.7. It begins at early requirements where the uncertainty of estimates
is typically no more precise than ±100% (and sometimes up to +/– 400%
depending on how “early” are the early requirements) and narrows to ±10%
by the end of the project. Attributions in published literature credit this cone of
uncertainty variously to Barry Boehm of the University of Southern California
and COCOMO II fame, William Perry, CEO of the Quality Assurance Insti-
tute, or Capers Jones, Scientist Emeritus of Software Productivity Research).
Expert estimating techniques often deliver lower effort and cost estimates than

estimates based on historical data. There are two primary reasons for this:
1. With expert estimation, there is often an overconfidence in the team pro-

ductivity that will be achieved. This overconfidence can lead to a lower
than realistic estimate of work effort.

2. High estimates trigger resistance and mistrust from managers, customers,
and the promotional sales force, many of whom do not understand the esti-
mating process or how uncertainty can increase an estimate. (This may
be true from the viewpoint of other stakeholders too).

Functional Size Measurement

The second approach to software estimating identified earlier in this chapter in-
volves the FSM of the software application or of the software to be developed or
enhanced in the IT project. As an analogy, the functional size of software can be
compared with the measurement of the distance for a trip, or the size of a build-

This choice accordingly delivers the necessary information for the planning of
time, duration, effort, costs, and quality of the journey. In a similar manner, the
size of a piece of software becomes a fundamental component (the size of the
object of estimation) along with the constraints (non-functional quality require-
ments), and how the software will be built, when estimating the time, duration,

to measuring the size of a floor plan (or in the case of enhancement – the size of

similar to the building code constraints required by the customer.
The SWEBOK (The Software Engineering Body of Knowledge) of the IEEE

Computer Society (currently undergoing ISO/IEC JTC1 SC7 standardization)
describes software measurement as an incorporated core element within the
field of software engineering because it is essential to the development criteria

effort, costs, and quality for the IT project. Functional size measurement is akin

a trip – requires firstly that such distance be estimated based on the choice of

a renovation to a floor plan), and the non-functional (quality) requirements are

the route and the particular mode of travel (airline or passenger vehicle etc.)

ing to be constructed. Following the first analogy – the distance to be taken on

13

of the SWEBOK and is persistent throughout (Buglione et al.). Nine of the ten
knowledge areas of the current SWEBOK refer to software measurement pro-
cesses. Software measurement and analysis is also identified as a Process Area
(PA) for level 2 of the Capability Maturity Model Integration (CMMI®) Stan-
dard, and measurement plays an important role also in various standards of the

mination (SPICE), and is the focus of the ISO/IEC 15939 Software Measurement
Process Framework standard.

Figure 1.3 depicts a simplified model of the basic ingredients of software
estimation: Determining the functional size of the object of estimation is the
first step. The second step involves identifying and defining the values of the
relevant project parameters, which are then combined with the project size from
step 1, and the effort is estimated. This effort then becomes the basis for cost
and duration (time to market) calculations. This overall estimating model depends
on the existence of reliable empirical historical project data that are collected.

As mentioned earlier, the size measurement of the object of estimation (e.g.,
an application or IT project piece of software) can be determined with different
techniques and result in different sizing units, for example:

 Non-commented SLOC:
Lines of code (KSLOC = Kilo SLOC). Note: this method is discouraged
for the aforementioned reasons, however, there are organizations that
profess success in estimating with these and other non-FSM methods

Functional size measurement units including the following:
IFPUG Function Points (IFPUG = International Function Point Users
Group, see chapter “The IFPUG Function Point Counting Method”)
COSMIC Function Points (Cfp, COSMIC = Common Software Mea-
surement International Consortium; see chapter “Functional Size
Measurement Methods”)

– FiSMA Function points (Ffp, FiSMA = Finnish Software Measure-
ment Association; see chapter “Functional Size Measurement Methods”)
Mark II Function Points (see chapter “Functional Size Measurement
Methods”)
NESMA Function Points (NESMA = Netherlands Software Measure-
ment Association)
Data Points, Object Points, and other variants of software sizing (see
chapter “Variants of Functional Size Measurement”).

Because of its popularity in the USA and its current dominance in the ISBSG
data repository, Functional size measurement using IFPUG Function Points is
described in the chapters “The IFPUG Function Point Counting Method” and

standardized by the International Organization for Standardization (ISO) and

1.1 The Basics of Software Estimation

ISO/IEC standard suite 15504 Software Process Improvement Capability dEter-

“IFPUG Function Point Counting Rules.” Four other FSM methods are currently

1 The Estimation Challenges 14

Fig. 1.3. The basic ingredients for software estimation

the International Electrotechnical Commission (IEC) joint technical committee
on information engineering ISO/IEC JTC1, and are the focus of the chapter
“Functional Size Measurement Methods.”

1.1.2 Estimation

Once the size of the software application or enhancement to a piece of software
is estimated, the other relevant software estimating input factors are also
assessed, and then the estimation is performed for project planning purposes.
Estimates of project size are usually estimated first, because it is the project
size that is one of the most dominant input variables to an estimating model
that determines the resources (number of people), duration (how long the pro-
ject will take), and costs (based on how many people for how long). Since the
size of the estimation object (e.g., the software size) is not the only parameter
for estimation, all relevant factors for estimation are evaluated before an esti-
mate can be calculated. Examples of these influential estimating input factors
include the following:

Clarity and stability of requirements
Experience of the development team with the technology and subject matter
Business sector
Project goals and constraints (e.g., maximum quality with minimum duration
will double an estimate)
Maturity of the organization with respect to formalized development pro-
cesses (CMMI® level)
Maturity of the technology to be used
Hardware platform(s)
Programming language(s)

+

......

Tool Application

Process
Maturity

Clarity of
Requirements

Experience of
Staff

Influence Factor

KLOC, FP, FFP ...

Empirical Data

Object of
Estimation

Estimates of
duration,
resource

effort, cost,
etc.

=+ Reuse and
oth er consider-
ations

15

Degree of user involvement
Quality requirements (maintainability, portability, reliability, and other qua-
lity constraints as outlined in ISO/IEC 9126 or the emerging ISO/IEC 25000
SQUARE series of software quality standards).
Our experience bears out that one of the primary drivers that can impact the

effort and duration of application development is the introduction of a second
or subsequent hardware platform to what was formerly estimated as a single-
tier architecture. The ISBSG (see chapter “Measurement Communities and
Resources”) as well as the FiSMA have reported that the choice of the devel-

Thus, functional size measurement and estimation (determining the influencing
factors and performing the estimate) are two consecutive, but clearly dependent
tasks involved in effort estimation.

Fig. 1.4. Effort estimation depends on software size plus many other influencing factors

For both activities the existence of empirical data, – data from historical
IT projects – is the basis for accurate estimating and as such is a necessary
prerequisite (see Fig. 1.3).

It will come as no surprise that the estimation process must be trustworthy
from a business perspective, and the results from each step of the estimating
process must clearly document the input values and assumptions made because
important investment and project budget decisions will be based on them. The
whole estimation process must be auditable! The strength of a project estimate
is only as reliable as that of the weakest partial process involved.

To perform a size-based estimate, there are six prerequisites:

1. A basic understanding of the functional requirements for the software

1.1 The Basics of Software Estimation

The ability to measure the size of the product in a precise manner2.

encing factors (see Fig. 1.4).

opment platform and of the programming language are two of the strongest
drivers of the development effort aside from the software’s functional size. As
previously mentioned, the effort for an IT project is not only dependent on the
size of the software to be developed/enhanced, but also on many different influ-

Effort = f (Size)

Business sector, Project team
experience, Clarity of
Requirements, Quality,
Process Maturity, and other
factors...)

Effort = f (Functional Size, Non-functional impact
(quality constraints), Hardware Platforms(s)
Programming language,

1 The Estimation Challenges 16

3. The ability to evaluate the complexity of the product
4. The knowledge about the capability of the organization to manage projects

and deliver products
5. The knowledge about how the product will be delivered (including reuse

requirements)
6. The existence of relevant historical data in order to calculate productivity

(that can be used to estimate work effort).
A practical experience of experts when estimating software project effort bears

out that if there are too many unknowns when attempting to measure the software
size, then at least the functional requirements lack precision and clarity. Even this
knowledge can force those professionals and customers who articulate the soft-
ware requirements to improve the quality of their processes.

Pragmatic rules that help to foster an estimating consciousness are summa-
rized in Fig. 1.5.

One of the most frequent questions asked when deciding whether to embrace
size-based project estimation is a question about the precision of estimating.

Fig. 1.5. Pragmatic estimating rules

1.1.3 Estimation Precision

A literature search regarding completed software projects attests to the fact that
(mostly larger) software projects typically exceed their effort and schedule esti-
mates by 300–1,500%. Our experience and those of others presented at US
and European measurement conferences is tighter – but a deviation of 10–20%
of the actual effort (even using Function Point Analysis as the functional sizing

Pragmatic estimating rules

The earlier the estimate, the larger the bandwidth of uncertainty.
Even a single knowledge based estimate is more precise than none.
The better the written notes for an estimate, the better the chance to improve the
estimate the next time.

smaller objects of estimation; and, identifying discrete work tasks to be
estimated.

projects.
The more that effective team communication is planned into the project, the
less rework occurs.
Remember that estimating is not a 1:1 formula of size to effort.
Project estimating should never be an exercise in self-esteem – it should reflect
only the realistic team capability to deliver.

Don‘t forget the effort required for team communication – especially on large

precise an estimate can be.
The more relevent (and accurate) are the project attributes you collect, the more

Keep estimates understandable and traceable by: breaking projects down into

17

method), or even 30–100% is accepted in industry as very good early estimates.
Such deviations can sometimes be attributed to Parkinson’s Law:

Work tends to consume all available time.
So it can be difficult to gauge whether an estimate was really too high or

too low when the entire allocated schedule is taken up (by Parkinson’s Law)
or exceeded (sometimes through unmanaged change). Note: that mismanaged
requirements – even in the most mature of organizations – can lead to estimating
inaccuracies. This is part of why we advocate functional size measurement –
so that there is a basis on which estimates are based, even if they turn out to be
incorrect. At least on the basis of documented functional size, estimates can be
improved from a theoretical model (and often unrealistic set of assumptions)
going forward.

As discussed previously in this chapter, the effort for the IT project delivery
depends on the software size plus many other parameters. This is an important
concept worth repeating: While the size of the software to be developed or en-
hanced in a project is a major determinant for the project effort, it is far from
being the only one! Size matters, but only from a relative point of view. To
use a building construction analogy: the larger the building the more effort to
build. On IT projects, the larger the software, the more the effort to deliver. But,
in the same way that the type of building, type of project (new vs. renovated),
building code, location, intended usage, and constraints (e.g., marble floors)
change the effort, cost, and schedule, so too with IT projects. A 1,000 FP pro-
ject will take various amounts of delivery effort depending on whether the
software involves complex scientific data manipulation (complexity), simple
reporting, or if the delivery will be custom-coded or installed using a com-
mercial off-the-shelf (COTS) package.

The exact values for the majority of these other non-functional, situational,
environmental, and technical delivery parameters are typically unknown at the
project onset and do not become precisely known until project (post) delivery.
Additional parts of these parameters include, for example: qualifications of the
development team and clarity and stability of user requirements.

Regarding the precision of estimation, we have compiled a list of pragmatic
rules as presented in Fig. 1.6.

Estimating precision depends in large part on the complexity of the object of
estimation (the software), on the software development life cycle (where in the
project the estimate is made), the quality of available historical data, as well as
the quality of actual effort measurement data. It is critical to the understanding
of the actual team effort to know on what basis the measures were taken. For ex-
ample, there can be a high degree of variance in reported team effort. Consistency
and comparability of work effort across projects depend on a clear and consistent

1.1 The Basics of Software Estimation

1 The Estimation Challenges 18

Fig. 1.6. Precision of estimation

definition of what constitutes project work effort. The definition must address at
least the following items in order to minimize variances in reported efforts:

Overtime work effort: whether or not overtime hours are compensated. The
overtime hours must be recorded if any reliable figures are to be captured for
future estimating. Overtime work hours can increase a project’s recorded work
effort remarkably – often in the range of up to 30% of the overall work effort.
This is not a factor to be overlooked or taken lightly. It is important to note that
recording of overtime is independent of payroll and financial accounting consi-
derations.
Project start and end points: The points in time where the software develop-
ment life cycle (and thus, the work effort measurement) begins and ends can
vary widely across projects unless it is clearly and objectively defined. If one
project records its starting point at the project initiation stage and stops on the
day of software release or installation, and another records its start as the first
day of requirements articulation and stops 30 days after delivery, we clearly
have an “apples to oranges” (i.e., inconsistent measurement) comparison. It is
critical to the development of a historical project database to ensure that
there is a consistent and recorded definition for the project (i.e., project start
and stop point).
Who is included as part of the team work effort: again this must be consistent
– are data base administrators, project clerks, project managers, technical
writers, contractors and others included in the definition of team work effort?
This is an important consideration, and who is included or not included can
have a huge impact on the number of effort hours reported for a project.
Software development or enhancement: the type of project, minimally deve-
lopment or enhancement, is also a critical driver of the effort. One would

Precision of estimation

An estimate should never be presented alone as an absolute figure,
but rather accompanied by an interval or range.
The bandwidth of this interval depends on how much information
is available about the object of estimation.
Estimating uncertainty decreases as the project progresses.
In general, it is good practice to document your error margins and
communicate them with project stakeholders.
Always present integer rounded figures (because significant figures
perpetuate the illusion of non-existent precision).
Alway perform multiple estimates (e.g. Function
Point based estimation plus expert estimation).
To increase reliability, always involve more than one estimator.

19

not want to base a new development project estimate on the historical val-
ues for enhancement projects.
Software development methodology and included work breakdown structure
(WBS) tasks: this must be clearly defined and recorded for the project being
measured. One would obviously anticipate a higher work effort number of
hours for a project that included formal user training than one where users
trained themselves. As well, any project where package selection is part of
the WBS approach will necessarily vary in effort to one where custom code
development, testing, and implementation are part of the project.
These factors are essential to understand, standardize, and record on every

project for which work effort is collected. Without knowing the basis for team
effort, it becomes impossible to perform any sort of precise future – even if more
knowledge about the object of estimation and other factors is known.

Fig. 1.7. Precision of estimates as a project progresses

To make sense of historical project data, one MUST know the context from
which it came.

The relationship between the precision of estimation and the amount of
knowledge about the object of estimation is depicted in Fig. 1.7.

The problems associated with the precision of estimation imply that with
formal (serious) estimation:

General error margins should accompany the estimate (±confidence).
Estimates are generally rounded up or down ((in) significant decimal places
simply discredit non-existent precision).
Note that while an estimate can be rounded down, it is generally more dan-
gerous because seldom does an IT project take less time than anticipated!
In actual practice, it is more realistic so many project to provide a range

1.1 The Basics of Software Estimation

25% 40% 60% 80%

100%
(or more)

50% 20% 10%

Study Req &
Analysis Design Test Release

Precision of Estimation

Knowledge about the Object of Estimation

+
_

Coding

based on the estimated figures +50% rather than +/–50%.

1 The Estimation Challenges 20

Good estimators rely on more than one way to do estimates (e.g., Function
Point as well as expert estimation).
To increase reliability of estimates, several estimators (expert opinions) are
usually involved.
A survey by Chris Kemerer of MIT (Massachusetts Institute of Technology)

in the 1990s stated that trained Function Point counters generally could achieve
function point values for a project that consistently came within ±10% of each
other.

Do not forget that another influencing factor for estimating precision is
knowledge about the object to be estimated.

1.1.4 The Object of Estimation

Estimation of IT projects precludes that more or less information is known
about the object to be estimated.

The purpose of estimation is to understand and appropriately apply known
effort drivers to our project in order to make better decisions. Figure 1.8 helps to
sharpen our consciousness of some facts that should be self-evident, but which
unfortunately are often forgotten in estimating and which are often unfortunately
neglected.

An estimate is only as strong as its weakest input variable – in other words, in
order to derive a realistic estimate, the prerequisite is that enough usable infor-
mation is available to evaluate the project. At a minimum, this includes the
software requirements as documented in the following ways

Fig. 1.8. Object of estimation

Object of Estimation

Estimations of IT projects demand as a prerequisite more or
less known informations about the object of estimation.
You cannot control what you cannot or do not measure.
The more informations about an estimation object you have,
the preciser the estimation can be.
The clearer the definition of the goal of the IT project is,
the less requirements creep can be expected (calculated).

Object of Estimation

Estimates for IT projects demand as a prerequisite more or
less known information about the object of estimation.
You cannot control what you cannot or do not measure.
The more informations about an estimation object you have,
the more precise the estimation can be.
The more clear is the definition of the goals of the IT project,
the less requirements creep can be expected (calculated).

21

Overview of the necessary data requirements from the user perspective (e.g.,
object catalogue or relational data model from a data dictionary or knowl-
edgeable users)
Preliminary mock-up or layout of screens and reports
Interfaces (number and size)
Procedures from the user view, dialogue steps, e.g., process flow models with
their composite activities, use cases, etc.
If estimates are required before the requirements are set and before this

information is available, then assumptions for these parameters must be made
and documented. When such estimates are performed with assumed data, they
are called more applicably guesstimates. The certainty with which this assump-
tion will become reality later influences the result of the estimate considerably.
The following are commonly held truths about estimation:

The more there is information available for an estimate the more precise the
estimate can be.
The software on when estimating effort, consider the project parts and tasks
to be done. Therefore, estimation is one method for the discovery of informa-
tion about both the project (detailed requirements) and its risks (uncertainty in
the estimate and the requirements). In fact, the process of deriving the func-
tional size may increase the completeness of overall requirements because
in order to count or estimate the FP, one must have at least rudimentary in-
formation about which to capture data.
When we estimate, we often do not know the object of estimation (i.e., the
piece of software) accurately. Thus, the first task is to identify the software
boundary that depicts what is within and external to the software under con-
sideration. This affords some time and discussions with the customer that
extraordinarily contributes to the success of the project. In the following,
more time is necessary to determine the user requirements. From this, project
risks can be deduced that can influence effort and duration. Only on this basis
is a profound project plan possible. But, planning is the lust of reason,
whereas improvisation is the joy of fantasy, and reality has a lot of surprises
ready.
A commonly known but often overlooked effect is the requirements scope
creep as further detailed below.

1.1.5 Requirements (Scope) Creep

During project estimation, the requirements change as well as the knowledge
about the object of estimation. Thus, another effect exists, mostly known by all
project leaders and appropriately coined requirements creep (sometimes also
called scope creep).

1.1 The Basics of Software Estimation

1 The Estimation Challenges 22

Quoting Capers Jones: “Problems are excessive time pressure as well as a high
rate of requirements creep that can exceed two percent per month of project dura-
tion (for information systems the rate is 1.5%, military and system software is
2%, and commercial software is 3.5%) during project progress”.

Requirements creep negatively correlates to a clear definition of objectives.
Hence, the clearer are the objectives of an IT project, the less requirements
creep will typically occur.

Continuous tracking of the project’s objectives and project size gives the
project leader control, i.e., the chance to get a grip on requirements creep. This
implies that measurements of the size of the object of estimation must be repeated
or at least updated several times during project progress. Sidenote: the American
author is involved in an initiative with the European Certificates Association
(ECA) to create a common body of knowledge and certification for a Certified
Scope Manager (CSM) based on the Finnish Software Measurement Associa-
tion’s (FiSMA) northernSCOPE(TM) concept. For further information refer to
the FiSMA website (http://www.fisma.fi/in-english/scope-management/).

The Software Engineering Laboratory (SEL) of the NASA reminds its project
leaders, by way of its Manager’s Manual, that the originally planned effort typi-
cally increases by about 40% during a project.

The IT group of an international insurance company in Germany measured
an average requirements creep of 1.27% per month of project duration based on
Function Point counts of 38 software development projects. This figure is cited
as an example of average scope creep at a real organization; however, we also
recall that for one large project the values were much larger. On that project,
requirements creep was 2.4% per month as indicated by the 12-month size in-
crease from 2,659 to 3,774 Function Points.

When the object of estimation is defined clearly, its functional size can be
measured quantitatively. Often this is done using FSM, an approach whereby
the functional size of a piece of software is calculated by counting and measur-
ing functional units, similar to sizing the number and size of rooms on a build-
ing floor plan. The resultant functional size is typically expressed in function
points or some variation thereof.

1.1.6 Measurement and Estimation

The two main activities in the framework of operative estimation, measurement,
and estimation are not singular, discrete activities, but must continually be per-
formed throughout the software development project. As such, measurement
values are not static but dynamic and evolve in time. Only by continuous tracking

23

of counts, estimates, and changes can meaningful target values for project plan-
ning be achieved.

Generally, the phrase (popularized by Tom DeMarco) holds:
 “What you cannot measure, you cannot control.”
Measurement does not guarantee organizations that a can produce software

with acceptable quality within time, cost, and effort constraints – however, mea-
surement is the catalyst that can make that achievement possible. To be truly
effective, measurement must facilitate improved estimation and provide man-
agement with the means to gauge and improve the productivity of the software
process and the quality of the product. Without measurement, it is difficult to
detect and uncover problems early enough – before the project becomes out of
control.

Figure 1.9 demonstrates that unreliable or late information have an effect on
the accuracy of estimation and hence on the project team’s ability to control
subsequent estimate variations. Generally said: “Measurement fosters know-
ledge since the better we can express something with figures, the better we
understand it.”

Fig. 1.9. Connection between measurement, estimation, and control

To gain the most benefit from the measurement of effort the following rules
should be followed:

Document the actual and the remaining effort of each project task at least
once a week (even better is daily recording).
Support the planning process by significant and relevant graphics.
Update project plans by comparing the planned and actual values (akin to
Earned Value Management practices).

is overtime reported?).
Foster a measurement culture early so that the team understands the signifi-
cance of reporting all worked hours for the project.
Planning must be as detailed as necessary, but as aggregated as possible.

1.1 The Basics of Software Estimation

Object of estimation

controllable

estimateablemeasurable

Time accounting practices must be clearly defined and communicated (e.g.,

1 The Estimation Challenges 24

Coordinate project planning, estimating, and measurement practices so that
rework is avoided as much as possible (i.e., it is much more efficient to conduct
project planning, estimating, and coordinating of measurement practices from
a single set of applicable historical data at the same time to minimize inaccu-
rate comparisons, as well as minimize spending double time doing the same
historical information retrievals).
To be able to use actual effort as a basis for future estimates, project effort
must be measured in a consistent manner using consistent definitions. For
example, it is important to know what tasks were included in the effort, whose
effort was included, and whether overtime was included.
Measurement participants must understand the context and purpose for repor-
ting in order to facilitate correct measurement (i.e., developers need to know
how their reported effort is used so that they can report it correctly and
accurately).
When deviations occur between estimated and actual effort, it is important
to let the project team know before the project runs out of budget and time,
or it is necessary to cut functionality or quality in order to finish on time.
Additionally, if the measurements are taken after the project is completed
and the actuals exceed the estimates, the project team should be given the
opportunity to provide supporting rationale for such deviation.
The activities for measurement must be integrated in the software develop-

ment life cycle so that measurement is seen as part of the process and not as
tiresome overhead. To accomplish this, role descriptions for measurement and
reporting must be documented and communicated. Additionally, data should
only be measured at the point when they occur in the software life cycle and
only measured if they are properly used (e.g., calculation of metrics). As such,
because Function Points can already be counted at the end of the requirements
phase, they can readily be reused as necessary as changes occur (change man-
agement) as well as part of test case determination, etc.

It has to be clearly distinguished between project FSM of the software to be
developed and the estimation of effort to develop it. This is one of the first lessons
to be learned when implementing an estimation process in an organization. The
counting of Function Points or KSLOCs or other parameters for software size
measurement delivers a prerequisite and necessary basis, which can be used
for a following estimation. It may help to consider an analogy – the square
foot size of a building to be constructed is not the same as the effort it will take
to build it. The size is one of the influencing factors of such effort, but it is not
the same as the effort itself. The same goes with functional size – it is the size
of the software and an input to the effort estimation – but it is not the same as
work effort. In practical work, this is expressed humorously by: “So you’ve
got Function Points (KSLOCs. ...) – what now?”

25

The difference can be shown with the following practical example:
The Function Points of about 15 applications – the majority of which were

host-based Management Information Systems (MIS) applications – in an organi-
zation were counted. The 16th application to be counted delivered five times
as many Function Points as the largest of the other 15. Reaction of the Manage-
ment: “You must have counted something wrong!”

Not at all, it just was not a normal MIS as the others but a central text
administration system used by all other 70 applications of the organization, with
thousands of different outputs. Much the same, another application delivered
almost no inputs and outputs. Further investigations led to the result that it
was compared to another dissimilar application – the other MIS was only the
pure query system, thus delivering mostly Function Points for External Inquir-
ies. Such discoveries (or measured affirmations) in one’s own application port-
folio are often found with the first inventory taken when estimation is formally
implemented in an organization.

For this reason, the documentation of estimating experiences for an IT pro-
ject is a prerequisite to experiential learning from historical experiences for the
planning of the future and improvement of estimation in software development
(this is called feed forward).

A serious and well-founded project estimate for software development delivers
metrics, which make the software development process transparent, measurable,
comparable, and controllable. A prerequisite to effective project management is
that the estimates are formally documented and controlled. Additionally the
measurement of spent effort is required for the improvement of the estimation
accuracy used in future estimations.

1.1.7 Measurement of Effort

The measurement of actual effort for the different phases of an IT project is a
mighty tool for learning, understanding, and communication of the project
status. Hence, it is a decision aid par excellence for project management.

A working group of the DASMA (German software metrics organization)
constructed the following basic scaffolding for the measurement of actual data
as indispensable:

Time Effort/Costs Quality
Size (e.g., Function Points, KSLOCs)

In this process, the effort should be measurable by following phases and
activities:

1.1 The Basics of Software Estimation

1 The Estimation Challenges 26

Measurement of the effort by phases:

software development and enhancement per the definition of project effort
outlined by the International Software Benchmarking Standards Group
(ISBSG) which includes User requirements articulation, design, coding/

Determination of the user requirements
IT Design
Programming
Test

simply the first implementation/installation).

Measurement of the effort by activities:

work effort per ISBSG and other benchmarking databases)
IT developer
System programming
Quality assurance
Project management
Data modeling
Database management
Methods and systems
Network
Testing department

Table 1.1 connects both views. Note: it is important to know which of these
categories of effort are to be included in your project BEFORE an estimate is
performed using an historical database!

Measurement and estimation are closely connected – but are not interchange-
able terms! Organizations with a history of measuring IT projects should have
solid empirical data available.Organizations not measuring must accept sub-
jective estimates or must rely on the support of estimation tools. However,
when using estimation tools, the results nevertheless have to be calibrated with
actual measured data to ensure estimating accuracy. This is why measurement
is a valuable and a necessary prerequisite to avoid estimation problems.

Elaboration of the feasibility study (note that this is extra to the 5 phases of

programming, testing, and preparing for full implementation as the 5 phases)

Production/computing center.

End user (note that the end user effort is often not included in the project

Implementation (note that this does NOT include full software rollout –

27

Table 1.1. Basic scaffolding for measurement of actual data

Categories for
work effort
reporting based on
DASMA definition

Feasibility study User
require-
ments

IT
design

Program-
ming

Test Imple-
mentation

End user
IT developers
System
programming

Quality
assurance

Project
management

Data
modeling

Database
management

Methods
and systems

Network
Testing
department

Computing
center

1.1.8 Documentation

Good documentation of counting and estimation data is a treasure for metrics
programs. Practical experience shows that valuable metrics can be gained from the
collected data. A documented estimation process and documented estimates are
required to reach level 3 of the CMMI® (Capability Maturity Model Integration
of the SEI: Software Engineering Institute). Typically, documentation is neglected
in operative and strategic project management. The additional effort caused by
documentation in the progress of an IT project is often used as an excuse for
not doing it.

The consequent and especially authentic documentation of project experi-
ences is a necessity to ensure that project management know-how gained in this
project is captured and goes beyond the expertise of a single project team
member. Moreover, an efficient knowledge-based, learning organization should
ensure that the right information is available to the right people at the right time
so that they can appropriately plan future IT projects. Non-existent documentation
of the development environment and estimating assumptions can hinder learning

1.1 The Basics of Software Estimation

1 The Estimation Challenges 28

and improvement of estimation a priori. This can be clearly seen by the problem
of historic data as outlined in the following section.

1.1.9 The problem of Historic Data

Practical experience shows that sound estimates often predict higher effort than
reported in the past for an organization. However, Capers Jones does not blame
these higher estimates as being faulty, but rather doubts whether the historic
data were reported and documented correctly. It is often found that the docu-
mented historic data does not comprise even 30% and sometimes even up to 70%
of the actual work effort. Thus, for example, unpaid overtime work or other effort
was regularly not reported.

When talking with project leaders, they often narrate about effort figures with-
out any information to depict the context of what is included in these figures.
To simplify the effort for an IT project in a large organization, keep note that it
comprises the following components:

Effort for project management, risk management, and quality assurance
(mostly disliked by the project leaders as unnecessary overhead – a gross
negligent and unprofessional attitude – and sometimes uttered as who esti-
mates is a coward)
Effort for specialists (system architects and administrators, network support
etc.) – sometimes called development team support
Effort of the developer (analysis, design, programming, test) – also known as
the IT core effort
Effort of end users
Effort for implementation and support.
Usually not included or calculated (wrongly) is the postproject effort for main-

tenance and enhancement necessary during the rest of the software life cycle.
We know large applications operating successfully for more than 15 years – with
increasing annual effort to support their survival. Not measuring this effort
causes the problem of the legacy systems.

A typical cause of estimates done by project leaders being considerably lower
than estimates done by a Competence Center is the fact that project leaders
typically only estimate the project management and developer effort, whereas
the Competence Center can involve full life-cycle components (such as those
from the earlier list). Generally, it holds: “Estimation without infor-mation
about what is included in the estimate is worthless”.

If there is no documentation available or if a legacy system cannot be counted
completely, the functionality can be at least approximated by back-firing. In this
case, the code size and code complexity of an existing application are used to
deduce its functionality in Function Points.

29

From the aforementioned problems of estimation, we have created a short
list of rules for estimation.

1.2 Rules for Estimation

It has always been a challenge to sell the benefit of measurement. One often-
used argument for the boycott of metrics initiatives (and one that often kills
them) is that one lived successfully in IT without measurement in the past. Thus,
in this chapter some advice about basic to do’s and don’ts is documented: com-
mon estimation errors, estimation conferences, honesty and culture of estimation
as well as training for estimation.

1.2.1 Basic Principles

Estimation should be as follows:

Repeatable (at various points in the project)
The repetition of an estimation allows subsequent estimates to be done
with better information more accurately. Furthermore, the comparison with
the previous estimates delivers experiences for future estimations. A contin-
ual tracking of the estimations constitutes an early warning system for devia-
tions and gives transparency and enables an overview of changes. Only
repeated estimations can help to gain experiences with requirements creep.
Performed using different methods
The use of several estimation methods allows comparative estimations from
different viewpoints and reduces the estimation imprecision and gives you
more safety for estimations.
Documented with sufficient detail
In principle, the parameters of estimation must be revealed since they strongly
influence the estimation result a priori. For example:

Developments in client/server environment with 4GL languages must
be distinct from estimates for conventional Mainframe COBOL deve-
lopment.
Large organizations in one business area must be distinct from esti-
mates in small organizations in another business area.
The basis for size measurement (e.g., using SLOC methods (SLOC =
source lines of code) and counting comments or not or when using
program generators and counting or not counting the generated state-
ments must be documented.
SLOCs are more easily counted in COBOL programs and not so good
when programming was done with Powerbuilder or VBA (Visual Basic
for Applications).

1.2 Rules for Estimation

1 The Estimation Challenges 30

Additionally estimates with SLOC occur later in the project, and thus
have only marginal benefit for estimation and planning as well as track-
ing of project progress.
There must be general standards for how many working hours a per-
son day, person month, and person year has (time accounting).

Controllable
Only controllable estimates deliver the chance for comparisons and thus
enable a feed forward (learning from past estimations for future estimations).
Documented
The main problem of estimation is non-existent or unavailable documen-
tation. This means that we are estimating without the benefit of comparable
and relevant historical information. The better and the more estimations
are documented the better they can be estimated and estimation experience
gained.
Besides these basic principles, some other estimating aspects must also be

considered to avoid failures when estimating.

1.2.2 Do’s and Don’ts When Estimating

How are estimations being performed? To get a standardized measurement
platform on project level, the estimation must be done by the project leader.
Only in this way, it can be guaranteed that the scale, for e.g., Complexity, is used
in all projects in the same manner.

The process of estimation is no substitute for the determination of the effort
parameters, which has to be done by the person responsible for planning. It
simply delivers the chance to orient subjective estimates using a standardized
method. The project environment factors can be determined with support of a
tool (or manually) after counting the Function Points.

Parallel projects should not be compared. This leads easily to manipulation
of the method to be better (on the paper) as compared with another project.

Two common opinions extremely hinder continous estimates:

1. Estimation is regarded as a separate task. This leads to prioritizing esti-
mations as less important when the project deliverables, milestones, or
the entire project is delayed.

2. Estimation is seen as a task not belonging to the own responsibility. This
leads to neglecting of estimation when the responsible person is not pre-
sent (a Competence Center off-site – far away from daily work).

Some organizations may justify their lack of a formal estimating process
due to the fact that they do not have a database of reliable historical data. This

31

is not an optimum attitude and fosters an ignorance of the benefits of organi-
zational learning. As such, the organization is prone to repeat mistakes of the
past, and will continue to do the following:

Lack know-how of how to do things better
Lacking know-how about principles, methods, and better estimations of
effort.
Missed opportunities and chances for learning
Learning cannot occur since opportunities for learning were not taken.
Suffer from a crisis
The chance to run into a crisis by bad (or none) estimates increases enor-
mously. As already told in the preface, firefighting can be exciting, but also
leads to burnout. Estimation is a chance for people who are tired of fire-
fighting to gain early success on projects.
Lost opportunities for process improvement
Sometimes regret costs more than learning and performing professional
estimates would have cost. Only one abandoned project is sufficient to prove
this, since the costs for one failed project are more than the costs for the
implementation of an estimation process. Moreover, estimating processes
deliver a better basis to control IT projects and reduce the risk of failures.
Maintain the status quo and not move forward.

1.2.3 Estimation Errors

The most common estimation errors pertain to the following topics:

Prerequisites of estimation
The assumptions and decisions made during the estimation process
are not documented or not completely documented.
Estimates are not updated when situational or scope factors change.
The deliverables are not clearly defined.

Planning of estimation
The effort for estimation is not planned.
The effort for quality assurance and project management is not planned.
Early estimates use non-transparent and often arbitrary surcharges for
uncertainty and risks and requirements creep, if at all.

Actuality and tracking of estimation
Estimates are not repeated as the project progresses or when change is
introduced (feedback of actual data and new estimates).
Estimates are not regularly checked.

Quality of estimation
The estimate is not formally reviewed for completeness and accuracy
by a third party.

1.2 Rules for Estimation

1 The Estimation Challenges 32

The resultant estimate is not validated by other estimates (second esti-
mation).
The communication factor in the project is not adequately addressed.

Especially for external contracting, the estimates of the contractor must be
reviewed by the client in order to avoid unpleasant surprises or contractual
dispute.
Political estimations
This can be a top risk as outlined in the next section.

1.2.4 Political Estimates

A major obstacle for the implementation of an estimation culture is political
estimates. There may be many reasons for this, especially in large organizations,
e.g., lust for power, human vanity, and others. The following list presents some
associated problems.

Estimation is often mistaken for bargaining. Missing historical data often
results in the dictation of unrealistic deadlines.
The size of the project is often obviously/consciously wrongly estimated
(trimmed estimations).
When cutbacks of the IT project occur (e.g., budgets or deadlines), the esti-
mation is often erroneously trimmed according to the cutbacks instead of by
reducing the other primary goals (quality, functionality, costs, time).
Voluntary unpaid overtime work will be planned into the project but not
considered in the estimates.
Goal conflicts often arise from vanity. The desire for success and acknow-
ledgement often leads to turf wars in the IT project environment, for pres-
tige projects to the end that project leaders must consider power politics in
the environment of their IT project. The initiators of such projects collaborate
with political promoters who are less interested in the functionality but more
in the memorial monument effect.
There is a widespread prejudice that application cost in terms of software
and hardware are higher in the host environment than in client/server (C/S)
applications when both software or hardware are considered. This leads
to increased negotiation/more bargaining in the client/server environment
instead of realistic estimates.
The phase of nicely calculated figures leads at the end to a political appro-
val of the project. Disillusionment and the search for realistic risk carriers
typically follow soon afterward.
A main cause for underestimation is the fact that political estimation is done
more often instead of a realistic estimate. In reality, the effort of an IT project
is typically underestimated to gain approval for the initiation and perform-
ance of this IT project. What a crazy world! Here, we have the decision makers

33

who are not guided by estimates, but rather by the effort. The practical re-
sult is that the effort is not estimated but is determined by bargaining.
Management and staff should thus avoid all these obstacles in order to fos-

ter a good estimation culture.

1.2.5 Underestimation and Overestimation

Besides the parameters shown in Fig. 1.10, others are often under- or over-
estimated.

In a survey performed by Lederer and Prasad in 1993 of 112 software
managers, 63% reported about considerable overestimating and 14% about
consi-derable underestimations of effort. Heemstra in 1992 reported much the
same regarding cost estimations in The Netherlands: 80% of the projects under-
estimated budget and duration about 50% in the average; 35% of the organiza-
tions did not perform formal estimations. Since underestimation especially has
serious effects, these parameters are discussed in the following and enhanced
by others.

Fig. 1.10. Under- and overestimation factors

Underestimation of the following factors:

Training effort (learning curve), especially concerning the training concepts
and necessary know-how acquisition of staff when external staff is hired.

1.2 Rules for Estimation

Overestimation
Qualification of staff
Productivity of staff
Consequences of adding more people
Productivity of new tools and methods

Underestimation
Effort for training
Effort for documentation
Effort for error correction and quality assurance
Communication problems

1 The Estimation Challenges 34

Documentation effort – this is the first one to be reduced for cost savings –
leading unavoidably to follow-up cost overruns as well as lack of quality.
Thus, also head monopolies are promoted (knowledge is power).
Effort for defect correction and quality assurance: especially C/S projects
have an enlarged awareness for quality.
Communication effort or communication problems especially in projects with
special management attention (agreements, reporting) as well as with external
consultants or customers.
Costs and duration (as follow-up from the other underestimated parameters).
Costs for hardware: if less than necessary hardware is purchased this leads
to larger project duration and effort, since working conditions are more
troublesome, defect rate increases, and motivation decreases.
Costs for software and licenses as well as maintenance contracts.
Costs for project management (approval process, team building, hiring of
rooms and staff, contract negotiations, time- and status-reports, estimation,
project planning, quality assurance, controlling, reporting).
Especially surplus effort in C/S projects for new software releases occurring
more often as in host environment.
Effort for test preparation, test performance, and after-test documentation
and reordering, especially for the integration test.
Effort for preparation and performance of new releases of software including
(organizational and technical) interfaces. Sometimes old functionality can
be lost in new releases and sometimes this leads to substantially more effort.
Effort for interfaces with other organizational units or projects.
Necessary new staff in computing center by creeping demand for more
people due to large projects for supporting them during project duration as
well as for the follow-up maintenance of the produced applications.

Overestimation
It is commonplace for at least two factors to be overestimated in practice:

i) quality of the team and ii) influence of tools. An IT project with a team size
of 20 instead of 10 persons will not necessarily be finished in half the time.
The causes are the non-linear relationship of people to work effort, and the
different qualifications of the people and unavoidable communication and fric-
tional losses within a larger number of people. These effects are known since
long but are often underestimated in estimations. An additional effect is that
software developers are often optimistic about their own efficiency. At the end,
these overestimations lead unavoidably to underestimation of the effort for defect
removal and quality assurance measures.

Much the same grandiose optimism is shown when new development tools and
methods are implemented in an organization. Then, the estimators often forget
that the development productivity merely increases by short-term usage of new
tools. On the contrary, a programmer with 20-years experience in COBOL is

35

surely not more productive in the beginning by using object-oriented analysis and
design methods and a new programming environment, for e.g., SmallTalk. The
effort for training and the necessary time for the integration of the new methods
and tools in his skills are often underestimated, and the learning curve is ignored.

We can summarize that an overestimation of effort-relevant factors results
in the underestimation of IT projects.

Weltz and Ortmann found in a survey about the causes for immense under-
estimations of costs and time for software development projects, which are
presented in the following core statements:

The misestimations affect organizations with few experiences in software en-
gineering as well as organizations with long-time excellent and IT experience.
A minority of organizations use formalized systematic methods. An example
for this would be the FPM combined with estimations by an expert system
and the integration of this in the formalized software engineering life cycle.
Most of the organizations estimate with the PI Times Thumb Method (see
chapter “Estimation Methods, Heuristic Methods, The PI Times Thumb
Method”). Usually this method estimates the average of a worst-case estima-
tion and a best-case estimation. Bases for these estimations are normally the
individual experiences of – mostly only one – the estimating person. When
this person leaves the organization, the estimation know-how leaves too (head
monopoly).
In organizations with long-time excellent and IT experience as well as in
organizations with less systematic estimations occur extreme discrepancies
between estimation and actual effort. But the differences are less in the first-
named organizations.
Organizations using formalized methods often do this not consequently.
Sometimes at the start of the project the size was estimated (e.g., with the
FPM), but it was neglected during project progression that the size can vary
considerably due to the requirements creep. A continual and periodic esti-
mation throughout the project life cycle was nearly never found.

David Locke reports in an investigation of the Compass benchmarking data-
base that almost all IT projects were underestimated. They consumed in aver-
age about 30% more effort. This effort in excess could not even be explained
with a requirements creep of 5%.

As a single improvement, it can be recommended to start with the elaboration
of checklists and collection of costs according to the items in the checklists, e.g.,

Cost of investments
Cost of depreciation
Cost of staff

1.2 Rules for Estimation

1 The Estimation Challenges 36

Cost of integration of standard software (customization of Enterprise
Resource Planning (ERP) Systems)
Other important items mentioned in this chapter.

Another critical success factor for estimating success is the estimation con-
ference.

1.2.6 The Estimation Conference

Estimations can be done by different individuals and the average of their esti-
mate can be used. But there exists a proven alternative: an estimation confer-
ence. Several persons from the project team (e.g., leaders of parts of the project)
discuss together on how to estimate the estimation object in view of the total
IT project. This leads to an estimate that is accepted by all involved persons,
which is more objective than the aforementioned average, and hence can be

found in some cases.
Another benefit of the estimation conference is that the involved estimators

gain awareness of the uncertainties and possible risks of the IT project. Further-
more, everyone involved gets the same information. An estimation conference
is a team-building experience and fosters risk awareness!

Accomplishing this estimation conference together with the end users moti-
vates them to cooperate and become more engaged, and thus helps to improve
the user satisfaction. This is an important project success factor!

An estimation conference also promotes the estimation culture in an organi-
zation, since it helps to solve acceptance problems by finding a consensus through

conference!

1.2.7 Estimation Honesty

Estimation is a process that is closely bound up with resistance: not wanting
to estimate, not wanting to commit oneself, and, last but not least, not wanting
to be measurable. To overcome these acceptance problems, estimations should
never and by no means be used in relation to people but only in relation to
processes or products. This is the cause of the question of estimation honesty:
one estimation for the steering committee, one for the boss, and one that the
project team can live with (and meet).

Project managers often do not like to estimate because they like to map the
progress of their project. This desire can only be overcome by education and
repeated information about the benefits of estimation. It is evident for project

discussions in a team. These benefits can often be gained in a 2-hour estimation

better defended against other opinions. The results may not differ widely, as we

37

mangers that their acceptance of an estimate is their commitment and that their
success will be measured by achieving this goal. A possible motivation in this
case is a financial bonus for success.

On the other hand, organizations must clearly express their opinion about
the sense of manipulated estimations or lies on time sheets or unrealistic Gantt
charts or time schedules.

1.2.8 Estimation Culture

A lasting estimation culture can only be fostered if the estimation process is
clearly defined and transparently performed and thus estimation honesty is pro-
moted. The development of an estimation culture evolves in following phases:

1. Problem: Estimation is not viewed positively.
2. Awareness: Management and staff become increasingly aware of the esti-

mation theme yet do not start to handle it systematically.
3. Transition: Transition from viewing estimation as management task to

viewing it as a team task.
4. Anticipation: Transition from subjective estimation to measuring and use

of metrics and tools.
5. Chances: Positive vision of estimation; everybody is responsible for it.
A good estimation culture can prevent management and project leaders from

playing political games with estimation and promotes motivated and effective
project teams. A good estimation culture is also a positive vision of estimation,
which is the responsibility of every team member. Its foundation can be built
by sound training.

Fig. 1.11. Estimation culture

1.2 Rules for Estimation

Introduction of Estimation - Fostering Estimation Culture

Concrete consciousness for the problems of estimation
Plan and control the project through the introduction of estimation
processes
Appropriate consideration of the required level of accuracy and
precision
Promote motivation and acceptance
Foster estimation honesty and an estimation culture
Training, information and participation of all involved persons
Organize know how transfer and exchange of experiences

1 The Estimation Challenges 38

Figure 1.11 comprises the most important tasks for the installation of esti-
mation as well of the fostering of an estimation culture.

1.2.9 Training for Estimation

Training for estimation occurs primarily through the exchange of experiences
and lectures, workshops at congresses of IT metrics associations. Consultants
and trainers are often members of metrics associations and offer training for all
aspects of estimation. Many organizations arrange courses for their staff from
these consultants or training institutes.

Estimation is often (only) a part of project management training (sometimes
not even this). The same holds for (the passive training medium) books. An
intermediate approach is interactive learning programs.

The International Function Point User Group (IFPUG), as well as the COSMIC
consortium, and the Dutch NESMA, (IT metrics organizations), each offer certi-
fications for various methods (the IFPUG Function Point Method, COSMIC
Method, and the NESMA Function Point Method, respectively). The FiSMA
(Finnish Software Measurement Association) has published solid guidelines
for its FiSMA 1.1 FSM method and finds that the consistency of counting is
high enough without needing practitioners to be certified.

1.3 A Checklist for Estimating

Figure 1.12 comprises the most important steps to be taken during estimations.

Fig. 1.12. Professional estimation

Professional Estimation principles

First measure the components (input variables), then estimate
(define object of estimation)
Revise estimates as conditions change (as more information is
known or when scope changes)
Multiple estimates should be done in different ways (micro and
macro estimating) to mitigate risks of using wrong assumptions
Document estimates and the process in a transparent manner
Avoid common estimation errors: especially over/under
estimation
Calculate the effect of historical requirements (scope) creep
Control the project according to the estimate

39

Figure 1.13 shows what has to be regarded for the efficient organization of
estimations.

In summary, the estimation problem can be characterized by the theses of
Fig. 1.14.

Fig. 1.13. Efficient organization of estimation

Fig. 1.14. The estimation challenge

1.4 Internet Links for Software Measurement Associations
and Estimation

The following information resources on the Internet – given in Table 1.2 – are
recommended for further reading:

1.4 Internet Links for Software Measurement Associations and Estimation

Formal software estimation - a win-win proposition

Estimation must be performed professionally!
Software projects can be estimated accurately!
The estimation and the necessary time for it must be planned
from very beginning!
Firefighting can be amazing, but the practice leads to burnout
and doesn‘t help to prevent future fires, nor does it help to
significantly save costs or reduce time to market!
Formal estimating techniques provide an alternative for people
who are tired of firefighting and who want to plan and
effectively manage their software projects!

Efficient Organization of Estimations

Plan effort and resources to conduct the estimating
Collect effort data (prerequisite data base, problem of missing
historical data)
Use estimation methods (comparability, standardization)
Use tool support
Perform estimation reviews (fosters team building and consensus)
Collect experiences and results, and document and investigate them
Learn from experiences and results (benchmarking)

1 The Estimation Challenges 40

Table 1.2. Further information resources in internet

Source WWW link
DASMA e.V.
Deutschsprachige Anwendergruppe
für Software-Metrik und
Aufwandschätzung e.V. – German
metrics organization

http://www.dasma.org

ESI
The European Software Institute,
Spanish

http://www.esi.es

FiSMA, Finnish Software Meas-
urement Association

http://www.fisma.fi

Fraunhofer Institute (IESE)
in Karlsruhe, Germany (Prof.
Dieter Rombach, Chairman)

http://www.iese.fhg.de

GI-Fachgruppe 2.1.10 Software-
Messung und -Bewertung
Research Laboratory of Prof.
Dumke and the German GI metrics
group

http://ivs.cs.uni-magdeburg.de/sw-eng/us/

IFPUG
International Function Point Users
Group

http://www.ifpug.org

MAIN – Metrics Association’s
International Network
Network of European metrics
organizations

http://www.mai-net.org

NESMA
Metrics organization of The Neth-
erlands

http://www.nesma.nl/
http://www.nesma.org

SEI – Software Engineering Insti-
tute, Carnegie Mellon University,
Pittsburgh, PA, USA

http://sei.cmu.edu

UKSMA- United Kingdom Software
Metrics Association

http://www.uksma.co.uk/

UQAM
Research Laboratory of the Univer-
sity of Quebec, Montreal, PQ,
Canada

http://saturne.info.uqam.ca/recherche/index.html

University of Southern California,
– Sunset Center (COCOMO II)

http://sunset.usc.edu/research/COCOMOII/

41

1.5 Management Summary

Every IT project should commence with an estimation of effort, cost, schedule
dates, and duration, as a basis of project planning, as well as for the measure-
ment of project success during the project postmortem.

Paradoxically, project leaders do not measure adequately either at the begin-
ning or during their projects, yet it is precisely the measurement activity and
resultant numbers that create a project conscience.

The lack of quantification of project progress hinders the ability of even the
best project manager to react and recover because often they will not detect in
time an out-of-control project.

Estimates are most relevant and demanded at a point in time when there is
a minimal of measurable information (at project initiation), and when one is
able to perform the estimation with absolute exactness (at project postmortem)
it is no longer required.

Even the best method(s), without tool support, have only scanty chances for
survival.

Automated support for project estimating is a critical time-saver that can
overcome the resistance and skepticism to embrace the processes.

Further to the three prerequisites, it is the authors’ experiences that software
estimating and metrics initiatives succeed more often when there is the support
of a Competence Center.

It is generally understood that the size of the object of estimation (i.e., the
size of the software application or the size of the construction project as appli-
cable) is one of the most important correlation factors that drive project effort
and productivity! Hence, the measurement of such size is a major core disci-
pline of IT project planning!

Hence, in this book estimation is always understood to be based on a mea-
surable size of the object of estimation.

The choices of the development platform and the programming language
are two of the strongest drivers of the development effort.

Size measurement and estimation are two consecutive, but clearly depen-
dent tasks to be performed during effort estimation.

It will come as no surprise that the estimation process must be trustworthy
from a business perspective, and the results from each step of the estimating
process must clearly document the input values and assumptions made, because
important investment and project budget decisions will be based on them.

The whole estimation process must be auditable!

1.5 Management Summary

1 The Estimation Challenges 42

Auditability and traceability are also valid to document for each of the par-
tial processes.

The strength of a project estimate is only as reliable as that of the weakest
partial process involved.

Work tends to consume all available time.
To make sense of historical project data, one MUST know the context from

which it came.
Estimates are generally rounded up or down (significant value simply non-

existent precision).
Note that while an estimate can be rounded down, it is generally more dan-

gerous because seldom does an IT project take less time than anticipated!
Estimation of IT projects precludes that more or less information is known

about the object to be estimated.
The purpose of estimation is to understand and appropriately apply known

effort drivers to our project in order to make better decisions.
The more there is information available for an estimate the more precise the

estimate can be.
Requirements creep negatively correlates to a clear definition of objectives.

Hence, the clearer are the objectives of an IT project, the fewer requirements
creep will occur.

Only by continuous tracking of counts, estimates, and changes can mean-
ingful target values for project planning be achieved.

Without measurement, it is difficult to detect and uncover problems early
enough – before the project becomes out of control.

Measurement fosters knowledge, since the better we can express something
with figures, the better we understand it.

A prerequisite to effective project management is that the estimates are
formally documented and controlled.

Measurement is a valuable and a necessary prerequisite to avoid estimation
problems.

Non-existent documentation of the development environment and estimating
assumptions can hinder learning and improvement of estimation a priori.

Estimation without information about what is included in the estimate is
worthless.

Only repeated estimations can help to gain experiences with requirements
creep.

43

Only controllable estimates deliver the chance for comparisons and thus
enable a feed forward (learning from past estimations for future estimations).

The process of estimation is no substitute for the determination of the effort
parameters, which have to be done by the person responsible for planning.

Parallel projects should not be compared. This leads easily to manipulation
of the method to be better (on the paper) as compared with another project.

Sometimes regret costs more than learning and performing professional
estimates would have cost. Only one abandoned project is sufficient to prove
this, since the costs for one failed project are more than the costs for the imple-
mentation of an estimation process. Moreover, estimating processes deliver a
better basis to control IT projects and reduce the risk of failures.

Goal conflicts often arise from vanity.
It is commonplace for at least two factors to be overestimated in practice:

these influences include quality of the team and influence of tools.
An estimation conference is a team-building experience and fosters risk

awareness!
To overcome these acceptance problems, estimations should never and by

no means be used in relation to people but only in relation to processes or pro-
ducts.

A lasting estimation culture can only be fostered if the estimation process
is clearly defined and transparently performed and thus estimation honesty is
promoted.

A good estimation culture can prevent management and project leaders from
playing political games with estimation and promotes motivated and effective
project teams.

Hopefully you are already embracing the fact that changes in your estimating
processes can be good, and that better software estimates and project manage-
ment are possible given industry-proven techniques and approaches to software
estimation.

1.5 Management Summary

2 Estimation Fundamentals

This chapter introduces an estimation framework to enable the reader to position
estimation in project management, project control, and quality assurance. The
reader will also become acquainted with the characteristic parameters of esti-
mation.

Objectives of organizations to survive in the market today can all be derived
from quality, productivity, and predictability. Quality pertains to the effective-
ness of the processes (doing the right processes) and the product (building the
right product). Productivity and predictability both pertain to the efficiency of
the processes used to develop the product. Hence, estimation will be an essen-
tial part of project management and must be regarded in the complete context
mentioned earlier. Project management without estimation (often justified
because it seems to be too time consuming) is like driving a car without planning
to refuel along the way. Typically, project management falls into two main
types:

1. Strategic project management
2. Operative project management.

Strategic project management organizes the overall life cycle develop-
ment of all IT projects of an organization. Synonymously it is called program
management or project portfolio management. Conversely, operative project
management concentrates on a single project level. The major components of
both kinds of project management include the following from the Project

Guide):

1. Project Initiation.
2. Project planning (including Project Estimation) provides the basis for

the main tools of project control. As a project progresses, it tends to
deviate from plans. To avoid this entropy and to stay on a goal-oriented
direction it is necessary to have a detailed plan.

3. Project execution.
4. Project Control.
5. Project Closing provides the basis on which project actual hours and other

project lessons should be recorded for historical purposes and use on future

®Management Institute Project Management Body of Knowledge (PMBOK

46

tion at the end of a project, rather it specifies that the project have a formal
end (the closing). The authors advocate the northernSCOPE(TM) concepts
(www.fisma.fi/in-english/scopemanagement) that organizational learning
(via the collection of project actuals at the close of the project) is an im-
portant corporate best practice.

Estimation is the foundation of viability assessment of IT projects. The tools
of estimation include e.g., cost benefit analysis, Functional Size Measurement,
assessment of non-functional requirements (quality requirements), and a myriad
of diverse estimation methods.

The distinction between operative and strategic project management must also
be made for its subtasks. Hence, there exists operative and strategic project
control as well as operative and strategic estimation.

2.1 Estimation in a Project Controlling Environment

The traditional tasks associated with project control are as follows:

1. Planning (determination of metrics)
2. Information gathering
3. Control
4. Steering.

Exactly these are the core functions of operative project control within opera-
tive project management.

Its task is to deliver to the project management the necessary information
about project progress:

At the right time
Condensed (in summary form)
Problems and how they can be adequately addressed.

Hence, it has to perform the following tasks:

1. Definition of the effort targets for IT project subtasks based on sound and
professional estimating (planning task)

2. Continuous measurement of actual effort for the subtasks of the IT project
(information gathering)

3. Continuous comparison of actual effort versus planned effort during pro-
ject progress (control)

4. Analysis of causes for eventual deviations and recommendations for the
actualization of the project plans (steering).

2 Estimation Fundamentals

projects. Note that the PMBOK does not explicitly prescribe the data collec-

47

These tasks belong in the context of the cybernetic control circuit (see also

management. Estimation gets its strategic or long-term character through the
capability to provide experiences of the past for the improvement of future
estimations. This is part of organizational development whereby lessons of the
past are used to master the future (feed forward). In strategic estimation, this is ac-
complished by documentation of the estimate and analysis of this documenta-

sound foundation of planning and thus also the foundation of project control.
In reference to the many surveys that showed evidence that only a marginal

number of IT projects that were started were actually finished on time and within
budget one has to conclude: “Anyone who does not perform the project man-
agement task of estimation could be considered as acting grossly negligent! ”

The same premise holds for the project management task of documentation
(see also the chapter “The Estimation Challenges, Documentation”).

In particular, the measurement of project size as a basis for estimation addi-
tionally delivers the benefit of providing an objective requirements review for
the IT project.

Documentation (also of estimates) is important to be able to quantify and
understand the system to be developed. Only with this prerequisite is it possible
to extract basic experiences that can be integrated into the project management
manual. This is an important prerequisite for organizational learning. If the
functional size measurement fails because documentation is not available (i.e.,
either not existing, not actual, or indecipherable) or there is a lack of know-how
on the IT project, then it can be concluded that the requirements analysis is not
yet complete. Alternatively, it is an important early warning sign that shows
that the IT project has lost its bearing so early in its lifecycle.

2.1.1 Adjusting the Estimate to Take into Account Project
Environment Factors

A number of factors from the environment of IT projects have an enormous
influence on the actual effort and hence must be considered by the project
leader as input to the estimate. These factors must be taken into account at the
level of project tasks where they can be used to adjust and enable the develop-
ment of sound estimates. Some of these factors are as follows:

The development environment and platform such as PC, mainframe, Client/
Server, Expert System,...)
The development language (Assembler, Cobol, C++, Program Generator, Java,
SQL,…)

2.1 Estimation in a Project Controlling Environment

“The Cybernetic Estimation Control Circuit” part of this chapter) of project

tion for the development of IT metrics and benchmarking. Estimation is the

48

The run-time environment (DB2, CICS, IMS, Data Warehouse, Internet,
Intranet,…)
The project classification (new development, enhancement, maintenance,
strategic IT project,…)
The project class (large system, interactive database application, standard
software, system software, query system, cash system, online/batch propor-
tions of applications,…)
Complexity of the IT project (data-, code-, and functional complexity,
number and type of interfaces,…)
Regulations for quality and security standards (four eye principle, test concept,
software engineering process model,…)
Restrictions by law, technique, or organization
Project novelty (First use of new methods, processes, tools, software, langu-
ages, platforms, …)
Support of the IT project by managers, users, union, …
Large number of interfaces or new customers (literature: +25%)
Project duration (literature: more than 6 months +15%, more than 12
months + 30%, more than 18 months + 50%)
Clarity of responsibilities in the IT project
Open-plan office (literature: +25% to +30%)
Experience of the project leader in estimation
Skill of project team (experts, beginners, mix)
Team size (in each project phase)
Availability and time restriction of people, especially of crucial experts
Business/industry type (military, banking, avionics, government, …).

Table 2.1. Factors influencing software engineering estimation

Technology Product Development process Resources
Technical develop-
ment platform

Functionality Process organization Hardware avail-
ability

Hardware (and soft-
ware)

Quality Software engineering
process model

Software avail-
ability

Software Complexity Methods Staff availability
Technical standards Documentation Project duration Staff quality
Tools Restrictions by law Interfaces Costs (budget)
Technical require-
ments

Project classification Goals Organizational
restrictions

Technical run-time
environment

Project class Organizational devel-
opment environment

Project calendar

Table 2.1 shows a structured overview of some of such influential factors but
cannot compete with the nearly 100–200 such parameters administered in com-
mercially available estimation tools. Only the use of such tools guarantees that

2 Estimation Fundamentals

49

the estimator does not lose the overview when regarding a larger number of para-
meters for estimation.

Several estimation methods consider some of these factors of influence. The
Function Point Method, e.g., uses 14 General System Characteristics (GSC);
COCOMO II uses 22 factors, and FiSMA ND21 uses 21 factors for new product
development. Of these factors, the project objectives (goals for quality, scope,
schedule, cost) have the most influence on project effort as well as on project
success.

2.1.2 Project Goals and the Devils Square of Project Management

Generally an IT project is characterized by unique conditions requiring special
organizational measures (project management, management of crises, risk
management) caused by its complexity. It has normally the following charac-
teristics:

There exists a clearly formulated and reachable goal.
There exist time, financial, personnel, and/or other constraints as well as a
high degree of innovation.
The project has a clear demarcation to other tasks and projects and has a
start date as well as a delivery deadline.

An IT project is a temporary set of activities with the goal to develop and
install a software system. The objectives of an IT project must be absolute and
clearly defined, and the achievement of its targets must be measurable. This is
the main success criteria of an IT project. The goals can be differentiated into
primary and secondary goals. Primary goals are as follows:

1. Quality
2. Size (Quantity)
3. Duration (Time)
4. Costs.

Possible secondary goals may be the following:

A 25% staff reduction in the order management department
Reduction of the maximum handling time of a customer claim to 24 h.

The primary goals unavoidably compete with each other for the resources of
an IT project. Hence, every additional consumption of one resource leads to
reduction in the availability of other resources. This effect is known as the devils
square of project management (see Fig. 2.1). The example in Fig. 2.1 shows
how size is reduced in order to gain more quality and reduce costs.

The devils square also highlights that estimation is the basis for a sound
planning of quality, functional size, costs, and dates. How can you plan when you

2.1 Estimation in a Project Controlling Environment

50

do not know the necessary effort? The problem of the project leaders in this
context is that management expects them always to minimize costs and time
while maximizing size and quality – an impossible task!

2.1.3 Estimation and Quality

The quality of a software product is measured by the degree to which it meets
or exceeds the user requirements. The measurement of the functional size for
estimation thus becomes of extraordinary significance.

Fig. 2.1. The devils square of project management

The increasing acceptance of IT even in private life leads to increasing
demands of high-quality software. This increased quality consciousness makes
quality one of the most important goals of software development. The PMI
(Project Management Institute) identifies quality as the center of the triple con-
straints triangle consisting of the following as the governing project constraints:

1. Scope (functionality)
2. Cost (budget)
3. Time (duration).

If one of the triple constraints or the quality requirements changes, the other
constraints are affected. This directly affects project estimating because software
development projects are always limited by budget (cost), time to market (dura-
tion), quality, and/or scope (functionality).

For example, once an estimate is made based on a given project scope, qua-
lity, budget, and duration, if the scope is increased – then it will affect the other
components. Sometimes this is referred to as project tradeoffs because if the

2 Estimation Fundamentals

Quality Size

Time Costs

+ +

_ _

51

project scope changes and there is limited time and cost allocated for the project,
the product quality will suffer. Similarly if the quality demands for a project
increase after a project estimate is made, then the functionality (scope) must dec-
rease in order to finish the project within the same timeline and cost structure.

There are a number of relevant and proven measures, methods, and techniques
for software and software development quality improvement.

Today, quality is no coincidence, but rather it can and must be planned exactly
into a product. Today, good quality is built into a product rather than poor qua-
lity detected out.

Quality management in IT projects consists of the following tasks:

Quality planning
Quality execution
Quality control (measurement and tracking)
Quality assurance.

The first two tasks are performed systematically by so-called constructive
quality assurance measures, which secure quality a priori. Constructive quality
assurance measures include the systematic use of methods, development tools,
or standardized processes. Quality control is performed by analytical quality
assurance measures in order to measure adherence to quality requirements or
deviations thereof, and if necessary, to correct any gaps or detected defects.

The focus of these tasks centers on constructive quality assurance measures
since prevention is better than defect correction, or, using a metaphor: fire pre-
vention is better than fire fighting.

This premise is accompanied by the requirement to define quality goals for
the software development process, which in turn must meet and exceed the qual-
ity goals of the software to be developed. Quality attainment is then measured
by comparison of the goals for product quality and the actual quality features
of the developed software. In IT projects, as part of the requirements, the qual-
ity attributes are defined at the start of the IT project, and become part of the
input variable set to the estimation equation. This is a direct link to estimation.
The ISO/IEC 9126 External Quality Attributes (see Fig. 2.2) identify the major
aspects of product quality for the software to be developed, and each major area
such as functionality is further subdivided in the ISO/IEC standard into indi-
vidual quality characteristics.

2.1.4 ISO/IEC 9126 Quality Attributes and IFPUG GSC

The ISO/IEC 9126 Quality Attributes partially overlap with the 14 GSC of the
IFPUG Function Point Method, which are used to adjust/modify the Functional

2.1 Estimation in a Project Controlling Environment

52

Size Measurement of the software to arrive at the adjusted Function Points for
use in estimating. It is therefore obvious that an automatic interface should be
created to avoid double work for the project leaders. A large organization deve-
loped the following Excel chart, which automatically calculates the quality

Fig. 2.2. The ISO/IEC 9126 quality attributes

Fig. 2.3. Mapping of the ISO/IEC quality attributes and IFPUG GSC

2 Estimation Fundamentals

ISO / IEC
9126 Quality

Attributes

Functionality

Usability

Relia-
bility

Porta-
bility

Maintain-
ability

Efficiency

To what extent does the
software deliver the necessary

Functions required?

How efficient does the
software have to be?

How reliable must the
delivered software be?

To what extent does the
software have to be user

friendly (and easily usable)?

To what extent does
the software have

to be
easily maintainable?

To what extent does the software
need to perform in another
operational environment?

53

Table 2.2. Evaluation of IFPUG GSC and ISO/IEC quality attributes

General system characteristics Mapped to the priority of the quality attribute
0 = No priority (0)
1 and 2 = Small priority (1)
3 = Medium priority (2)
4 and 5 = High priority (3)

attributes from the GSC and vice versa. The connection between the quality
attributes and the GSC was ranked from 1 to 9 by the project team, where the
sum of each column is 9. Thus, in Fig. 2.3 the quality attribute Adaptability (a
quality characteristic in ISO/IEC 9126) is connected with the following IFPUG
GSC (see column 1 in Fig. 2.3 and Table 2.2 for the mapping of the values):

1/9 with data communication
2/9 with distributed data processing
1/9 with online data entry
5/9 with facilitation of change.

The ISBSG (International Software Benchmarking Standards Group) book
titled Practical Project Estimation, 2nd edition, identifies two alternative methods
of addressing these non-functional or quality requirements for software. The
first method identified is the COCOMO II set of factors, and the second is the
Finnish Software Measurement Association (FiSMA) situation analysis called
New Development 21 (ND21) factors (see www. fisma.fi for details).

A second determination factor, besides the classification of estimation into
project controlling, is the consideration of its cybernetic control circuit features.

2.1.5 The Cybernetic Estimation Control Circuit

Estimation can be thought of as a cybernetic control circuit. This is an impor-
tant feature since control circuits are directable systems that can be controlled
by feedback that enables them to compensate disturbances influencing them.
They are able to proceed in a state of equilibrium (called homeostasis) if there
are no disturbances or influences exerted on them from the environment. With
the principal model of the cybernetic control circuit the behavior of complex
systems can be understood, explained, and controlled. For better understanding
of the cybernetic control circuit of estimation the concept will be explained in
more detail here.

Norbert Wiener coined the term cybernetics from the Greek word meaning
steersman. He defined cybernetics as the science of communication and control
in mechanisms, organisms, and society. Cybernetics is a general theory of con-
trol, a science of the behavior of adaptive complex systems having the important
features of feedback and communication as well as information exchange.

2.1 Estimation in a Project Controlling Environment

54

A cybernetic control circuit consists of the following four components:
1. Controller: The Controller gets information about measures collected by

the measurement component, produces decisions, and delivers objectives
to the adjustment component. In the special case of estimation, the
controller delivers an estimate to the adjustment component for reaching
this objective.

2. Adjustment Component (Actuator): The adjustment component accepts in-
put from the controller, chooses measures for the mode of activity, and
delivers these adjustment factors as (for the model understandable) sig-
nals to the object of control to cause changes in it. In the special case of
estimation, the actuator compares this objective with the knowledge base
(historical data) and delivers an improved objective to the object of control.

3. Object of Control (Model): This is the regulating extension, the model
that performs the given measures. It is the component where the cybernetic
circuit can de disturbed by factors of influence from the environment. The
shorter is this regulating extension (e.g., time distance: early warning sig-
nals), the more modest are the measures for steering of the system. In
the special case of estimation, the object of control sends notifications and
data to the measurement component.

4. Measurement Component: The measurement component measures the
degree of fulfillment of the objectives and accepts notifications telling it
that the state of the model has changed. Data are retrieved from the model
and used as feedback passed to the controller to further drive the model.
In the special case of estimation, the measurement component measures
the actual state of the model, compares it with the objectives, and informs
the controller about the deviations. The controller elaborates from this a
new estimation and the circulation starts anew.

The whole process is called feedback loop and leads to a flexible balance
(homeostasis), i.e., the system regulates itself when there are no disturbances
affecting it. The user (not necessarily human) is not considered to be a com-
ponent of the cybernetic control circuit but is part of the controller and consti-
tutes the decision-making function that dynamically directs state changes in the
model. Figure 2.4 visualizes the cybernetic control circuit of estimation.

The project tasks together with the objectives, the classification, type and
class of the project, and project size are input for the controller where the objec-
tives are defined. Furthermore, the controller produces decisions (output, initial
value) – based on the comparison of actual versus planned measures from the
measurement component – which are delivered to the actuator for comparison
with the knowledge base. The actuator chooses a measure (estimated value) and
delivers it to the model. This is the object of control and produces – with influ-
ences of outside disturbances from the environment – an actual value. This actual
value is sent to the measurement component for measurement of the fulfillment

2 Estimation Fundamentals

55

Fig. 2.4. The cybernetic control circuit of estimation

Fig. 2.5. Cybernetic control circuit for estimation

2.1 Estimation in a Project Controlling Environment

Systemic Project Management Steering -
Controlling Project Management with
System Dynamics

Controller
Estimation

Actuator
Comparison with
Knowledge Base

Object of
Estimation
Project Progress

Measurement
Component
Plan vs. Actual

Comparison

Project Goal

Disturbances

Initial Value

Estimated ValueActual Value

Deviation:
Feedback

Feedback
(Learning)

Bench-
markingQA-Planning ControlQA-Check Reporting Know How

Transfer

QA-Circuit Steering-
Circuit

Measure Estimate Project Post
MortemPlan Measure

Effort

56

of the objectives. The comparison of planned versus actual values produces a
deviation, which is sent as information to the controller.

Severe disturbances can occur, e.g., if the knowledge base does not exist or
is qualitatively inadequate, when there are no measurements available (either
not done or not documented), or if the estimation process and/or measurements
are not controllable. In any of these cases, the cybernetic control circuit is inter-
rupted or it performs in a cumbersome manner. In such cases, quality and the
overall benefits of estimation are reduced.

 Figure 2.5 shows the tool-based systemic project management concept (real-
ized in an organization) with the partial process of project management and the
imbedded cybernetic control circuits for quality assurance and project steering
as well as the feedback loops for organizational learning.

2.2 Determining Parameters of Estimation

Strategic estimation is part of strategic project management. Hence, the goals to
be reached with estimation should be defined as a necessary prerequisite before
introducing estimation.

As an example, strategic project management can have the following goals:

Continual improvement of the following:
Estimation
Project planning
Project elaboration

Identification of the following:
Cost drivers
Efficient methods and tools

Internal as well as external benchmarking

From these, the following goals for strategic estimation can be derived:

Continual Improvement of the following:
Measures of product size
Measures for parameters influencing project effort
Methods and standards for planning and elaboration of estimation

Identification of the following:
Parameters influencing project effort
Efficient methods, standards, and tools.

Figure 2.6 summarizes the determining parameters of estimation, the drivers,
constraints, as well as the degrees of freedom. A connection with the devils
square of project management can obviously not be neglected.

2 Estimation Fundamentals

57

2.2.1 The Purpose of Estimation

The success of metrics implementation relies on how an organization assesses
the principal question: “What (which IT metrics) shall we measure?” After sizing
the product (functional size measurement), the effort to be expended shall be
estimated in person months (or hours) using the size and additional estimation
parameters. Next, the estimated effort is distributed across the phases of the pro-
ject as the basis for project planning and scheduling. For the total project plan,
an estimate must also be made for the effort for project management and qua-
lity assurance. Often the project management and quality assurance efforts
are overlooked or forgotten, and this leads to severe miscalculations and under-
estimating.

Fig. 2.6. The determining parameters of estimation

Last but not least, estimation contributes to making process improvements
measurable. Process capability can be an abstract measure for many factors that
influence process improvement. Process capability is a measure of the efficiency
of the software development and is measured in effort hours per Function Point,
also called PDR (Project Delivery Rate). Putnam and Myers estimate the annual
process improvements of organizations with process improvement programs to
about 13%. Other authors, including the Software Engineering Institute (SEI),
estimate a time span of 2.5–4 years for doubling the process capability of an
organization.

The SEI developed a software and systems process maturity model to eva-
luate the capability of an organization to build software and systems products.
Originally, this model was called the Capability Maturity Model (CMM®) for
software but today various maturity models for systems, acquisition, and other
competencies were combined into what is now known as the Capability Maturity
Model Integration or CMMI®. The CMMI® identifies five progressively

2.2 Determining Parameters of Estimation

Drivers

• Size
• Process

Estimation

• Duration
• Size
• Effort
• Staff
• Quality
• Costs

• Duration
• Effort
• Staff

• Quality
• Costs

Constraints

• Duration
• Effort
• Staff

• Quality
• Costs

Degrees of Freedom

Results:

58

mature levels of process capability or maturity for an organization, and the aver-
age time to ascend from one step or level to the next is 18 months.

ISO/IEC developed a process improvement framework called SPICE: Soft-
ware Process Improvement Capability Determination, which is now represented
by a series of standards under the umbrella ISO/IEC 15504. CMMI® and SPICE
are both examples of process maturity models.

2.2.2 The Goals of Estimation

The following goals can be reached using estimation methods:

Holistic and integrated estimation process(es) for IT projects
Organizational learning (measurement and estimation can highlight best prac-
tices that can be leveraged on future projects)
Concept for training of estimators
Tool support for host and PC environment
Standardized estimation process
Detailed estimation manual
Documentation manual
Foundation for benchmarking
Transfer of experiences with estimation
Reduction of complexity and uncertainty of estimations
Increased reliability, precision, and accuracy of project estimates
Improved requirements documentation and completeness (because functional
size measurement relies on good requirements, organizations that implement
function points often find that their requirements processes necessarily im-
prove to facilitate the size measurement)
Improvement of estimation exactness.
It does not matter if the IT projects are classified as new development, enhan-

cement, or maintenance – the objectives that can be achieved are the same.
Problems may arise when there are goal conflicts, since the estimators tend to
think of estimation as being data-centric, whereas the managers are more likely
resource-oriented, and the end users or project sponsors are more likely risk-
oriented. Acceptable estimations must consider and address all three perspec-
tives (data-centric, resource-oriented, and risk-oriented).

2.2.3 The Right Time for Estimation

Determining the right time for estimation is an important consideration for any
organization interested in implementing formal estimating procedures. The

2 Estimation Fundamentals

timing parameter requires a lot of attention since it is the subject of an inherent
goal conflict:

59

Early and precise estimations are necessary and desirable by software custo-
mers; however, early estimations are necessarily imprecise and prone to a high
degree of uncertainty.

This problem is aggravated by the following effect:
 Estimation is done too early and far too seldom!
If one accepts that the precision of estimations at the beginning of an IT

project is imperfect and insufficient, and it only increases as the project pro-
gresses, then the logical consequence is that multiple estimates are necessary
throughout the project. Estimates must be updated and revised whenever impor-
tant influencing factors change.

In practice, an estimate is usually only done at the project start, and some-
times at a project postmortem. Capers Jones stresses the impact of requirements
(scope) creep as causing a 1–3% functional size increase per month of project
duration.

Additional factors where estimate revisions are necessary include, for
example, illness of key staff or resource reallocation. If such changes are not con-
sidered and actualized, the plan made from the original estimation will never
be met. It is critical to revise and repeat the estimation process during project
progress especially when there is substantial scope creep or deviations from
the project plan. To increase the chance of consensus about the future of the pro-
ject, the customer should always be kept informed about changes to the esti-
mates (because they reflect changed plans).

Figure 2.7 provides an overview of possible estimation milestones, where
milestones 1–7 have the following meaning:

Milestone 1: End of Feasibility Study Phase
The idea or concept for a new project is constituted. There exists only little
information about requirements details and thus Function Points can only
be approximated (see chapter “Function Point Prognosis”). Effort estimates
can be developed using a tool together with relevant historical data from
comparable completed projects. In many companies, the project charter and a
preliminary effort estimate are delivered at milestone 1.
Milestone 2: Project Start
At this point, further information about the project, its resource require-
ments, and the possible timeframes exists. Furthermore, the IT project team,
the development environment, and the programming language are typically
known. Hence, a more detailed estimate derived using an estimating tool is
possible.
There still is not enough information available for a complete Function
Point count. Hence, the first Function Point Prognosis should be actualized,

2.2 Determining Parameters of Estimation

and estimation with a tool should be done using the documented assump-
tions for the project.

60

Milestone 3: End of Requirements Analysis
At milestone 3, there is now sufficient information for a complete Function
Point count followed by documentation and estimation with an estimation
tool. The GSCs are classified in an estimation conference as previously des-
cribed.
The actual data measured to date on the project become input for the esti-
mation tool, and a revised/updated estimate is carried out on this basis. For
tracking and organizational learning reasons, this estimate must be com-
pared with the first estimate.
Milestones 4–6: End of IT Design until End of Project
Counting and Estimation are actualized at least at critical project dates and
confirmed on phase transitions. Changes in the IT project become transparent
and part of the process, and are documented to capture the data of the experi-
ence. Estimates are tracked continually. The actual measured effort is docu-
mented in an estimation tool at least at the end of each phase or preferably on
a regular (weekly) basis.
Milestone 7: Project Postmortem
Here the main task is to collect information and experiences at project com-
pletion to improve the counting and estimation processes for subsequent
projects. (One of the best ways to capture this data is to conduct a workshop
about the experiences in this project.)
In project postmortems the following effort components are frequently neg-
lected: unpaid overtime, effort for project management, effort for quality
assurance, effort for administrative tasks (all effort of the IT project) as well
as effort of end users and technical specialists not belonging to the core
team. To improve and learn from your own completed projects, it is essen-
tial to have a record of all expended project effort so that future projects can
gain from the knowledge of complete project data.

Fig. 2.7. Milestones for estimations in IT projects

2 Estimation Fundamentals

Study Project
Preparation

Analysis Design Programming Test Release

Start Project Implementation

1 2 3 4 5 6 7

Raw
Estimate

Obliging Estimation
(Project Success will be

measured by this)

Tracking of
Estimation

Experiences, Project Post
Mortem

Document Estimation

61

The project postmortem must elaborate the realistic amounts for efforts
occurring on a one-time basis such as migrations (data conversions) or test
drivers (documented separately), as well as effort supplied externally (docu-
mented separately). Preferably, this task will be carried out with the assistance
of the competence center. It will actualize the metrics for the experience curve
as well as IT metrics standards. A competence center will take this data and
subsequently use it to determine the productivity measures and other IT metrics.
From the viewpoint of estimation the reader is directed to the appendix where
we have included a useful checklist for project postmortem of IT projects.

2.2.4 Tracking of Estimates

In its estimation tracking manual, the Software Engineering Laboratory (SEL)
of the NASA asks its managers to perform estimates at least six times during the
project duration. Each time the estimate for the remaining project work is multi-
plied with different lower and upper control limits in order to give an interval
for the estimate uncertainty at the particular milestone. Table 2.3 shows these
multiplication factors.

Table 2.3. Add-ons of the SEL (NASA) for estimate uncertainty

Milestone Upper control limit Lower control limit
End of rough requirements concept ×2 ×0.5
End of detailed requirements
concept

×1.75 ×0.57

End of rough IT design ×1.4 ×0.71
End of detailed IT design ×1.25 ×0.8
End of programming ×1.1 ×0.91
End of testing ×1.05 ×0.95

For the continuous tracking of estimates, it is advisable to set up a cata-
logue of continuous activities such as the following:

1. An annual index of applications, projects, and base values to be measured.
2. This registry must only contain objectively measurable data, which must

be measured when they occur. In addition to measured values, estimated
values must also be recorded. All data must be documented at different
aggregation levels to enable later drill down queries into project details.
Basic data (esti-mated, planned, and actual) are, e.g., start date, end date,
size (in Function Points or SLOC), number of defects, effort by phase,
effort of end users, IT and support.

3. For each of these items, a baseline has to be calculated.
4. A comparison of the baseline with the preceding year(s) in order to recog-

nize changes and tendencies.

2.2 Determining Parameters of Estimation

62

The following checklist comprises the most important milestones for esti-
mation:

End of feasibility study
Rough estimate based on already known information
Depending on estimated project size, add in 10–30% for each of the
following project add-ons: risk, uncertainty, and requirements creep

Start of project
Detailed estimates should be checked by a second estimating profes-
sional (e.g., expert estimation). The result becomes the basis for later
measurements of the success of the project.

End of Requirements Analysis
Function Point count, project internal estimation conference

End of each project phase
Actualization of the Function Point count due to the requirements
creep

Project postmortem
Measurement of success of the IT project
Actualization of IT metrics data and repository
Workshop for know-how transfer

Annual baseline and time series.

Project postmortem should be carried out in a meeting documenting all
important information about the project, including measures leading to project
success as well as those not so successful. It must be absolutely avoided to
search for culprits and attribute blame. Project postmortems are an important
prerequisite to foster learning for the future (feed forward). For this reason,
the project postmortem information should be readily available for electronic
access.

2.3 Management Summary

Estimation is an essential part of project management and must be regarded
in the complete context mentioned earlier. Project management without esti-
mation (often justified because it seems to be too time consuming) is like driving
a car without planning to refuel along the way.

Estimation is the foundation of viability assessment of IT projects.
Estimation gets its strategic or long-term character through the capability to

provide experiences of the past for the improvement of future estimations. This
is part of organizational development whereby lessons of the past are used to
master the future (feed forward).

2 Estimation Fundamentals

63

Estimation is the sound foundation of planning and thus also the foundation
of project control.

Anyone who does not perform the project management task of estimation
could be considered as acting grossly negligent!

In particular, the measurement of project size as a basis for estimation addi-
tionally delivers the benefit of providing an objective requirements review for the
IT project.

The objectives of an IT project must be absolute and clearly defined, and
the achievement of its targets must be measurable. This is the main success
criteria of an IT project.

The primary goals unavoidably compete with each other for the resources
of an IT project. Hence, every additional consumption of one resource leads to
reduction in the availability of other resources. This effect is known as the dev-
ils square of project management.

The quality of a software product is measured by the degree to which it
meets or exceeds the user requirements. The measurement of the functional
size for estimation thus becomes of extraordinary significance.

Today, quality is no coincidence, but rather it can and must be planned ex-
actly into a product. Today good quality is built into a product rather than poor
quality detected out.

Estimation can be thought of as a cybernetic control circuit. This is an impor-
tant feature since control circuits are directable systems that can be controlled
by feedback that enables them to compensate disturbances influencing them.
They are able to proceed in a state of equilibrium (called homeostasis) if there
are no disturbances or influences exerted on them from the environment. With
the principal model of the cybernetic control circuit, the behavior of complex
systems can be understood, explained, and controlled.

The whole process is called feedback loop and leads to a flexible balance
(homeostasis), i.e., the system regulates itself when there are no disturbances
affecting it.

The success of metrics implementation relies on how an organization assesses
the principal question: What (which IT metrics) shall we measure?

For the total project plan, an estimate must also be made for the effort for pro-
ject management, and quality assurance. Often the project management and
quality assurance effort is overlooked or forgotten, and this leads to severe
miscalculations and underestimating.

Early and precise estimations are necessary and desirable by software cus-
tomers; however, early estimations are necessarily imprecise and prone to a
high degree of uncertainty.

2.3 Management Summary

64

Estimation is done too early and far too seldom!
Capers Jones stresses the impact of requirements (scope) creep as causing a

1–3% functional size increase per month of project duration.
The project postmortem must elaborate the realistic amounts for efforts occur-

ring on a one-time basis such as migrations (data conversions or test drivers
documented separately), as well as effort supplied externally (documented sepa-
rately). Preferably, this task will be carried out with the assistance of the com-
petence center.

In its estimation tracking manual, the SEL of the NASA asks its managers to
perform estimates at least six times during the project duration.

For the continuous tracking of estimates, it is advisable to set up a catalogue
of continuous activities.

It must be absolutely avoided to search for culprits and attribute blame. Pro-
ject postmortems are an important prerequisite to foster learning for the future
(feed forward).

2 Estimation Fundamentals

3 Prerequisites for Estimation

“Estimation must be performed in a professional manner.” You have already
heard this over and over in the previous two chapters; however, the point is so
important that is bears repeating: Estimating without history is simply an
opinion!

Hence, estimation and the formal process to determine it must be care-
fully planned. When one takes into consideration that 60–99% of software de-
fects post-production (i.e., in commercial off-the-shelf (COTS) software) can
be attributed to poor requirements, one can easily digest the importance of clear
requirements and estimation formality as predictors of project success. Besides
that, estimating principles and assumptions must be documented for each esti-
mate in order to make sense of the estimate itself. To provide knowledge for
laying the fundamentals of estimation, this chapter discusses the information
prerequisites (what MUST be known) in order to even attempt formal estimation
as well as the prerequisites of the process of estimation.

3.1 The Information Basis of Estimation

In order to perform solid estimation, one necessarily needs information about
the object of estimation (e.g., WHAT requirements the software product must
deliver). Without such information, estimation is only a modified type of Las
Vegas-style gambling.

3.1.1 Prerequisites for Estimation

The following rules should be considered when preparing an estimate (sar-
castic comment: SURPRISE! yes, estimations should be prepared!):

An estimate can only be carried out when at least a minimum of project
requirements are known. The clearer the objectives for the software product,
the more precise the results will be.
The estimate must be done by persons with sufficient knowledge about the
requirements under consideration. In an ideal situation, the software deve-
lopers perform this assessment together (or in close cooperation) with the

66

users and are supported by a competence center. Ideally, this takes the form
of an estimation conference. (see Chap. 1: “The Estimation Conference”).
When estimating the project requirements at an early (preliminary estimate)
stage, the estimate should not be broken down into too much detail since the
overall application/project requirements should be in the focus. In other
words, the focus of early estimates should be to deliver at least the minimum
product within the user constraints of budget (cost), time to market (duration),
resources (team size), quality (how good the product must be), and scope
(functionality to be delivered).
Because the Function Point Method provides a measure of the functionality
of a software product, it cannot be used when estimating on module level or
program level, as such granularity is simply not intended by the model. When
misused to estimate technologically dependent module- or program-level
estimates, the result will be inaccurate. This is similar to using square feet
(or square meters) of a floor plan to estimate the amount of time or effort
to install wiring in a single wall – it would not result in an accurate micro-
level estimate. This is because the square area of a floor plan reflects the
size of an entire project or floor plan, and the estimating models based on
such areas are unsuitable for use by a particular tradesman working with a
small (sub) portion of the work.
The contributions of the total set of users (the definition of user in the con-
text of this book is similar to actors in the context of use cases – being any
person or thing that requires particular functionality from software or any
person who specifies functional requirements) are often overlooked.
When using the Function Point Method the object of estimation has to be
seen from the view of the users (as outlined in the previous point), and not
from the view of the IT staff. This is the most important rule: functional size
measurement emphasizes the functional USER requirements, and this point
cannot be stressed enough.

The next paragraphs describe the topics, tasks, and processes necessary to
be carried out before the actual estimation is done. Information about the con-
tent of effort and about time accounting is discussed, as well as structuring the
application to be developed and the documentation of the development envi-
ronment.

3.1.2 Prerequisites for Estimation of Effort

Before carrying out an estimation, it must be agreed and defined what is the
effort to be estimated and how it will be measured.

3 Prerequisites for Estimation

67

Phase 1: Requirements analysis and design of solution
Analyze user requirement
Define interfaces
Evaluate the requirements
Develop proposal of organizational solution

 Phase 2: Specification of the application
Discuss and agree on user requirements in detail
Office desk test, walk through
System architecture
Hardware-, software- requirements
Proposal for technical solution

 Phase 3: Technical development
Programming
Module test
Integration test

 Phase 4: Installation and release of the system
System test under productive conditions
Release to end user.

Note that the feasibility analysis phase and the installation rollout of the
software are NOT part of the phases included in this model. It is critical that
the phases of a development project be known both for the project to be esti-
mated AND for any projects used as comparison projects – in order to facili-
tate an “applies to apples” (consistent) comparison. The ESA database also
known as the European Space Agency database uses person months (consisting
of 144 person hours per person month) and measures the effort from the deli-
very of the requirements concept through to acceptance by the customer (i.e.,
first install).

Whereas COCOMO II uses person months with 152 person hours and mea-
sures all project effort, including interface-, management- as well as administra-
tion- effort. The importance of these various models to the estimating professional
is that the included phases determine the included work effort. As such, we
always want to ensure that we are performing an apples to apples comparison
in all aspects of the estimating process when we use historical projects as a
basis for an estimate.

The ISBSG benchmarking database uses only person hours and assumes the
inclusion of overtime work (paid as well as unpaid) and effort of the end users
from feasibility study through to delivery (inclusive of training).

3.1 The Information Basis of Estimation

IBM, e.g., estimates the effort of the following phases 1–4 using the Func-
tion Point Method per the International Function Point Users Group (IFPUG)
Function Point counting rules:

68

3.1.3 Time Accounting

A standardized measurable unit for the effort must be defined in order to com-
pare the development project effort to that of other IT projects. The definition
of this base unit of effort, in terms of hours – the time accounting, is of central
importance. Otherwise, a direct comparison is only possible using hours worked
(person hour = 1-hour work of one person without any break).

The project effort is measured in person hours, person months, or person
years with the preferable unit being person hours because it entails less subjec-
tivity of units. Two models are shown to demonstrate that comparability is only
possible by stating the measurement unit used.

Table 3.1. Example time accounting

Measurement Unit Model 1 Model 2
Gross Net

1 person month = 130 person hours = 160 person hours = 120 person
hours

1 person year = 1,560 person
hours

= 1,920 person hours = 1,440 person
hours

Table 3.1 demonstrates that model 1 is more similar to the net version of
model 2 than the gross. Net versions are based on the management experience
that staff are usually only available for 70–80% of their overall working hours
(about 1,900 h a year) for project work. This will vary worldwide depending
on the customs and legal prescriptions of the jurisdiction (e.g., it is standard
to work 35 h per week with 6 weeks standard vacation in Finland; however,
in the USA the standard work week is a minimum of 40 h with 2–3 weeks
standard vacation). The remaining 20–30% of working hours is used for holi-
days, and work not related directly to the IT project such as training, sickness,
information sessions from management, personnel discussions with the boss,
reading, etc.

The aforementioned definitions are only two out of many variations. It is
important that a consistent definition for units of work effort be made and com-
municated. For example, the reduction of 25% of the gross working time can
be defined for the person months. Thus, a person year has 9 effective person-
months instead of 12 months (see Table 3.2). Other variations can also be
possible based on accounting models. The reduction could be made for the

hours, see Table 3.4).

The choice of a suitable variation and unit is not without problems: the safest
is the usage of person hours, since this is the smallest unit that can be docu-
mented, and there does not exist any conversion difference (e.g., in industry a

3 Prerequisites for Estimation

person days (thus a person month has 15 instead of 20 person days, see Table
3.3), or for the person hours (a person day has then 6 instead of 8 working

69

person year can vary from 1,680 h (12 months × 4 weeks per month × 35 h per
week) to upward of 1,800 h – depending on the jurisdiction or country. Note
that these hours are raw available hours and do not take into account unproduc-
tive (e.g., sickness, vacation, etc.) hours. But the usage of person hours can be
uncomfortable on large projects where it is often easier to use person days or
person months. A problem occurs when person hours have to be converted
into larger units. As Table 3.5 demonstrates, there can be differences of 25%
or more depending on the accounting method. If an IT project has been esti-
mated to cost 5 million dollars, a difference of 25% would amount to 1.25
million dollars! Conversely, if person months is used as the standard unit of
measure, one must use caution to ensure that the appropriate hours per person
month are consistently applied.

Choosing one or the other units of measure (person hours or person months)
does not cause any problems as long as effort figures are only compared to
projects that use the same model. However, it can become dangerous and mis-
leading on contracts with suppliers, external software providers, or with exter-
nal benchmarking services. It is particularly questionable to use historical data
when the underlying, relevant accounting model is unknown.

Hence, effort figures must also supply the units of measure and associated
assumptions according to a particular time accounting model – otherwise the
effort numbers are rendered useless.

In Tables 3.2–3.5, the following abbreviations are used: PY person year,
PM person month, PD person day, PH person hour.

Table 3.2. Accounting model 1

 PY PM PD PH
PY 1 9 180 1,440
PM – 1 20 160
PD – – 1 8
PH – – – 1

Table 3.3. Accounting model 2

 PY PM PD PH
PY 1 12 180 1,440
PM – 1 15 120
PD – – 1 8
PH – – – 1

Table 3.4. Accounting model 3

 PY PM PD PH
PY 1 12 240 1,440
PM – 1 20 120
PD – – 1 6
PH – – – 1

3.1 The Information Basis of Estimation

70

Table 3.5. Illustration of how accounting error can occur (given a project with PH = 100,000)

Model 1 Model 2 Model 3
PH 100,000 100,000 100,000
PD 12,500 12,500 16,667
PM 625 833 833
PY 69 69 69

3.1.4 The Problem of Overtime Work

Another problem arises with overtime work, whether or not it is paid to the
workers who perform it, because it is seldom recorded as part of the project
hours. Despite the frequency of this situation, the overtime hours are expended
as part of the project, but because these are not measured (regardless of whether
these are paid), these are neither registered nor included in project effort as
part of project postmortems. This problem is exacerbated when using the metric
productivity as illustrated by the following example: When 10 persons deliver
3,000 Function Points (FP) in 2 years the productivity is 12.5 Function Points
per person month, with 240 person months (10 persons × 24 months). If each
month is considered as being 120 person hours, and our project team works a
total of 50 h per week, but reported only 40, then the true effort was actually
300 person months and thus only a productivity of 10.0 Function Points per per-
son month. Estimations of further projects using the published 12.5 FP/person
month will thus be overly optimistic. As such, using this inflated delivery rate
will lead to unrealistically low estimates, delayed project milestones, prema-
ture deadlines and most probably to the ultimate cancellation of the project.

Furthermore, huge amounts of overtime work lead to fatigue, burnout, stress,
and its associated follow-up consequences (not only for the team members but
also for their families), and this creates more (un)avoidable time delays. In turn,
this leads to even more time pressure and higher defect rates. Overall, undocu-
mented (as well as unpaid) overtime work boycotts the benefit of productivity
metrics and indirectly negates the benefits of quality metrics.

To use all resources of an organization with full capacity is a short-term stra-
tegy that hinders an organization to be able to manage the long-term aspects of its
business processes. It can be a formula for failure.

3.1.5 The Definition of the Application Boundary

The boundary of an application determines what is to be sized within the
scope of a software application, and as a benefit delivers the context diagram
for software interfaces as a byproduct. Together with the actual available
objectives and prerequisites, and the assumptions for the project, this boundary

3 Prerequisites for Estimation

71

must be precisely documented. The application boundary is determined based
on the user view and not from a technological focus (see Fig. 3.1).

For enhancement projects, the application boundary must be determined in
accordance with the application already installed. If the boundary cannot be
exactly determined, it must be estimated. Decisions about where to place the
boundary can be assisted by answering the question of whether the data or pro-
cesses are maintained by the software being enhanceds. The definition of the ap-
plication boundary is a key component of the IFPUG Function Point Method,
as well as other ISO/IEC conformant FSM methods. An added side benefit of
identifying the application boundary is its potential reuse as an architecture dia-
gram of the software application in the organizational architecture atlas.

Fig. 3.1. Determination of the application boundary for the IFPUG function point method

3.1.6 The Type of Estimation

When measuring the functional size of software, a project, one has to distinguish
between new development projects and enhancement projects. For the ma-
jority of FSM methods, a “project” is considered to be the new development
or enhancement of one software application at a time. If a business project
consists of new development of one or more software applications plus the
enhancement of a further one or more software applications, then several sepa-
rate functional size measurements would be done.

The measurement of the functional size of software for new development
projects comprises the size of the functional area worked on (new construction)
and results in installed Function Points delivered to the end users at the end of

3.1 The Information Basis of Estimation

Application Boundary Other Application Boundary

User

Input
(EI)

Output
(EO)

Inquiry
(EQ)

Internal
File

External
File

EI

EO

EQ

72

the first release of the software. The project can also include migration (data
conversion) functionality. To calculate Scope Creep (also called requirements
creep), one can take the size of the developed software functionality compared
with the Function Point estimate of the size of the software at the start of the
project plus the size of any changes during the project. For example, if 1,000
FP was estimated as the software size at the onset of requirements, 1,050 FP
was delivered, and a further 50 FP was changed during the project, the scope
creep is 100 FP calculated as 1050 FP delivered - 1000 FP estimated + 50 FP
changed during the project. To have the correct number of base (application)
Function Points at hand, it is important to actualize the Function Point counts
during project progress and once the project is complete.

The measurement of enhancement projects considers changes on existing
software by adding, changing, or deleting of Function Points including migra-
tion functionality (data conversions).

Note that many developers will consider enhancement projects that contain
only added functionality as new development projects. It is important to remember
that a new development project in the context of (in particular, IFPUG) Func-
tion Points results in a new software application. Thereafter, any project that
alters (i.e., add, removes, or changes) the functionality of the software is consi-
dered in the same context of Function Points to be an enhancement project.

After measuring the size of the software enhancement, the size of the base
system must be updated to reflect the modified functional area of the enhan-
cement project. The size of an installed application, also called the baseline or
application FP changes with each enhancement due to added, changed, and dele-
ted functionality. On completion of each enhancement, the base FP count must
be adjusted.

3.1.7 Customizing of Standard Software (Packages)

ware (e.g., ERP – Enterprise Resource Planning – systems, such as Peoplesoft,

the legacy application is usually a part of each application, and is counted as an

3 Prerequisites for Estimation

existing legacy applications must be programmed. Typically, these projects de-

enhancement to each of the base applications. This means that there will be

Projects for customizing of standard COTS (commercial off the shelf) soft-

multiple FP counts for a project that includes installation of the COTS software

liver software functionality for which the Function Points can be counted.

SAP, etc.) are enhancement projects of a special kind. Clearly, the interfaces to

The new or changed interface functionality between the COTS package and

73

Here, a problem may arise since, due to their extraordinary size and function-
ality, the standard COTS software packages are usually not counted. Their huge
size typically would require a fairly large effort to count all of their functionality
when, in fact, organizations often use only part of the functionality or more
likely, some of the provided functionality is customized to meet specific user
needs. As a result, many organizations cannot justify the additional effort that
may be required to find out what functionality is actually relevant to count.

The only solution that can be recommended for these problems is to take
these counts of customizations into a separate class of estimations, counting only
the functionality for the customization. It is important to note in these situ-
ations that the results will not be comparable to other enhancement projects that
involve non-packaged solutions.

Morris lists the following essential variations that are relevant to estimation
of IT projects where customizing of packaged software is involved:

1. Implementation: Parts of standard (packaged, COTS) software that can
be used without change.

2. Customizing: Parts of standard software that must be changed for the
installation.

3. Conversion: Parts of existing applications must be altered or changed to
meet the requirements of the standard software.

4. Enhancement: New functionality must be programmed in addition to
installation of the standard software.

5. Interfaces: New functionality must be programmed into the standard
software in order to secure the interfaces to existing applications.

6. Release: Functionality to be developed in further releases.

Function Points can be counted for all these variations. Typically, there is a
large number of External Interface Files (EIF) in these cases, which indicate a
strong coupling of the standard packaged software with existing applications.
Often this indicates a negative influence on the productivity of the IT project.
However, when estimating the effort for every other variation mentioned ear-
lier, special metrics and productivity rates must be applied based on historical
data of similar projects using that variation.

Coding is generally only a small part of a customization project, and the esti-
mation must consider that there will be additional effort drivers. Note that this
is only the second step since the rest of the project must be estimated with other
methods. Estimation tools may be beneficial here because they can consider
and apply many other factors that influence productivity.

3.1 The Information Basis of Estimation

plus new/changed interfaces from the legacy applications to which the COTS
software must send or receive data.

74

Table 3.6. Standard software implementations

N Max. Mean Std. Dev.
Number of implemented modules 39 7 3.82 1.48
Number of users of the ERP solution 39 1,500 217.46 364.23
Modifications (expressed in SLOC) 39 5,000 227.95 841.70
Number of interfaces 39 100 12.10 20.39
Number of local offices 39 62 4.26 9.98

Table 3.7. Standard packaged software implementation effort and duration

Note: At the time of the survey, 1
(Euro) € = 1.20 US$

N Mean Max. Std. Dev.

Duration in weeks 39 43.05 156.00 29.45
Total effort in person years 39 4.77 87.21 17.85
Total costs of implementation (€) 39 1,477,191.39 14,534,566.83 2,717,536.03
Costs of software (€) 39 360,985.42 5,813,826.73 977,172.01
Costs of necessary hardware (€) 39 267,121.14 4,360,370.05 743,279.43
Costs of consultants for imple-
mentation (€)

39 518,547.17 5,813,826.73 996,686.46

Experience shows that estimating projects involving package customization
where custom software is written to integrate the standard software is mostly
performed bottom–up. For these projects, we recommend the development of
estimation checklists.

Stefan Koch from the Wirtschaftsuniversität Wien in Austria presented at the
MetriKon 2005 conference the results of a survey of 39 Austrian organizations

cial businesses. Almost two-thirds of the companies surveyed reported using
SAP (61.5%) or BaaN (23.1%), followed by Oracle, Xal, and Navision with
about 7% each. Table 3.6 shows the descriptive statistics of Koch’s survey.

The more interesting results of the survey pertain to the analysis of the imple-
mentation effort and duration as displayed in Table 3.7. Remarkably, only three
organizations performed the implementation without the aid of consultants.

3.1.8 Documentation of the Development Environment

Variations in productivity can be evaluated to compare the estimation results of
different development projects. Note that as a prerequisite to comparing esti-
mates it is necessary to document the environmental and situational condi-
tions under which the IT project is developed. We recommend that the following
details be documented at a minimum:

Milestone and objective of the estimation, e.g., milstone = requirements com-
pletion; objective = estimate effort to complete (install) the software.

3 Prerequisites for Estimation

implemented standard software and were mostly from production and commer-
(mostly small or medium sized, and a few large ones). These organizations had

75

Novelty of project, and any constraints, e.g., first usage of a new develop-
ment environment. (The estimate would likely include additional effort to

Type of estimate, e.g., postimplementation confirmation of the size and com-
plexity of a new software application (after implementation).
Definition of the boundaries of the application (for functional size mea-
surement).
The type of the software to be developed, e.g., online data entry system or
data warehouse system.
The programming language(s) to be used.
The operating system(s) on which the software will be used.
Skill levels or expertise of the development team with the environment
(software, hardware, subject matter, etc). This can be reported in number of
months or alternatively in a nominal scale such as beginner, expert, mix.
Degree of participation of end users, e.g., number of persons from the user
community who fully participated in the project.
Project organization, e.g., centralized, decentralized, and geographically dis-
persed.
Tools and techniques used, e.g., object-oriented programming, CASE (Com-
puter Aided Software Engineering) tools, and code inspections done by quality
assurance teams.
Classification of comparable historical figures, e.g., description of any sample
set from ISBSG or other database used for productivity rates.
Nonstandard development tasks that were required, e.g., one-off efforts
for data migrations or data conversions, or externally sourced development
support.

Together, this documentation aims to describe the development environ-
ment used in the organization as precisely as possible.

For IT projects that do not use the general development standards (methods,
regulations, tools, development environment), additions or reductions of effort
must be applied during the estimating process to account for such differences
and arrive at an appropriately adjusted estimate. Such modifications are usually
determined by the estimator(s), and his/her assumptions must be justified and
documented in order to create an effective historical record.

Usually, an estimate is done at the end of the requirements phase as part of
the project. It is recommended that this be done in an estimation conference
where the influencing factors can be discussed and classified by members of the
project team. In practice, we have experienced that spreadsheets or other counting
tools were valuable to document measurements of size and effort estimates.

When performing project estimates, do not forget to include effort for pro-
ject management, and quality assurance efforts, as well as realistic allowances

3.1 The Information Basis of Estimation

compensate for the team’s learning curve).

76

for uncertainty, risks, and requirements scope creep. The result should then be
presented as a range of estimates addressing both worst-case and best-case
scenarios.

3.1.9 Validation of Estimates

To evaluate the long-term trends about projects and their activities, all experi-
ences about estimates must be documented and available to be used for future,
similar project estimates.

To capture these experience factors, it has to be decided ahead of time that
the actual data will be collected and measured according to the plans. Initi-
ally, when an organization is getting started with its first project estimate, one can
only rely on one’s own practical experience. However, once a number of com-
pleted projects have their experience information collected and documented,
future estimates can learn from and be improved by the historical data.

Some companies have implemented a formal competence center that collects
the project data (documentation and estimates as described previously) to cre-
ate an experience database. When there is a need for a future estimate (feed
forward) this database allows the systematic retrieval of data of relevant his-
torical estimates.

Function Point counts and their associated estimates should be checked and
calibrated for validity after documentation. Estimates done using an estimation
tool such as Checkpoint/KnowledgePLAN®, ExperiencePro®, or others, should
be checked at least once after performing the first estimate. This is because all
tools assume a standard set of development environment conditions. If the
resultant estimate is too low or too high due to specific environmental condi-
tions, the tool will continue to underestimate or overestimate future projects
unless the organization calibrates the results to its own environment. If estima-
tion is done manually or without a tool, the evaluated parameters involved in
the estimate should be documented.

Thereafter, counts and estimates should be quality assured by a third person
(ideally from the competence center). Only then can the counts/estimates be
considered as valid and qualified as sound counts/estimations. For this quality
assurance activity, a checklist (see appendix) can be used.

3.2 The Process of Estimation

The principal process of estimation is shown in Fig. 3.2.

For the purpose of control and transparency of estimation, the following in-
formation is a prerequisite to the preparation. of an estimate.

3 Prerequisites for Estimation

77

Fig. 3.2. The process of estimation

3.2.1. Distribution of Estimated Effort Across Project Phases

Using an Excel spreadsheet, the distribution of the estimated effort of various
project phases can be calculated using the Percentage Method. A corporate
solution, e.g., would ask for following inputs:

1. Effort as estimated
2. Effort for interfaces (e.g., computing center, other projects) estimated

individually, or by an estimation tool
3. Project team size for each phase
4. Project team size of end users and specialists for each phase
5. Figure 3.3 shows an example of such a standard. In the first column,

the estimated effort for development and users (effort 1) is broken down
into the three partial efforts for IT department, user, and IT Organization.
After input of the effort for interfaces, the overall project-related effort
will be calculated and the appropriate Project Class will be determined
depending on the overall effort as described later (Project Class C in this
case). The effort is shown in person hours (PH), person days (PD), and
person months (PM).

3.2 The Process of Estimation

Preparation of Estimation

Establish System Border

Measure Size

Estimate Effort

Calculate Add On‘s

Estimation
Conference
Experience
Database

Risk,
Requirements

Creep

Distribute Effort to Phases

Check and Document
Estimation

Actualize Estimation
 Regularly

Size

Estimation
Documents

System
Diagram

Effort

Planned Effort

Project Plan

Estimation
Expertise

Experience
Database

78

Fig. 3.3. Effort distribution estimates for a project before and after interface work is included

The explanation of terms is as follows (for this particular example organization):
IT Department: Effort as estimated by the estimation tool for the size of the
software to be developed. This effort comprises effort for development of
the application that will be required to be performed by the project team: it
includes effort of users and specialists, but excludes the effort for interfaces.
User effort required by user departments, separate from IT Department’s effort
in Fig. 3.3.
IT Organization: Effort to be performed by other departments, specialists,
project management, quality assurance, and consultancy (not already inclu-
ded in the two categories in Fig. 3.3).
Effort 1: Effort accomplished by the IT team (consisting of people from all
three groups in Fig. 3.3), comprising all requirements and design tasks, pro-
gramming and testing-related tasks, as well as effort for project management
and quality assurance.

that have to change their systems or processes for the integration of the new
project.
Effort according to Project Class: The Project Class relevant effort is the
sum of effort accomplished by the IT team plus the effort for interfaces. It
determines the Project Class that is used for planning the organizational
structure of the project.
Effort 2: This is the sum of Effort 1 and Interface effort.

Figure 3.4 is used to determine the phase relevant effort for the IT staff and
users. The project duration is computed by dividing the phase effort by the team
size for the phase. The percentages shown in both tables were determined by the
competence center in an actual large organization, which also documented and
maintained project data in a central experience repository.

3 Prerequisites for Estimation

Interfaces: Effort for interfaces required in other applications or departments

Effort Distribution

PH PD PM

IT-Department 55.75% 85.98% 51.10% 9,812 1,226.5 61.3

User 29.25% 26.81% 5,148 643.5 32.2

IT-Organization 15.00% 13.75% 2,640 330.0 16.5

Effort 1 100.00% 91.67% 17,600 2,200.0 110.0

Interfaces 14.02% 8.33% 1,600 200.0 10.0

Effort according to Proj.Class 100.00% 11,412 142.5 71.35

Effort 2 100.00% 19,200 2,400.0 120.0

Project Class C

79

It is important to mention the work of Ross Jeffrey who states that the work
effort to develop software grows linearly up to a project size of 10 person
years (about 125–300 FPs) and exponentially thereafter.

A comparison of the ISBSG surveys from 1997 and 2002 shows that the
percentage of effort in the planning phase for IT projects appears to have dec-
reased from 10% to 5%, and that the percentage of effort for installation has
decreased from more than 50% to 5%. Correspondingly, the percentage of
effort for programming increased from less than 10% to more than 10%. David
Dery and Alain Abran presented at the IWSM 2005 (International Workshop
on Software Measurement) their research of the ISBSG benchmarking data
base (release 9, 2005), indicating that only 350 of the 2,562 projects had effort
recorded for all 5 phases (PSBTI: planning, specification, build, test, implemen-
tation) while only 41 of these had detailed and credible data. Table 3.8 shows the
distribution of effort across the five phases that can also be used to allocate
phase effort using the Percentage Method.

The distribution of the estimated total effort across the project phases and to
the teams involved is a necessary prerequisite for sound resource planning. In
addition, information about costs, effort, schedule, and staff is needed.

Table 3.8. Effort by project phase distribution in ISBSG release 9, 2005

Number of Projects: Phase Percentage
 P S B T I
41 with credible data 9.1 24.7 39.1 19.7 7.3
34 with high effort in S 0.1 98.5 0.7 0.5 0.2
62 without outliers and unusual patterns
and only effort in phases PSBT

 11.2 18.3 34.6 35.9 0

3 with only effort in phases SBTI 0 27.6 49.0 15.3 8.1

3.2 The Process of Estimation

Fig. 3.4. Phase relevant effort

Phase
Percent.
Phase

Effort
(PM)

Percent.
Phase FTE

Effort
(PM)

Duration
(Month)

Percent.
Phase FTE

Effort
(PM)

Duration
(Month)

Duration
(Month)

Req.
Anal. 24.0% 26.40 11.00% 5 12.10 3.23 10.50% 7 11.55 2.20 3.67

Design 21.5% 23.65 15.05% 6 16.56 3.68 3.05% 5 3.36 0.89 3.68

Coding 25.5% 28.05 19.50% 7 21.45 4.09 3.30% 3 3.63 1.61 4.09

Test 14.5% 15.95 6.80% 4 7.48 2.49 5.70% 2 6.27 4.18 4.18

Integr.
Test 14.5% 15.95 3.40% 3 3.74 1.66 6.70% 3 7.37 3.28 3.28

Sum 100.0% 100.00 55.75% 25 61.33 15.15 29.25% 20 32.18 12.16 18.89

Project IT-Core Project User

80

3.2.2 The Documentation of Project Estimates

In order not to lose the estimating experiences for IT projects, it is critical to
collect, interpret, and administer the data centrally. Without a central experi-
ence repository, it becomes difficult, if not impossible, to maintain the necessary
volume and diversity of documentation required to consistently estimate future
IT projects. These tasks are ideally performed by a competence center and can be
greatly assisted by text processing and graphics software.

The following documents are necessary for a complete documentation of an
IT project and its estimates:

Estimation Log (text software)
This log contains the names of persons performing the estimate, dates
and milestones of each estimate, references to existing information, docu-
ments, agreements, assumptions, special requirements, constraints, etc.

Software Boundary Diagram (graphics software)
Architectural diagrams of the object of estimation (IT software) inclu-
ding files, logical data model, interfaces, processes (dialog steps and
screens), batch processes, object models, etc.

Reports of functional size measurement details (Function Point counts) and
estimates from estimating tools

Containing information about functional size, input and output data,
screens, reports, objects, classes, processes, etc.

Copies of documents from the IT project
Necessary prerequisites for the count and/or estimation, e.g., dialogue
structure, layouts of screens, reports, html pages, etc. (may be kept
online)

Results from estimation tools
Containing productivity metrics and quality metrics, proposals for
planning, and diverse scenarios of an estimation.

Such an approach is beneficial in order to gain access to all information
when analyzing the estimates done for an IT project. For an inter-project view,
this approach provides the advantage that one can see how similar IT projects
were classified, and what were the assumptions and the values of some of the
soft parameters of estimation.

To get started, one can manually collect and maintain the assessments of all
parameters of the first estimates using an Excel spreadsheet. Estimation tools
like, e.g., Checkpoint/KnowledgePLAN® administer in excess of 220 parame-
ters when performing an estimate. Such sophisticated estimating tools as this
demonstrates that soon, after about five projects, this task can no longer be done
manually.

3 Prerequisites for Estimation

81

An example of advantages of professional documentation of estimates (for
advanced readers) is the fact that it can be used to automatically transfer data
into existing tools, for example, KnowledgePLAN® or Experience
ware. To automate this process, an Excel visual basic application can be devel-
oped to import existing data that may already be administered in the tool.

This can be done by using the portfolio concept of Checkpoint/ Knowledge-
PLAN. A new portfolio with the IT projects to be compared will be created and
exported to Excel. This export is not very readable – as usual in such cases.
Using macros the data have to be automatically adjusted and formatted. Import-
ing the data to Excel allows using all visualizing features of Excel. Important
data can thus be shown in diagrams, e.g.

Size of application/project (Function Points, or in some cases, SLOC)
Effort (hours or person months)
Productivity (Function Points per person month or per hour, see following
Fig. 3.5)
Quality (corrected and delivered defects)
Risk evaluation
Soft parameters (team, technology, process, environment).
Note: As profiled in the ISBSG publication, Practical Project Estimation: there

are multiple ways to evaluate these parameters. Three such ways include: the
Finnish Software Measurement Association (www.fisma.fi) and its ND21 (New
Development 21 factors), the IFPUG Value Adjustment Factor (VAF), and the
COCOMO II factors (http://sunset.usc.edu/csse/tools/index. html)

Within minutes, a presentable interproject documentation can be obtained from
the documented data.

Fig. 3.5. Comparison of productivity of eight IT projects

3.2 The Process of Estimation

Delivered FP/Development Effort (FP/PM)

® Pro soft-

6.70 6.27

19.45

39.98

3.97 3.73
8.04

3.51

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00

Xmp1 Xmp2 Xmp3 Xmp4 Xmp5 Xmp6 Xmp7 Xmp8

82

3.3 Management Summary

Estimation must be performed in a professional manner.
Estimating without history is simply an opinion!
To perform solid estimation, one necessarily needs information about the

object of estimation (e.g., WHAT requirements the software product must
deliver). Without such information, estimation is only a modified type of Las
Vegas-style gambling.

Estimations should be prepared!
An estimate can only be carried out when at least a minimum of project

requirements are known. The clearer the objectives for the software product,
the more precise the results will be.

The estimate must be done by persons with sufficient knowledge about the
requirements under consideration.

When estimating the project requirements at an early (preliminary estimate)
stage, the estimate should not be broken down into too much detail since the
overall application/project requirements should be in the focus.

When using the Function Point Method the object of estimation has to be
seen from the view of the users (as outlined in the previous point), and not the
view of the IT staff. This is the most important rule: functional size measurement
emphasizes the functional USER requirements, and this point cannot be stressed
enough.

Before carrying out an estimation, it must be agreed and defined what is the
effort to be estimated and how it will be measured.

A standardized measurable unit for the effort must be defined in order to
compare the development project effort to that of other IT projects.

is of central importance.
The choice of a suited variation and unit is not without problems: the safest

is the usage of person hours, since this is the smallest unit that can be docu-
mented and there does not exist any conversion difference.

Effort figures must also supply the units of measure and associated assump-
tions according to a particular time accounting model – otherwise the effort
numbers are useless.

To use all resources of an organization with full capacity is a short-term
strategy that hinders an organization to be able to manage the long-term aspects
of its business processes. It is a formula for failure.

3 Prerequisites for Estimation

The definition of this base unit of effort, in terms of hours – the time accounting –

83

The boundary of an application determines what is to be counted, and as a
benefit delivers the context diagram for software interfaces as a byproduct.
Together with the actual available objectives and prerequisites, and the assump-
tions for the project, this boundary must be precisely documented.

The application boundary is determined based on the user view and not from
a technological focus.

For enhancement projects, the application boundary must be determined in
accordance with the application already installed.

The definition of the application boundary is a key component of the Func-
tion Point Method.

An added side benefit of identifying the application boundary is its potential
reuse as an architecture diagram of the software application in the organizational
architecture atlas.

When measuring a project’s size, one has to distinguish between new deve-
lopment projects and enhancement projects.

The measurement of enhancement projects considers changes on existing
software by adding, changing, or deleting of Function Points including migra-
tion functionality (data conversions).

Projects for customizing of standard COTS software (e.g., ERP systems, such
as Peoplesoft, SAP, etc.) are enhancement projects of a special kind. Clearly,
the interfaces to existing legacy applications must be programmed. Typically,
these projects deliver software functionality for which the Function Points can
be counted. The new or changed interface functionality between the COTS
package and the legacy application is usually a part of each application, and is
counted as an enhancement to each of the base applications.

As a prerequisite to comparing estimates it is necessary to document the envi-
ronmental and situational conditions under which the IT project is developed.

Together, this documentation aims to describe the development environment
used in the organization as precisely as possible.

When performing project estimates, do not forget to include effort for project
management, and quality assurance efforts, as well as realistic allowances for
uncertainty, risks, and requirements scope creep. The result should then be
presented as a range of estimates addressing both worst-case and best-case
scenarios.

To capture these experience factors, it has to be decided ahead of time that
the actual data will be collected and measured according to the plans.

Some companies have implemented a formal competence center that collects
the project data (documentation and estimates as described previously) to create
an experience database.

3.3 Management Summary

84

Function Point counts and their associated estimates should be checked and
calibrated for validity after documentation.

Thereafter, counts and estimates should be quality assured by a third person
(ideally from the competence center). Only then can the counts/estimates be
considered as valid and qualified as sound counts/estimations.

Using an Excel spreadsheet, the distribution of the estimated effort of various
project phases can be calculated using the Percentage Method.

It is important to mention the work of Ross Jeffrey who states that the work
effort to develop software grows linearly up to a project size of 10 person
years (about 125–300 FPs) and exponentially thereafter.

In order not to lose the estimating experiences for IT projects, it is critical
to collect, interpret, and administer the data centrally.

3 Prerequisites for Estimation

4 The Implementation of Estimation

The implementation of estimation is an innovative project and as such, it must
be planned and performed with as much rigor as any other formal IT project.
The estimation process is the foundation for successful communication as well
as for monitoring and improvement of the project management processes. As
in all innovative projects, it is important to take notice of and plan for accep-
tance issues, that is, for resistance to occur.

In Europe, we speak of the “king’s road,” which is the means to accomplish
the best outcomes. This means that the road to gain acceptance in any innova-
tive or new endeavor consists of information, training, and participation of all
involved persons. In addition, there is need for time to pass in order to foster
awareness for the innovations. If this cornerstone is omitted during the imple-
mentation of an IT metrics program, then it has a good chance, as proven by
80% of all IT metrics initiatives (Dekkers 1999), to be abandoned early and
without success. An IT metrics program is a strategic project and should be
viewed as such. Otherwise, if the project is perceived as extra overhead, its
chances of success are minimized.

A roadmap for successful implementation is illustrated in Fig. 4.1. Esti-
mation should consider the following stations (see Fig. 4.1).

1. Building the foundation: This is where the Goal, Question, Metric model
of Basili, and later Van Solingen and Berghout fits. We have adapted the
method here in our roadmap:
(a) Goals: First define the goals for estimation and propagate them. Define

a standard process. Be informed and gain a market overview. Search
for projects with which to start the metrics initiative. The best ones
to start with are typically the strategic projects with at least 3 months
duration and more than one person-year of effort, so that the imple-
mentation of estimation can show the benefits. The American author
of this book asserts that the Goals of the estimation process must be
“SMART,” which is an acronym that stands for the following:

Strategic (that is, the goal must be important to the organization)
Measurable (that is, the goal must be to measurably improve esti-
mation)
Actionable (that is, the goal must be something that the project
team can act on)

86

Realistic (that is, the goal to improve estimating must be seen as
something achievable)
Time-bounded (that is, there must be a definitive time frame in
which to achieve the goal).

(b) Question: To achieve a goal (such as, for example, increase the accu-
racy of project estimates by 15% until 31st December), we need to
ask a minimum of three questions:
1. How good is our estimating currently?
2. How good is our estimating when we implement the estimation

process?
3. Are we achieving the goal? (And why or why not?)

(c) Metrics: To answer the questions to meet the goals of estimation, there
needs to be measures in place as outlined previously to track our achi-
evements. Functional size measurement (or in some cases lines of
code) must be used to measure software size, effort units (and what is
included within them) must be consistent, and delivery rates must be
standardized.

2. Strategic planning: Foster the transition by training about estimation, which
assists in the creation of awareness and understanding, as well as to moti-
vate and increase the expertise of those who will be involved. This is very
helpful for knowledge transfer with other stakeholders and to eliminate the
fears of the people involved. Important considerations include:
(a) Stay on course: Manage resistance and document first experiences.

Check consistency by means of inspections. Note that resistance is the
natural response to change and if it does not manifest itself directly
to you, be assured that there is resistance to the change – it is simply
not being expressed overtly. It is better to watch for and address the
resistance during the early stages of implementing estimation rather
than have it fester and derail the entire process later on.

(b) Improve the processes by development of standards and IT metrics
knowledge transfer and comparison with others who have successfully
gained from estimation (e.g., ISBSG (International Software Bench-
marking Standards Group) or other corporations).

3. Implementation: This is accomplished by planning, budgeting, scheduling,
and resource coordination. To succeed, the project must have committed
resources dedicated to the development and implementation of the esti-
mating process.

4. Establish precedence.
(a) Define an appropriate structure, process, methods and tools to support

estimation.
(b) Establish the concept by beginning to apply the process on selected

IT projects.

4 The Implementation of Estimation

87

4.1 Report About a Successful Implementation

A successful implementation in a large insurance organization with approxi-

for managers and project leaders were given, an estimation manual was devel-
oped, and about 90 developers attended training sessions. As a result, at least
one person in each development team was trained in function point counting

tions was performed with tool-support and with assistance of the competence

counts and assisted the project leaders with assembling tool-based documenta-
tion. Because the IT projects were in various stages of completion when we
began the initiative, in some cases there already existed an estimate. In one
large project, a subsequent estimate was done after a year, and therefore, the
requirements creep could be measured.

Data analysis enabled the development of a function point prognosis for the
early estimation of Function Points, which became the basis for subsequent
estimates using only the number of inputs and outputs of new software. The

4.1 Report About a Successful Implementation

Get a commitment from IT- and User-Management

Set realistic estimation goals

Start Cost/Benefit-Analysis

Etablieren der Basis für ein
Messprogramm

Voraussetzungen für die
Methodologie und Infrastruktur der

Aufwandschätzung schaffen

Evaluate Tools

Select initial Projects and Teams

Develop Training Programs

Establish Measurement Program
Establish Estimating

Preconditions (Methodology and
Infrastructure)

Establish Estimating Culture

1. Create neccessary Basics

2. Develop your
Strategy

3. Implement

4. Establish

Get a commitment from IT- and User-Management

Set realistic estimation goals

Start Cost/Benefit-Analysis

Etablieren der Basis für ein
Messprogramm

Voraussetzungen für die
Methodologie und Infrastruktur der

Aufwandschätzung schaffen

Evaluate Tools

Select initial Projects and Teams

Develop Training Programs

Establish Measurement Program
Establish Estimating

Preconditions (Methodology and
Infrastructure)

Establish Estimating Culture

1. Create neccessary Basics

2. Develop your
Strategy

3. Implement

4. Establish

Fig. 4.1. A roadmap for successful implementation of estimation

AAnalyz e,, CCoonnttrrooll,, SSuuppppoorrtt

and estimation principles. The function point counting of all historic applica-

mately 500 IT developers was done over a 3 year period by two full-time persons
who worked as the competence center. During the implementation process,
an estimating method and tools were chosen, a number of presentations

center. The two person competence center team coached all function point

88

Function Points that are to be counted in the requirements phase can thus be
calculated with a regression formula in advance, with an error of 15% at the
time of the project start based on the data gathered from this large organization.
In addition, some Microsoft Excel based tools for estimation and data analysis
were developed by the competence center to assist the project leaders. There
also were four full project postmortem assessments, which were submitted to
the ISBSG benchmarking database.

One of the most valuable aspects of the implementation was the exchange of
experiences with the British branch of the organization (which was already
well underway with the implementation of its metrics program). Additionally,
a corporate membership in the national metrics organization saved time and
money, because this enabled access to expert advice and the experiences of
third parties who had already implemented estimation techniques. Knowledge
was gained from conferences and through personal contact with members of
the metrics organization.

Management support was the most important success factor for the imple-
mentation process. It consisted of several essential elements. From the begin-
ning, managers had the foresight that the implementation of a sound estimation
method would bring an immense benefit for the processes and quality of IT
project management. Additionally, for 3 years, two persons were dedicated
(one full time, the other part time) to gain the knowledge to build up a compe-
tence center. This competence center worked to ensure that the developers and
project leaders were involved in meetings and presentations, and this was an
important part of creating an estimation culture. After a 2-year break (when
the competence center had got another task: to install a new project manage-
ment tool with time accounting since the old tool had a Y2K collapse), another
two part-time employees joined the competence center to restart the slowed
down process.

Groups of developers were trained in function point analysis (FPA). The
three-day training for each group of developers was always done by (the same)
external consultants. Manpower bottlenecks in function point counting were
also alleviated with the aid of external consultants.

After 2 years, the goal of counting all historical applications was reached:
98 applications with a total of 150,000 Function Points were in the portfolio –
not including packaged software. A byproduct of counting the portfolio was
the recognition that the documentation of the Function Point counts in the
Function Point Workbench® repository software, enabled the organization to
quickly and easily find the Function Point counts for small maintenance tasks.
Thus, productivity metrics for applications (support rates), as well as for pro-
jects and maintenance tasks, could also be implemented. A metrics database and
a function point baseline were established and are still in frequent use today.

4 The Implementation of Estimation

89

The 98 applications could be ordered by size into six groups:
Three in the range between 9,000 and 10,000 Function Points
Three in the range of 6,000–7,000 Function Points
Six in the range of 4,000–6,000 Function Points
Fifteen in the range of 2,000–4,000 Function Points
Twelve in the range of 1,000–2,000 Function Points
The 59 remaining applications had a size of less than 1,000 Function Points.

During the first year after the establishment of the baseline the following
increases in productivity were measured:

Projects (Costs >400,000 US-$): 8.3%
Enhancements (Costs <400,000 US-$): 4.1%
Corrections (Enhancements without change of Function Points): 3.1%.

The publication of such positive key experiences can help to foster the accep-
tance of metrics programs in organizations. But these figures are very impre-
cise, since the baseline at the beginning of such initiatives can be inconsistent
due to the novelty of both the measurements and the data collection processes.
With the results obtained, 55% of the baseline applications were used to calcu-
late the productivity of enhancements and corrections. For the productivity
measurement of projects in the baseline 11 projects were included in the cal-
culations, and in the following year there were 17 projects included. The pro-
ductivity of enhancement projects was measured considering a sample size of
10% of all enhancements.

The implementation breakthrough came with the final function point count-
ing of all applications. The achievement of this goal was connected with 20%
of the annual bonus of the managers of each development department. This led
to a huge number of questions from project managers. Experiences in the Brit-
ish organization were similar. They were able to increase the productivity of
application development in 1 year from 11 to 13 function points per person-
month because their goal was also connected with the financial bonus of the
project managers.

Continuous questions from management increased the awareness of man-
agers and project managers for estimation. They realized that function point
counting and estimation were more and more integrated in the project life cycle,
and the process of counting was no longer neglected or viewed as overhead. The
competence center accompanied the whole implementation process with many
presentations, discussions, reports, and work on routine tasks.

In the estimation tool, along with the function point counts, there were also
32 project estimates:

Twelve were new development projects (three host, nine PC)
Twenty were enhancements (15 host, 1 PC, 4 Client/Server)

4.1 Report About a Successful Implementation

Ten were project postmortems (final estimate).

90

Within 2 further years there were 45 projects in the estimation tool:

Seventeen new development projects (4 host, 13 PC)
Twenty-six enhancements (21 host, 4 Client/Server, 1 PC)
Two maintenance (both host, 715 and 335 Function Points).

There are only a few technical challenges associated with the successful
implementation of software measurement, but there are many psychological
challenges. The following pages introduce an empirical survey of positive and
negative aspects of measurement.

4.2 Positive and Negative Aspects of Software Measurement

Hall et al. show an interesting empirical survey of 13 groups of developers, 12
groups of project managers, and 4 groups of senior managers in 11 associa-
tions conducted between October 1999 and March 2000. Her team interviewed
the groups and collected both positive and negative opinions relating to the use
of IT metrics. Their joint result is that the majority of the positive aspects benefit
the project managers more than the developers, as manifested by the declaration
of one developer: “if any of us came up with a workable approach to metrics we
would become very rich.”

Table 4.1 shows that the overwhelmingly positive perception of measure-
ment cited by developer groups was that measurement data allows progress to
be tracked (69%) and that it improves planning and estimation (38%).

Project managers and senior managers have a more positive view of IT
metrics as depicted in Table 4.2. Project managers favor the use of IT metrics
for estimation purposes (P1, P2, P5) and for the identification of specific prob-
lems (P3).

Three negative aspects of software measurement were mentioned by 38%
of the developers:

Developers are often not informed/do not know if and how the measured
data are used.
There is no feedback about the measured data.
Data collection is time consuming for the developers (which was also con-
firmed by 67% of the project managers). It is interesting that this insight did
not lead to the requirement for automatic measurement.

Tables 4.3 and 4.4 demonstrate that 23% of the developers disliked the extra
effort for data collection and the rather scarce presentation of the results. About
60% of the project managers said that they had difficulties in identifying and
knowing whether they were collecting and reporting the right data.

4 The Implementation of Estimation

91

Table 4.1. Perceived general positive aspects of software measurement as reported by Hall et al.

Percentage of responses by group Benefits of software measurement
Developers Project

managers
Senior

managers
P1 Know whether the right things are being

done
23 25 50

P2 Finding out what is good and what is bad 23 58 50
P3 Identify problems 8 42 25
P4 Support/improve planning and estimating 38 25 25
P5 Track progress 69 58 50
P6 Makes what you are saying more

substantial
15 8 50

P7 Provides feedback to people 8 25 25

Percentage of responses by group Favorite aspects of software measurement
Developers Project

managers
Senior

managers
B1 Can target effort into things (that are) not

doing so well
 8 8 25

B2 A check that what you are doing is right 15 17 50
B3 People can not argue 8 25 0
B4 The confidence they give 8 17 50

Percentage of responses by group General negative aspects of software
measurement Developers Project

managers
Senior
managers

N1 Hard to measure what you want to
measure

15 25 0

N2 Do not know how or if the data is being
used

38 8 0

N3 No feedback from the data 38 8 0
N4 Detracts from the main engineering job 8 8 50
N5 Difficult to collect, analyze and use the

right measures
23 58 50

N6 Time consuming to collect the data 38 67 25
N7 They must be used fort the right reason 15 33 50
N8 There must be integrity in the data 15 17 25
N9 They can be used against people 0 0 25

A quarter of the developers also added that software measures do not always
measure what you want them to measure.

Senior mangers, unsurprisingly, had different views about software metrics.
Their negative perceptions centered primarily on the following (see Table 4.3):

4.2 Positive and Negative Aspects of Software Measurement

Table 4.2. Favorite aspects of software measurement as reported by Hall et al.

 et al.
Table 4.3. Perceived general negative aspects of software measurement as reported by Hall

92

Data collection detracts from the main engineering job.
It is difficult to collect, analyze, and use the right measures.

As we have stated before, software measurement must be used for the right
reason and goals must be aligned with the initiative.

A quarter of the senior management commented that measurement is time
consuming and that it is important not to use the data against people. It is
interesting that none of the other two groups identified these negative issues in
the study. We can speculate on a variety of reasons for this: Perhaps the deve-
lopers and project managers involved in the survey had not experienced mea-
surement being used in this way and so it did not occur to them as a problem,
or they did not perceive data being used in this way as problematic. In the
American author’s consulting experience, developers often express outward
resistance to software metrics based on the fear that management may punish
the messengers if the resultant data are not favorable. The psychology of meas-
urement and its impact on those involved is an important aspect of software
metrics implementation.

Hall’s research further reported that the least favorite rated aspects of
software measurement included the following (see Table 4.4):

Percentage of groups Least favorite aspects of software
measurement Developers Project

managers
L1 Extra work 23 8 0
L2 Difficult to compare data across systems

or projects
0 25 0

L3 Can be misunderstood 15 8 25
L4 Not used enough 8 17 25
L5 Poorly presented data 23 17 50
L6 Data too abstract to use easily 15 17 0
L7 Poor quality data 15 25 0

Poorly presented data
Difficult to compare data across systems or projects
Poor quality data
Can be misunderstood
Not used enough.

Hall’s research can be summarized as follows:
All positive aspects fell into the following three categories:

Assessment (P1, P2, P3)

4 The Implementation of Estimation

Planning (P4, P5)
Decision support (P8)

Table 4.4. Least favorite aspects of software measurement as reported by Hall et al.

managers
Senior

93

All negative aspects fell into the following three categories:

Implementation (N2, N3, N7, N8)
Time and effort (N4, N6)
Measurement immanent difficulties (N1, N5).

When implementing a new estimating process in your own organization,
it is important to keep these issues in mind. Any of these issues can be dir-
ectly managed by doing forward planning before implementing software mea-
surement.

The following pages introduce answers to frequently asked questions about
estimation and discuss the benefits of a competence center.

4.3 Frequently Asked Questions

The following topics are asked regularly in connection with the implemen-
tation of estimation in an organization:

1. How much effort does it take to implement a formal estimation process?
2. When is the right time for implementation of estimation?
3. What are the pros and cons of a competence center?

4.3.1 The Effort for Estimation

The recommended method for implementing estimation is to use a pilot project
approach. The effort of this pilot project through to full scale implementation
in a large organization can be planned to be approximately 2 person years. The
process of gaining estimation knowledge, the integration of estimation into the
processes of the software development model of the organization until con-
sequent organization, and usage of IT metrics for continual improvement may
possibly consume about another 2 person years.

A general rule of thumb that we use (garnered from personal experiences
and published literature) is that the effort for estimation consumes about 0.5–
1% of the total IT budget. This means that for 100 developers there should be
at least a half FTE (Full Time Equivalent) budgeted for collection and analysis
of metrics for estimations. During the process of implementation of a metrics
program, the effort may well be as double as much – at least until estimation
becomes the way of doing business.

4.3 Frequently Asked Questions

94

Counter argument: Often, costs are cited as an argument against systematic
and sound estimation practices. Considering the cost of large projects often
being in the range of tens of million of USD or €, one can argue:

All effort that is necessary to implement and foster sound methods of software
estimation and measurement is quickly surpassed by the costs of a single failed
IT project.

4.3.2 The Right Time to Implement a Formal Estimation Process

The right time for implementation depends mainly on the state of the IT pro-
ject “chaos,” that is, if customers are complaining about late projects that are
overbudget and do not meet their needs, then the time is ripe for formal esti-
mation! However, if the situation is that customers do not care about late deliv-
ery (yes, this does happen!), and management is unconcerned about budget
amounts (we have seen this especially on internal projects), and basic proc-
esses are not in place for requirements gathering, then it is probably premature
to implement estimation processes. For example, it makes little sense for an
organization assessed at a CMMI® level 0 (initial) to implement formal esti-
mation when there are many other more urgent processes that need to be put
into place first.

The minimum requirement for successful implementation of estimation is
that there is a standardized software development life cycle (SDLC) and stan-
dardized work effort reporting. If every project does their own style of project
tracking (i.e., Overtime in/out, start, and stop points on the projects vary, dif-
ferent team definitions are in place, etc.) then project hours will be disparate
and uncomparable across projects. As such, benchmarking and estimating will
result in inconsistent results. Reliance on such inconsistencies under the guise
of real, accurate data will lead to the wrong decision making and the wrong
conclusions – definitely not the goals of a formal estimation process!

Once the prerequisite processes (requirements processes and work effort
tracking) are in place, then estimating is practically always chosen too late. A
good timing is when the established organizational processes for software
development are to be improved or when customers or management are con-
cerned about late or overbudget software delivery. Hence, one has the chance to
integrate the necessary tasks for estimation directly.

But the guiding principle has to be–start now if you have the prerequisites
in place! Follow the Goal/Question/Metric approach if you are in doubt about
what you can gain from formal estimating processes: if your goals are to get
the requirements right or at least document them in the first place, then you
know that you have got work to do before you can look at formal estimating.

4 The Implementation of Estimation

95

This guarantees that the quality of software development is safeguarded and
the teams involved do not waste their time pursuing goals that are unattainable
(think of a CMMI® level 0 company trying to achieve a level 3 rating in 6
months. This is similar to a second grade student who is learning to read
attempting to write a master’s dissertation by the end of the school year). Esti-
mation is a nontrivial process and it makes sense to ensure a good chance of
success before one gets started with implementation! However, once you have
established that this is a good time for estimation implementation and you have
the support of senior management, the collection of experience and the accord-
ing cybernetic learning circuit can be started anytime.

4.3.3 The Pros and Cons of a Competence Center

Practical experience bears out that it is useful to have a centralized source of
support, with qualified and competent personnel available to assist the organi-
zation with estimation. To gain the benefits of an estimating process, it is
important that the collected data be accurate, consistent, and reliable and the
best way to accomplish this is through a central competence center for a number
of reasons:

The processes of counting the software functional size, collecting the project
documentation, and recording other software project attributes in order to
do an estimate is nontrivial. As such, it makes sense to have a central place
where data can be verified and centrally stored.
The estimating process is not something that the project managers will per-
form on a daily basis, but rather at the time of milestone completion (as
specified by the process) or when major scope change occurs or is proposed.
This means that project managers will not perform the process frequently and
their knowledge cannot be expected to stay current and up-to-date without
support of a group for whom it is the core competency. The competence cen-
ter can hone their skills and stay current with functional size measurement
and the estimating processes because they perform the analysis and process
for the entire IT organization (this is similar to having a specialized group
of tax accountants in house – instead of having everyone practice tax
accounting once a year it is more feasible and reliable to have it performed
by a group for whom it is their specialization).
A competence center is the only guarantee for central collection, documen-
tation, and analysis of the gained estimation experience in order to learn the
most from it. The build-up of an experience or metrics data-base and the
development of standards for the improvement of the knowledge base with
tool support are necessary and important steps as outlined previously.

Such a competence center can support the dissemination of experiences
through continuous publication of results, experiences, reports from conferences,

4.3 Frequently Asked Questions

96

knowledge exchange with other organizations, and literature and new publica-
tions about estimation. This improves the communication about the estimation
process and fosters better acceptance since the people feel more informed and
involved than if there was no central source of information.

Some of the benefits of a competence center include the following:

A growing knowledge bank of experience in estimation: Experienced
experts are always available in the organization for all questions about esti-
mation. Often, certified function point counters (CFPS, certified function
point specialists) are among them.
Independent estimates: A competence center is independent of the projects
that are to be estimated, and therefore does not have a vested interest in over
or underestimating projects to protect their team.
 Collection of experiences: Historical data can be consistently collected in an
experience or metrics database and process improvements can be made based
on new knowledge from data analysis.

However, as with any new corporate decisions, there can also be reasons why
estimation should not be done by a competence center. While specialists for esti-
mation are a scarce resource and should concentrate on estimating work
instead of projects, project managers are in closer contact with the projects
themselves and can better gauge the expectations of the users.

Table 4.5. Function point coordinator role description.

Function point coordinator role description
Position in organization Decentralized. Reports to the IT department and interfaces

with the Competence Center and the estimation coordinator
Responsibility Planning, scheduling, and overseeing the FP counts for the

department; measurement of productivity baseline for
department

Coordination Planning and organization of application, project, and main-
tenance task FP counts

Quality assurance Planning and organization of quality assurance of the FP
counts by the department
Administration of the FP counts of his department: applica-
tions, projects, maintenance tasks

Tasks

Annual actualization of the application counts and the
associated Function Point repository files

Controlling Oversight of FP counts, the estimation tool, and productivity
metrics

Communication Communication with colleagues, managers, and the compe-
tence center

Necessary knowledge Function Point plus estimation tool knowledge
Necessary skills Ability to communicate well and understand the role of

project vs. metrics team members. Well versed in the FP
and estimating processes and coordination

4 The Implementation of Estimation

97

Table 4.6. Function point counter role description.
Function point counter role description
Position in organization Reports to IT department and Function Point Coordinator

works with project team members to perform FP counts of
software

Responsibility FP counting for his department: application, project and
maintenance task counts

Coordination Minimal. May need to coordinate with different application
specialists if multiple applications are involved for a project

Quality assurance Counts should comply with internal and external quality
standards as set by the competence center

Tasks FP counting and documentation in the Function Point
repository software

Controlling Peer review of counts done by other counters on an
as-required basis

Communication Communication with function point coordinator and other
FP counters

Necessary knowledge Two day Function Point course and estimating process
knowledge

Necessary skills FP counting and estimation tool proficiency

Table 4.7. Estimation coordinator role description.

Estimation coordinator role description
Position in organization Reports to IT department and coordinates with Function

Point Coordinator and competence center
Responsibility Planning and performing estimates for projects and mainte-

nance tasks (based on FP counts and project attributes pro-
vided by FP coordinator) and providing them to the project
managers and reporting them to the Competence Center

Coordination Planning, scheduling, and performance of estimates with FP
coordinator, project teams, and competence center

Quality assurance Planning and quality assurance for the estimates before
sending to project managers and the competence center

Tasks Administration and updates to estimates within the
department at project milestones and at specified intervals
for maintenance tasks

Controlling Controlling of the estimates and their distribution within the
department and controlling access to data within the estima-
tion tool

Communication Communication with colleagues, managers, and the compe-
tence center

Necessary knowledge Function Point overview course and in-depth estimation
course

Necessary skills Knowledge about the Function Point Counting process
(performed by FP counter) together with estimation process
and estimating tool proficiency

4.3 Frequently Asked Questions

98

This is the reason for a hybrid alternative, where qualified individuals would
work decentrally as the estimation coordinator of their department. These
co-ordinators are then responsible to coordinate and schedule the estimations
and function point counts within their department, to plan and elaborate the
necessary measures and indicators, and work with the central group to calculate
metrics. These estimation coordinators are thus the ideal partners for a small
competence center. This accomplished the best of both worlds where there
is core, centralized specialization in metrics, process and data consistency
together with decentralized estimating process knowledge spread throughout the
IT department.

Tables 4.5 through 4.7 show possible role descriptions for a Function Point
coordinator and a Function Point counter, as well as for an estimation coordinator.

4.4 Acceptance Challenges

As we have touched on previously, it is commonplace for the implementation
of new methods and processes to encounter acceptance problems. We again
refer to the king’s road analogy: This challenge can only be met with walking
down the three-lane king’s road to implementation of innovations: the three
lanes being provision of intensive (and consistent) information, qualified
training (at the right time), and enlisting the active participation of all involved
persons!

The implementation of estimation is the most difficult in organizations that
exceed 100 developers. As such, one encounters in large organizations the most
resistance from project leaders since the purported benefits and gains to be
made from estimating are mostly on the management side. Experience with the
large corporation to which we have repeatedly mentioned shows that even the
well-trained project staff performed FP counts without argument but only if
they were specifically assigned to do so. FP counting and estimating will not
be performed unless it is built into the project manager’s processes. Unless the
project leader has planned these tasks into the project plan, which is the most
critical point, it will be seen as overhead and conveniently (even if uncon-
sciously) forgotten!

4.4.1 Counter the Counterarguments

While this sounds like a circular reference, we are talking here about addressing
the resistance to estimating with solid information to the contrary. And it must
be factual information, not hype! A typical killer argument against formal
estimation is a “lack of time” (“we have to do more important things than to

4 The Implementation of Estimation

99

collect data or perform estimates” or “we must reach the deadline” or else!).
The way to address this concern is threefold.

1. In the authors’ experience, even for larger IT projects, a full-blown esti-
mate complete with a high level FP count of the software size can be done
in a matter of a couple of days. Medium and smaller projects can normally
be estimated within half a day or a day (with the aid of a competence
center). This is a small effort compared to the whole project size. Only for
large and extra-large IT projects (more than 100 person years) might this
effort be double or triple.

If you cannot estimate what is to be done, the question is how can you
do it at all? Normally, an IT project should have the necessary and current
information for measurement and estimation readily available. If this is
not the case see point 3. In any case compared to the overall project effort,
the effort for the estimation is negligible especially considering that close
to 40% (or more) of software development effort on a project is due to
rework. Perhaps if we spent more time figuring out exactly what it is the
project is intended to deliver (solid, countable requirements), we would
have less to do over! Estimation supports this goal!

If there is truly a lack of time, it has to be stated that there are (time)
problems in a very early stage of that project. Thus the project leader
should be asked if he should not stop the project before starting it, since
experience shows that time will become scarcer (not more prevalent) as
the project progresses.

2. It is a high risk not to quantify the project size especially because if one
does not know what is in the project (i.e., enough to quantify the require-
ments) then how can development proceed? In North America there is a
joke about a project manager saying to his team “You guys just start cod-
ing and I’ll go talk to the customer about their requirements.” This might
seem outlandish in light of the incredible millions (and billions) of dol-
lars spent on software development, yet it is too close for comfort to the
situation on many software projects today.

3. The effort for the measurement and estimation increases significantly
when the project team has to search for the necessary documentation or
they cannot find it since it does not exist. The discovery that a project is
deficient of basic requirements and database diagram documentation is
critical to know and this allows management the opportunity to increase
the quality of project documentation to an acceptable level. This is similar
to the statement (which is more common than not) that the “necessary
documentation is not up to date or is incomplete.” This illustrates that
measurement and estimation can have a quality assurance benefit as a
side effect.

The effort for fixing such deficits in project documentation is some-
times erroneously accounted for as being estimation effort. In reality, this

4.4 Acceptance Challenges

100

is an excuse – the effort is actually effort that should have been expended
in the first place but was a neglected documentation task. One might
actually consider this “extra” effort of upgrading the documentation to
the acceptable level as rework! However, the misguided notion that we
need to complete documentation (supposedly otherwise not needed)
again fosters the prejudice that estimation takes too much effort. Do not be
swayed by detractors who insist that this is the situation. Re-read these
three points so that you will have ready information to counter this ar-
gument!

Further obstacles for the dissemination of software measurement and estima-
tion are deficits in usability, relevance, end user efficiency, and the poor pres-
entation of IT metrics. Other obstacles are lack of discipline and the chaotic
nature of many IT organizations. As we discussed in the previous section, some-
times an organization is too immature from a process maturity standpoint (i.e.,
level 0 or level 1 on the CMMI® or SPICE maturity scales) to even consider
formal estimation processes. Once you have assessed the timing for estimation
and determined that the time is right, do not allow detractors to convince you
that you were incorrect. Enlist the aid of management to support you in the
implementation!

In many organizations the dissemination of estimation methods that are
used in one department fails in other departments (particularly in very large
geographically dispersed IT organizations) because of the “not invented here”
syndrome. This syndrome exists internationally and leads to the habit that no-
body is responsive to proven process improvements, or that valuable ideas are
ignored or repulsed in order to use politically correct, but less valuable, methods.

On the other hand, what also occurs is that the newest trends in software deve-
lopment are copied just because they are the “flavor of the week,” and they are
then propagated fast and furiously in blind adaptation. This is often found with
the newest and greatest (or so their marketing representatives assert) tools and
software. However, the existence of a realistic and positive effect on project
performance is not evaluated and as a result the promised benefits are never
fully realized.

It is amazing to realize that as humans we are quick to reject new and proven
ideas just because they might not have been invented here, yet we are quick to
embrace the unproven new project “toys” just so that we will be as “cool as
the other kids on the block.”

We have seen this in practice far too often, where the demand to deliver
software solutions faster and cheaper leads to a tendency to start with a “quick
and dirty” programming approach even before the requirements of the end users
are understood correctly. This again leads to lower software product quality and
increased rework.

4 The Implementation of Estimation

101

Acceptance problems can also be solved by experts in the domain who have
successfully been through the processes before (i.e., consultants). At the begin-
ning of the process implementation, their assistance is a conditio sine qua non
to start quickly and effectively with the right concept for estimation. One
caution to bear in mind here, however, is that problems can arise if the depen-
dence on consultants in the beginning is too great because the staff may feel
that management does not have enough confidence in them to implement the
processes themselves.

One positive aspect of consultants, however, is that management listens
more readily to consultants (gurus) than to their own people. This is a common
source of frustration for internal professionals (we used to say “here, you move
the consultant’s mouth and I’ll say the words” in jest when we encountered a
consultant who knew less than us). There is the additional danger that too much
knowledge will be lost to the organization if it is not properly transferred to
the employees before the consultants leave. Do not let this happen to your
organization – ensure that any consultants you bring in to assist with estimation
are “part” of the process not THE process. Shortcuts where consultants leave be-
fore knowledge is transferred mostly happen for time- and cost-saving reasons.
However, the cost of having knowledge walk out the door with your consultants
is far higher than paying them for the time to transfer the knowledge!

4.4.2 Resistance

An effect often overlooked in establishing project control is the impact on the
people involved. Software is developed by engineers, and not by machines,
yet we end up routinely treating developers (and project teams) like inanimate
objects. Although introducing metrics typically means a cultural change to all
involved parties, the focus is too often only on tools and definitions. If faults,
efficiency, or task completion are measured, it is not some abstract product
that is involved, it is the practitioners who know that they will be compared to
others. People at all levels are sufficiently intelligent and experienced to know
when the truth is being obscured.

Introducing measurement and analysis will change behavior, potentially in
dysfunctional ways. Knowing the benefits of metrics for better project man-
agement or for steering the course of improvement initiatives does not at all
imply that people will readily buy into the decision to participate in measure-
ment. In fact, using words such as “productivity” leads to the implication that
somehow people need to be measured. Clear explanation of the motivation–
from the beginning–to provide the whole picture is far better than superficial
statements about project benefits. State the goals emphatically, clearly, and
consistently. If the rationale behind better estimation is to ward off potential
outsourcing, say so! If you try to pretend it is not so using flaky or contrived

4.4 Acceptance Challenges

102

excuses for the new processes, morale will suffer and people will start to print
off their resumes in anticipation of the very outsourcing you denied.

The lack of acceptance of new things is a natural element of being human.
Rejecting the resistance or denying it exists can exacerbate the situation and
can lead to a general behavior of resistance (the money is out of another pocket!).
Resistance takes various forms, such as the following:

Passive resistance
Work (only) on order also known as work to rule
Active resistance
Giving notice to leave or threatening to do so
Outright rebellion (where the resistance becomes the focus of work rather
than performing the work itself)

Tom DeMarco distinguished seven kinds of resistant people:

1. Blind loyalists (they ask no questions)
2. Critical convinced
3. Skeptics (“prove it to me”)
4. Passive observers (“what’s in it for me?”)
5. Opponents (they fear change and how it will affect them and their jobs)
6. Enemies (they fear lack of power and a further erosion of the power they

currently perceive they have)
7. Militant enemies (they undermine and destroy your plans).
Hence it is recommended to collect a repertoire of behavioral arguments –

in addition to some slogans – that can readily help you to oppose resistance, as
shown in Table 4.8.

Table 4.8. Tackling the many forms of resistance.

Resistance
. . . is natural and unavoidable! Expect resistance!
. . . is often hidden! Find resistance!
. . . has many causes! Understand resistance!
. . . discusses the hesitations, not the arguments! Confront resistance!
. . . can be fought in many ways! Manage resistance!

It must be said explicitly that there is an immense interdependency between
motivation and acceptance. Therefore, a major success factor for the implemen-
tation of measurement and estimation is the construction (or realignment in
some cases) of a well planned motivation or reward system. It should have the
goal to positively influence the people for active cooperation and, last but not
least, to identify the individual processes or techniques. In some organizations
the existing reward system gives credit to dysfunctional behaviors (such as
when project managers hide project effort in order to “fake” an on-time delivery)

4 The Implementation of Estimation

103

continue to behave in the manner in which they receive the most reward, which
can severely undermine the estimation initiative!

The three most important columns of such a motivational system are infor-
mation, training, and participation, the so-called three lane king’s road for
introduction of innovations or new processes. This recommendation cannot be
stressed enough.

improvement and state that one of the targets is to improve efficiency in the
competitive environment. Make explicit what the results will be used for and
how they will be measured. When used for competition and benchmarking,

later on. For instance, if faults are counted for the first time over the life cycle,
establish a task force with representatives from different levels to investigate
results from the viewpoint of root cause analysis and criticality reduction.
Ensure that people are not punished for reporting true data! Remember that
data are the status quo of the current situation and the worse the current situa-
tion, the more opportunities for process improvement exist.

Management must be on-board to support a new or realigned reward system
that gives positive motivation (and rewards) to compliance with the new pro-
cesses rather than the old. Remember that people will generally follow the path
of least resistance. So if the cost of compliance with a new process is less than
the cost of non-compliance, you have a positive balance. Conversely, if it costs
more (in terms of time, energy, overtime, punishment, or lack of bonuses) to
change and comply with the new process than to simply stay doing the status
quo, then you will be fighting an uphill battle. In this situation, when manage-
ment questions why people are not following the new process, the response will
generally be it is too hard or takes too much time or gets in the way, and your
whole initiative can be derailed quickly. Make sure that people are encouraged
to adopt the new desired behavior through motivational incentives!

Educate your senior management. Uneducated or negligent managers tend
to use metrics recklessly. It is important to forewarn your management not to
make decisions from metrics without reasoning about their context. For exam-
ple, if there are many defects reported against a newly delivered software com-
ponent, negligent managers would errantly conclude that the designer does not
know his job. More often, however, the valid conclusion is that a specific piece
of software is error-prone because of high complexity, or because of instability
of legacy code, one area breaks when another area is fixed.

Restricted visibility but appropriate access to the metrics (and raw data)
helps in creating credibility among practitioners, especially in the beginning
when the data analysis is getting started. For instance, progress or defects on a

4.4 Acceptance Challenges

and these need to be realigned to incent the desirable new behaviors. If

first stimulate that people work with their measurements and start improving

the old reward system stays in place without adjustment, then people will

Plan to position metrics from the beginning as a management tool for

104

component maintained by an individual engineer could be misconstrued or
misrepresented and is not the type of information to be propagated across the
enterprise. It is often helpful to change one’s perspective towards the one pro-
viding raw data: is the data collection activity adding value to her daily work?
Statistical issues might not automatically align with emotional priorities. Espe-
cially with metrics, remember that the perception becomes reality in absence
of facts to the contrary!

A competence center can also greatly assist with this aspect of measurement.
Rather than reporting raw data or statistics, the competence center can do analy-
sis where causal analysis is conclusive. What this means is that the chart should
lead readers to understand the rationale (reasons) that explain the data. If a
chart leads managers or other readers to draw the wrong conclusion from the
data, then it could be considered negligence on the part of the analyst who pre-
sented the data on the chart. Too often, a chart is presented where the data
presentation misleads the reader to a wrong conclusion, for example, if many
projects of different types and their relative delivery rates are presented as a
bar chart, it will provide readers with little clue of the reasons for the differ-
ences. However, if the chart presents mainframe vs. pc based new development
projects, one may more appropriately conclude that one development platform
is more conductive to speedy delivery than the other. One should never present
data in any chart where the interpretation of the data would lead one to the
wrong conclusion! Rather, take care to report what the data means (through
analysis) and then figure out how to present the data to say exactly what should
be concluded. For example, rather than presenting a bar chart showing the
productivity or delivery rates in FP/hour across various (disparate and unalike)
projects (which would lead to the questions of “who works on the low produc-
tivity projects?”), it is better practice to cluster the projects that are alike using
a particular toolset and present them against those using a different toolset to
depict that it is the toolset that makes the difference (which it is!) rather than
the individuals who worked on a particular project.

Good communication is necessary in every business to be successful, to
reduce friction, and foster teamwork, whether it is from engineer to manager,
manager to engineer, or engineer to engineer. The 2004 edition of the Project
Management Body of Knowledge (PMBOK) asserts that communication
accounts for approximately 80% of a project manager’s job. It is relatively easy
for software functions to be relegated to a low priority in a company focused on
other aspects of its products (such as in an insurance company or a bank).
However, software engineers need to speak out clearly and be heard if they want
to be understood by management. Communication requires effort on the part
of all parties. In the case of management and software developers, both sides
need to learn how to address each other’s real needs. Management does not
care for techno-babble, while engineers are easily bored with capitalization or
depreciation questions regarding their software. Keeping this in mind while

4 The Implementation of Estimation

105

preparing data analysis or trend charts is essential for driving positive decision
making and process improvement. Remember the needs of the audience and
make sure that the right message comes across before you distribute any data.

4.4.3 Information and Participation

Correct information policy demands that project leaders and project team
members get frequent and timely information about the goals of the estimation
process and the desired effects of the implementation of the new estimation
methods. For this reason, a competence center can, for example, publish its own
newsletter, and can regularly inform readers about the actual results and the
work performed by the competence center. It can also use the estimation train-
ing sessions to inform the participants about actual measures and real life results.

It is also important that experiences are exchanged with other organizations
and between departments in order not to become mired in one’s own problems.
In some companies, this is referred to as “tunnel vision” and can result in fix-
ation on a single perceived deficiency, which may not be at all pertinent to fix
in the context of customers or the industry. The participation in conferences
like the annual SEPG (Software Engineering Process Group, a concept of the
US based Software Engineering Institute) conferences, local SPIN (Software
Process Improvement Network, with many worldwide chapters supported by
the Software Engineering Institute) meetings, the IWSM (International Work-
shop on Software Measurement convened by the University of Magdeburg
and the University of Quebec at Montreal), or those organized by the national
metrics organizations such as the International Function Point Users Group
(IFPUG), or MAIN (Metrics Association’s International Network) offers the
opportunity to learn from other organizations that face similar problems. This
allows one to participate and benefit from other experiences (see positive ex-
amples) and help to avoid pitfalls in implementation of measurement and es-
timation. Often useful contacts can be made that might lead to an exchange of
experiences with colleagues after such conferences.

The next logical step on the way to acceptance is participation. The goal of
participation is the creation of widespread cooperation of all involved persons,
and leading to active teamwork. For this reason, it is of immense importance
to avoid blindly import existing processes from another organization or another
department. Instead, elaborate an adaptation according to the requirements of
your own organization and in dialogue with those who will be involved. This
can typically be done with the aid of a neutral (external) consultant together
with the staff, as a pilot project. Hopefully, these initial adopter team members
will go on to become the promoters of the new methods and processes. Figure
4.2 highlights some of the problems during the implementation of an estimation
and measurement program.

4.4 Acceptance Challenges

106

Besides acceptance problems, there are a number of other challenges asso-
ciated with the implementation of estimation and measurement. The focus
should be that processes are measured, not people. If one does not follow this
rule and keep it as the focus, the motivation of the staff will be undermined
and the honesty of estimation cannot be fostered. Measurement and estimation
should be integrated into the existing SDLC. Otherwise, if project teams must
stop what they are doing to comply with the (extra) necessary tasks, data col-
lection and the new tasks will be regarded as overhead. The most important
critical success factor is the visible and sustained support from management.
If there is a real or perceived lack of support from management, then project
leaders will neglect the necessary tasks for measurement and estimation. Such
disregard will not only delay the implementation process, but it will undermine
the compliance and acceptance of the whole initiative.

Fig. 4.2. Implementation challenges.

The aforementioned formal estimation process is intended to deliver a clear
picture about the strengths and weaknesses of the software development pro-
cesses of an IT project. Capers Jones calls this the diagnosis. The strategic esti-
mation takes this diagnosis as a starting point for the planning of measures for
process improvement. Note that the intention of process improvement is to
minimize and eliminate the areas of process weaknesses while intensifying
and disseminating the strengths of the software development processes.

In doing this one must not forget that estimation and measurement and pro-
cess improvement are not instantaneous. The decisions for performing such
measures and its effects take time! Critics of such measures repeatedly say that
estimation in this form does not pay, but:

4 The Implementation of Estimation

Implementation Challenges

• Information
• Participation

Life Cycle (SDLC)

Acceptance:

Measurement of Process, not People
Integration with the Software Development

Measurement is seen as necessary, not Overhead
Visible and sustained Management Support

107

A solid and profound estimation on operational and strategic level in con-
nection with an adequate controlling of projects is the starting point of an
improvement process that can be verified by measurable data.

4.5 Goals for an Estimation Process

Before the implementation of an estimation program goals must be clearly
defined. Figure 4.3 shows an example of the high level goals of a large organi-
zation.

Fig. 4.3: Goals for Implementation of Estimation

Note that these goals do not comply with the “SMART” acronym presented
for goals when we discussed the Goal/Question/Metric approach to measure-
ment presented on the second page of this chapter (Smart, Measurable, Ac-
tionable, Realistic, and Time Bounded). However, as high level initial goals,
they represent the strategic goals for formal estimation. By selecting the most
critical of the goals and drilling down to SMART goals, then questions, the
appropriate metrics can be developed and planned for. The metrics stage is
where many engineers get excited because it involves statistics and equations,
but do not let the enthusiasm dissuade you from properly planning the goals
and questions before diving in to which metrics and measures to collect.

Once the questions (how good is our estimating today? How good is it with
the new estimating process? What is the difference? How can we improve the

4.5 Goals for an Estimation Process

Goals

Manual

Tools Supporting the Estimation Process

Integrated Estimation Process

Consulting and Cooperation in Projects

Comprehensive Documented Estimation

Exchange of Experiences about Estimations

Metrics as Basis for Benchmarking

of Estimate

Estimating Training for Project leaders

Improvement of Precision of Estimates

Reduction of Complexity and Uncertainty

108

process to get better?) are assessed, the metrics can be defined as to which
data are needed to measure to reach these goals. Figure 4.4 also shows as an
example the measures developed to meet the goals of a large organization.

The large organization in question implemented formal estimation and
measurement following the guidelines of Figs. 4.3 and 4.4. Two years after the
start of the metrics initiative, the first results proved that the initiative was
accepted and on its way to success (see Fig. 4.5).

One IT organization reported about the development of a one-day estimation
course and following training of some thousand persons. There were about 50
certified function point specialists (CFPS) within the staff.

4 The Implementation of Estimation

Fig. 4.4. Measured data per project

• Competence-Center-Staff
• 25 Project Leaders

16 counted Projects with 25,000 Function Points
Regular Inspections and Reviews
Metrics for early Estimations
Regular Knowledge Transfer

Fig. 4.5. Actual results

Actual Results at e ample organi ationx z

Training conducted for Function Point Workbench and
Checkpoint/KPlan for Windows

Data Measured per Project

• in Person Months or hrs
•

Quality- and Productivity Metrics based on

Risk Plan and Risk Metrics

Quality Assurance

By Phase of the Software Development

Project Size in F unction Points

Connection with the IFPUG-GSC‘s, or other assessment of

or COCOMO II factors

Quality Characteristics and Quality Metrics in

(in some situations KLOCs)

as well as all details of Counts

Effort for Project Management and

Function Points

Total Development Effort

non-functional requirement such as FiSMA’s ND21

 Lifecycle

109

One key deliverable was an estimation manual as the standard for process
users and training material. Other organizations saw more on time delivery and
better estimates leading to increased project control and satisfied customers.
The training materials are an important prerequisite component to rolling out a
metrics initiative in an organization, beyond the pilot project. This task can be
combined with solving the problem of nonexisting historical data by counting
and estimating finished projects according to the manual for testing it.

4.6 Counting of Historical Projects

The majority of software development in large organizations deals with enhance-
ment projects. The development of large new software systems from scratch is
more an exception than the rule. To effectively and efficiently count the func-
tional size of enhancement projects, it often makes sense to first measure the
size of the system to be enhanced. Figure 4.6 shows the central significance of
the measurement of the size of the system to be enhanced. This can also help

those cases, enhancement projects must assess and evaluate the extent of en-
hancement of the application even before beginning the FP enhancement count.

In the situation of the large organization we cite, management decided it
was worthwhile to perform functional size measurement (function point count-
ing) of the entire portfolio so that support and maintenance ratios could be
established. As a result, the funding for FP counting of all applications was a
part of their formal estimation process implementation.

Before one can estimate the work effort for an enhancement project, the func-
tional size of the enhancement must be measured in terms of the functions to
be deleted (i.e., removed from the software’s functionality), changed (i.e., reno-
vated or modified), and new development (added functionality) must be sized
and the result input into the estimation tool. In addition, the functional size is
often considered relative to the size of the system to be enhanced. Also migra-
tion functionality (data conversions) must be taken into account.

Migrations (data conversions) are a solitary task of the project that does not
change the functional size of the application but it takes effort to do. Migrations
are generally part of a project and result in a small number of Function Points
(only some EIs, in extreme cases only one EI). To properly gauge the correct
proportion of the migration effort (as estimated) from the whole effort of the
project, one has to do the estimation twice: once with the migration and then
again without including the size of the migration functionality. The difference
can then be (hopefully) made responsible for the migration, since the effort
evolves “on top.”

4.6 Counting of Historical Projects

to solve the problem of missing historical data. However, it is not always
financially possible to first measure the entire portfolio application size and in

110

Fig. 4.6. Measurement of historical data.

A complete FP count of historical applications is sometimes not possible in
cases where there is missing documentation. For these situations, if it is deemed
that the portfolio size is necessary, approximations can be made with backfiring
(see according chapter), whereby one derives the functional size-based on
conclusions from source lines of code counts (SLOC) and code complexity
(language level) of the application. This should be used with extreme caution
as the functional size of the software in FP does not often have a linear cor-
relation to the application’s physical size in terms of its lines of code. None-
theless, we present the information in a separate chapter for those who require
a rough, “ballpark” approximation of functionality.

4.7 Estimation as an Early Warning System

Today, management often reacts more than they act in software development.
As such, estimation processes can work as a kind of an early warning system
that could – as in Industrial production processes – define tolerances for an IT
project. If the project progresses within the estimated (statistically process
controlled) borders, it should be finished successfully. Earned value manage-
ment (EVM) as outlined in the PMBOK uses estimates against progress to-date
to gauge the projected success (and anticipated over-budget or over-time results)
of a project.

A prerequisite for an early warning system is the production of project pro-
gress reports. This requires constitution of a regular and consequent reporting
process. In the start up phase, quarterly or half year reports should be planned
for giving an overview about the actual status of all projects under way. Besides
this, it is recommended that an annual report be delivered, showing the following:

4 The Implementation of Estimation

Estab lish Preconditions for
Estimation Process

Lear n E stimation

M e asure Exist ing
A pplication Syste ms and

e stim ate Ne w Project s

M easure and Contro l

Docume ntation and
Knowledge Transfer

Continuous I mprovement of
Estimation

111

1. An evaluation of the past year’s development processes
2. Possible causes for project crises
3. Goals with according measures for the coming year for improvement of

the software development in relation to the current year results.

Examples:

Goal: Improvement of precision of the first obligatory estimation of a pro-
ject to 20% by 31 December.
o Action: development of a metrics data base

Goal: Improvement of the productivity of IT projects of a particular kind to
13 Function Points per person month by 31 December.
o Action: training of the development staff for improvement of skills

Goal: Improvement of the effectivity of defect correction of IT projects of a
particular type to 80% by 31 December.
o Action: Installation of a test tool and associated training of staff.

Naturally, many causes for project crises and also typical cost drivers are
known. It is known, for example, that documentation or tasks for quality assur-
ance have an extraordinary influence on project effort. It is also known that
these measures result in a positive influence (reduction) on the resultant main-
tenance effort for the application. What is not known are simply the answers
to such crucial questions, as for example, “How much should I invest on effort
for quality assurance tasks to optimally improve quality on the one hand, but
not detrimentally decrease the productivity on the other hand?” In other words,
what is the point of “just enough quality” to result in a positive benefit that is
not offset by the negative result to productivity (break even analysis of cost vs.
benefits). In this case, simulations of different scenarios of an estimation can
support better decisions. Only a consequent measurement and follow up docu-
mentation of such information enables us to find answers to such questions.
Examples are the following:

 Investigations of the Government Accounting Office in the USA showed that
47% of the dollars spent for software development of public administration
was for software that was never used. A further 29% was spent for software
that later required heavy improvement; a further 3% was spent on soft-
ware that required minor later improvement. Result: only 21% was for soft-
ware that was delivered to specification.
The Department of Trade in England reported out of a sample size of 200
projects from all industrial branches, 55% were over-budget and 66% were
delivered late. A similar investigation of the Government Accounting Office
in the USA reported comparable figures of 50% and 60%, respectively.

To regain control about runaway projects in the cases of project crises, the
project leader should consider the following steps:

4.7 Estimation as an Early Warming System

112

1. Clarify the project goals. This is the most important but most difficult
aspect to measure. Ambiguous project goals are one of the most frequent
causes of project cancellation.

2. Distinguish clearly between tasks and steps. In many projects in crises
the “meat balls in spaghetti” were not recognizable.

3. Clarify the degree of completion. Mostly this involves measures to obtain
a milestone trend analysis, as well as the project status analysis. Often
these two valuable tools are not used for controlling of projects.

4. Measure project progress. Here the results of step 2 and measurement of
the size of the software to be developed can be applied.

5. Management by exception. Identification of critical tasks and their priori-
tized elaboration.

4.8 Management Summary

The implementation of estimation is an innovative project and as such, it must
be planned and performed with as much rigor as any other formal IT project.
The estimation process is the foundation for successful communication as well
as for monitoring and improvement of project management processes. As in
all innovative projects, it is important to take notice of and plan for acceptance
issues, that is, for resistance to occur.

In Europe, we speak of the king’s road, which is the means to accomplish
the best outcomes. This means that the road to gain acceptance in any inno-
vative or new endeavor consists of information, training, and participation of
all involved persons. In addition, there is need for time to pass in order to fos-
ter awareness for the innovations.

A successful implementation in a large organization with approximately 500
IT developers was done over a 3 year period by two full time persons who
worked as the competence center.

Management support was the most important success factor for the imple-
mentation process.

The publication of such positive key experiences can help to foster the accep-
tance of metrics programs in organizations.

The implementation breakthrough came with the final function point coun-
ting of all applications.

Continuous questions from management increased the awareness of manag-
ers and project managers for estimation. They realized that function point count-
ing and estimation were more and more integrated in the project life cycle, and
the process of counting was no longer neglected or viewed as overhead. The

4 The Implementation of Estimation

113

competence center accompanied the whole implementation process with many
presentations, discussions, reports, and work on routine tasks.

There are only a few technical challenges associated with the successful im-
plementation of software measurement, but there are many psychological
challenges.

The recommended method for implementing estimation is to use a pilot
project approach. The effort of this pilot project through to full scale imple-
mentation in a large organization can be planned to be approximately 2 person
years. The process of gaining estimation knowledge, the integration of estima-
tion into the processes of the software development model of the organization
until consequent organization, and usage of IT metrics for continual improve-
ment may possibly consume about another 2 person years.

Counter argument: Often, costs are cited as an argument against systematic
and sound estimation practices. Considering the cost of large projects often
being in the range of two digits of millions one can argue against.

Only one failed IT project costs more than all effort that is necessary to
implement and foster sound methods of software estimation and measurement.

The right time for implementation depends mainly on the state of the IT
project “chaos,” that is, if customers are complaining about late projects that are
overbudget and do not meet their needs, then the time is ripe for formal esti-
mation!

But the guiding principle has to be as follows: start now if you have the
prerequisites in place!

The build-up of an experience or metrics database and the development of
standards for the improvement of the knowledge base with tool support are
necessary and important steps.

A competence center can support the dissemination of experiences through
continuous publication of results, experiences, reports from conferences, knowl-
edge exchange with other organizations, and literature and new publications
about estimation. This improves the communication about the estimation process
and fosters better acceptance since the people feel more informed and involved
than if there was no central source of information.

However, as with any new corporate decisions, there can also be reasons
why estimation should not be done by a competence center. This is the reason
for a hybrid alternative, where qualified individuals would work decentrally as
the estimation coordinator of their department.

As we have touched on previously, it is commonplace for the implementa-
tion of new methods and processes to encounter acceptance problems. We
again refer to the king’s road analogy: This challenge can only be met with
walking down the three-lane king’s road to implementation of innovations: the

4.8 Management Summary

114

three lanes being provision of intensive (and consistent) information, qualified
training (at the right time), and enlisting the active participation of all involved
persons!

One encounters in large organizations the most resistance from project
leaders since the purported benefits and gains to be made from estimating are
mostly on the management side. Experience with the large corporation to
which we have repeatedly mentioned shows that even the well-trained project
staff performed FP counts without argument but only if they were specifically
assigned to do so.

FP counting and estimating will not be performed unless it is built into the
project manager’s processes. Unless the project leader has planned these tasks
into the project plan, which is the most critical point, it will be seen as over-
head and conveniently (even if unconsciously) forgotten!

A typical killer argument against formal estimation is a “lack of time” (“we
have to do more important things than to collect data or perform estimates“ or
“we must reach the deadline” or else!). The way to address this concern is
threefold.

1. In the authors’ experience, even for larger IT projects, a full-blown esti-
mate complete with a high level FP count of the software size, can be done
in a matter of a couple of days.

2. If there is truly a lack of time, it has to be stated that there are (time) prob-
lems in a very early stage of that project.

3. The effort for the measurement and estimation increases significantly
when the project team has to search for the necessary documentation or
they cannot find it since it does not exist.

This illustrates that measurement and estimation can have a quality assur-
ance benefit as a side effect. The effort for fixing such deficits in project docu-
mentation is sometimes erroneously accounted for as being estimation effort.
In reality, this is an excuse – the effort is actually effort that should have been
expended in the first place but was a neglected documentation task.

In many organizations, the dissemination of estimation methods that are used
in one department fails in other departments (particularly in very large geo-
graphically dispersed IT organizations) because of the “not invented here”
syndrome.

Although introducing metrics typically means a cultural change to all invol-
ved parties, the focus is too often only on tools and definitions.

Introducing measurement and analysis will change behavior, potentially in
dysfunctional ways.

Hence it is recommended to collect a repertoire of behavioral arguments –
 in addition to some slogans – that can readily help you to oppose resistance.

4 The Implementation of Estimation

115

It must be said explicitly that there is an immense interdependency between
motivation and acceptance. Therefore, a major success factor for the imple-
mentation of measurement and estimation is the construction (or realignment
in some cases) of a well planned motivation or reward system.

Plan to position metrics from the beginning as a management tool for im-
provement and state that one of the targets is to improve efficiency in the
competitive environment. Make explicit what the results will be used for and
how they will be measured.

Good communication is necessary in every business to be successful, to re-
duce friction, and foster teamwork, whether it is from engineer to manager,
manager to engineer, or engineer to engineer.

Correct information policy demands that project leaders and project team
members get frequent and timely information about the goals of the estimation
process and the desired effects of the implementation of the new estimation
methods.

It is also important that experiences are exchanged with other organizations
and between departments in order not to become mired in one’s own problems.

The next logical step on the way to acceptance is participation. The goal of
participation is the creation of widespread cooperation of all involved persons,
and leading to active teamwork.

The focus should be that processes are measured, not persons.
A solid and profound estimation on operational and strategic level in con-

nection with an adequate controlling of projects is the starting point of an
improvement process that can be verified by measurable data.

One key deliverable was an estimation manual as the standard for process
users and training material.

Before one can estimate the work effort for an enhancement project, the func-
tional size of the enhancement must be measured.

A prerequisite for an early warning system is the production of project pro-
gress reports. This requires constitution of a regular and consequent reporting
process.

4.8 Management Summary

5 Estimation Methods

Today, there are several popular different approaches available for estimating
software project work effort and cost. These models range from overly sim-
plistic models (that rely on straight linear equations) to incredibly complex
algorithm-based models. While commercially available products promise the
magic elixir to solve estimation problems, and a range of public methods state
similar claims, the truth is that most are based on a variation of the same
underlying principles that relate the software product size (scope), quality,
technology to time constraints. Four major types of software estimating models
are prevalent:

Models that require estimated technical size (Those based on source lines

Models based on early estimates of functional size (FP shortcut-based)
Models based on functional size of the software product (FSM based models)

screens

The principal steps of the process of estimation (see Fig. 5.1) start with a
measurement of the size of software to be developed, delivering a numerical
value for the size of the object of estimation. Using the functional size value
for each piece of software, together with the environmental (situational and
technical) and nonfunctional factors (quality constraints) for the software, the
work effort estimate can be determined. Depending on the sophistication of the
particular estimating model your organization selects, the estimation process
can require anywhere from a few input variables to 200 or more. If there are
several software applications involved in the project, there will be several
function point counts required (at least one per “piece of software” or applica-
tion being developed or enhanced), and subsequently there may be several
estimates developed. The overall project work effort is typically the sum of all
the component effort estimates. Note, however, that due to task and team
dependencies, the overall project duration will not necessarily equate to the
number of work effort hours divided strictly by the number of team members.
Remember Fred Brooks’ Mythical Man Month – one cannot create a baby in 1
month using nine women!

Hybrids of the above.

of code (SLOC))

Those based on some other sizing mechanism such as analogy or counts of

118

The next step after estimating the project work effort is usually to calculate
a cost value from the effort using a metric such as US-$ per hour for the pro-
ject or for classes of human resources. Again a note is in order: keep in mind
that the project cost may include burdened (fully loaded with vacation and
other benefits) or nonburdened labor rates, hardware and software acquisition
costs, and other costs. It is important to be consistent with cost categories
when comparing cost categories per FP at a later stage of the project.

In the simplest case to determine a preliminary estimate of project duration,
the total work effort is apportioned across the various SDLC phases of an IT
project using a Percentage of time per phase Method. The above mentioned
estimate of the total effort can be compared with the estimation calculated by
the Percentage Method, post project completion by using the actual measured
effort of the first phase of the IT project, and calculating from this the total
effort using the proportion percentage for this phase.

Fig. 5.1. Steps of the process of estimation

5.1 The Challenges of Estimation Methods

There exist many known and profound estimation methods. In an older German
book, Noth/Kretzschmar compared some estimation methods and found that
Function Point based estimating performed best in their benchmark. This is
not to say that Function Points alone can produce a work effort estimate, but

Size

Metric

Effort

$ per Hour

Costs

Percentage-
Method

Controlling

Effort
per Phase

5 Estimation Methods

119

rather that his method was based on determining the FP count (functional size)
and then using it and other input parameters to estimate the effort. This old
statement is as valid today as it was at the time of its publication because noth-
ing has changed much since then.

The cited method on which the effort was estimated using FP is relatively
widely known worldwide among those knowledgeable in functional size mea-
surement. IFPUG’s FP method is a de facto standard and is the most wide-
spread and best accepted method for measurement of the functional size of
software. At the time of this printing, there is an ISO/IEC standard 20926:
IFPUG 4.1 unadjusted Function Point Counting Method, in place within ISO/
IEC. Future releases will be coordinated with ISO/IEC.

Because functional size measurement is becoming more commonly used (even
though overall adoption or use of any measurement in software at all is limited
to a mere 1–2% of the overall software development community), we have
dedicated two special chapters in this book to Functional Size Measurement
rather than deal with the extensive topic here.

Another formal estimating method in widespread use (particularly with in the
U.S. government) is called the COCOMO II (COnstructive COst MOdel, which
is SLOC based). COCOMO II is the invention of Barry Boehm, who estab-
lished the Center for Systems and Software Engineering at the University of
Southern California (see the website at http://csse.usc.edu/csse/). Boehm
and his colleagues introduced the first COCOMO model in the early 1980’s.
Since its first incarnation the model has undergone continuous refinement
to COCOMO II based on industry input. Dr. Boehm now has a number of
COCOMO II models available for which there are both commercial and free
automated tool support.

Practically, Function Points and SLOC are two principles used for measur-
ing the size of the object of estimation (the software product size) and for cal-
culating the effort needed to develop it.

In 2002, the IT department of an international insurance company in Germany
elaborated an international survey about the usage of methods for measurement of
size and received the following answers from 16 organizations worldwide:

Three of the organizations measure effort
Two measure Function Points (FP)
Six measure a combination of effort and FP
Two measure a combination of SLOC and FP and

The problems of the SLOC methods are that SLOC can only be measured in
a late phase of a project’s progress (after coding is complete) and when the
majority of software development is already complete (coding is approximately
10% to 40% of the effort of system development). At the coding phase there

5.1 The Challenges of Estimation Methods

Two do not measure size at all.

120

are some KSLOC (Kilo-SLOC) methods available for effort estimation of the
component tests and integration tests. In addition to the lateness of data avail-
ability of SLOC counts, there is a complication that the standards for counting
of the SLOC must clearly be defined (e.g., how are SLOC counted in different
programming languages?). At this point, comparability can fail when there are
different or unknown counting rules leading to inconsistent results. For this
reason, the IEEE (The Institute of Electrical & Electronics Engineers, Inc., one
of the two large US organizations for software specialists, http://computer.org)
developed its IEEE Standard 1045 for counting of SLOC.

The paradox of the Assembler equivalent (see chapter “Backfiring”) is a
doubtless argument against the SLOC methods: the mightier a programming
language, the less SLOC are necessary for the programming of certain func-
tionality. This can lead to the wrong conclusions! In light of falling productiv-
ity (less lines of code per hour) there is a growing level of efficiency (i.e.,
more functionality produced in less time)! Albeit the SLOC methods are of
minimal use for early estimating, they are still used extensively in US-based
large governmental software development. SLOC based estimation is defen-
ded by the argument that the development is often repeatable, homogeneous,
and there is a large historical base of SLOC counts (e.g., a “cookie-cutter envi-
ronment” where the same types of software projects are done repeatedly). In
such an environment, the argument is that there exist no better metrics than
those based on years of repeatable projects where they have recorded the ac-
tual historical effort by SLOC counts. Some of the governmental organizations
(e.g., the United States Department of Defense agencies) have recently toyed
with function point-based estimating when new technology is introduced, or
multiple platform new development is involved.

Organizations mired in engineering businesses also often rely on business
SLOC counts as their sole measure for software size. These measures are by
definition dependent on the technology used in development, and are not read-
ily comparable from one programming language to another. Nevertheless,
there is no convincing professionals who see their SLOC counts as a special
solution that rewards larger amounts of programming code as a better repre-
sentation of their engineering problem to be solved. In North America there is
an old adage: You can lead a horse to water, but you cannot make him drink.
This is the same thing for people – they will do what they want in spite of bet-
ter methods, partly because of the comfort level with the tried and familiar,
and partly due to the acceptance issues we have already covered. It is worth
noting that Capers Jones and other leading metrics specialists do not rely on
SLOC methods to compute the size of software.

The advantage of Functional Size Measurement based estimation Methods
is that they can be used early (in the requirements phase) in the software
development life cycle. In addition to the IFPUG functional size measurement

5 Estimation Methods

121

method that is an ISO/IEC standard 29026, there are four functional size meas-
urement methods (FSMM) recognized by ISO/IEC as being conformant with
the mandatory provisions of the Functional Size Measurement definition of
concepts standard (ISO/IEC 14143-1). All of these FSMM’s are described in a
subsequent chapter.

The Mark II Method (ISO/IEC 20968)
The NESMA Method (ISO/IEC 24570)
The FiSMA (Finnish Software Measurement Association) Method (ISO/IEC
29881)

Besides these standards, trainings, user-groups, consultants, and benchmarks
are established and the organizations using the methods get valuable results.
Function Points are appreciated for performing benchmarks, for comparing pro-
jects, departments, organizations, business areas, or countries, or for measurement
of software quality and productivity. Other methods of sizing software aside
from SLOC and functional size measurement methods are also available in in-
dustry. These somewhat experimental sizing approaches are also profiled in a
separate chapter in this book, and include:

The Use Case Point method
The Data Point method
The Object Point method
The Feature Point method
The 3D FPM

The problems associated with users of functional size measurement include
that the requirements are not detailed enough after project start and that the
IFPUG base functional component complexity factors (e.g., 1 ILF low = 7 FP)
are continuously the object of debates (for reason of their origins and that the
measurement scales are discrete rather than continuous). The IFPUG 4.1 unad-
justed method was published as an ISO/IEC standard: 20926:2003 IFPUG 4.1
Unadjusted FP Method.

Note: The International Organization for Standardization (ISO) in its standard
ISO/IEC 14143-1:2007 has two definitions that are pertinent to mentioned here:

“Functional Size” is defined as a size of the software derived by quantifying
the Functional User Requirements.
Functional User Requirements are defined as a subset of the User Require-
ments that describe what the software shall do, in terms of tasks and services.
According to ISO, this means that functional size must purely reflect what the

software must do, and exclude nonfunctional or technical characteristics.
 This is why the ISO/IEC version of the IFPUG standard is “unadjusted,”
and excludes the adjustment of the Value Adjustment Factor.

5.1 The Challenges of Estimation Methods

The COSMIC Method (ISO/IEC 19761).

Other lesser known variations.

122

Several of the non-ISO/IEC methods listed above (object points, data points,
use case points, etc.) would not meet the requirements for measuring functional
size due to the reason that they include aspects of the technical environment
(OO e.g.) in their measurement.

Function point-based methods are superior to SLOC-based methods for hybrid
technology environments (in particular). Besides this, the standards, trainings,
user-groups, consultants- and benchmarks are established, and the organiza-
tions using function point-based estimating methods prove that they get valuable
results. Function Points are appreciated for performing benchmarks, for com-
paring projects, departments, organizations, business areas, or countries, or for
measurement of software quality and productivity.

The issues related to adoption of IFPUG function point counting typically
occur when the requirements are not detailed enough after project start, and
there is also concern that the IFPUG complexity factors (e.g., 1 ILF low = 7
FP) are continuous object of debates for reason of their origin as well as being
fixed and have not changed since the introduction of the method in 1984. The
acceptance of function point-based estimating is low in the noncommercial
(typically government) environment of software development, since its sensi-
bility for technical and other complexity (very low or very high complexity of
transactions) is low. This leads to a follow-on debate about the value of the
14 GSCs of the IFPUG Method, as well as to the CPLX Adjustment Factor of
COCOMO II.

Purists of the object-oriented paradigm often use the killer phrase that func-
tional size based estimation methods are not suited for object-oriented system
development. In numerous discussions with such purists, the German author
discovered that their opinions were typically based on theory since none had
actually tried to use a non-OO specific estimation method to estimate an actual
OO project. The opinions were based on the supposition that, in particular,
function point-based methods of estimating could not be as good as OO-specific
methods because they did not take into account OO-specific artifacts.

To support the premise that Function Point Analysis can be universally
applied to functional user requirements regardless of the implementation or
design method (i.e., object-oriented development), the IFPUG has published
several case studies (which are updated with each new release of its counting
practices manual). One of the case studies, currently named “Case study 3,”
illustrates a Function Point count in an object-oriented environment. At inter-
national metrics congresses (MAIN, IWSM, IFPUG, ISBSG, SEPG, SMEF,
etc.) there are also many reports where success stories about functional size
measurement in object-oriented environments are presented. Hence it is possi-
ble to estimate the effort of object-oriented system development using func-
tional size measurement together with solid historical data from such projects

5 Estimation Methods

123

and earnest endeavor using the known estimation methods (see also the chap-
ters about object-oriented metrics).

Mathematicians attest that it really does not make sense to measure the
“length of algorithms” (when performing functional size measurement), since
anytime someone can develop a new and shorter algorithm for the solution
of a problem. Hence, according to the mathematicians, the length of an algo-
rithm depends more on the actual solution as on the problem to be solved (see
also the chapter about McCabe’s Complexity Design Metric). Furthermore,
the length of an algorithm coded in a special programming language has little
relation to the functional requirements to be solved. And the length of an algo-
rithm is more a measure of the programming skills of the programmer and thus
depends on a person. Programming itself is essentially a translation task and
hence easier than the discovery of an algorithm. The most effort arises from
the requirements of rigorous testing. For all these reasons, the measurement of
the functional size of very algorithmic software is still a challenge today.

Two of the ISO conformant functional size measurement methods, ISO/IEC
29881:FiSMA 1.1 and ISO/IEC 19761:COSMIC-FFP, do take into account
counting of algorithms in their methodology. COSMIC does so as part of the
functionality, while the FiSMA 1.1 method includes a set of identifiable inde-
pendent algorithmic services in their base functional components used to deter-

and the NESMA Method consider algorithms and their complexity to be either
nonfunctional requirements or to simply contribute data elements to another

ently count algorithms as explicitly functional or nonfunctional is a matter of
expert opinion or of the methodology chosen for the functional sizing. (Note

in addition to the five functional components of the IFPUG Method. While
Capers Jones has stepped away from endorsing Feature Points in favor of the
updated IFPUG Method, there are still proponents who adhere to his Feature
Point method.).

Hand in hand with estimation goes the usage of tools that is described in a
special chapter of this book because of its importance where we discuss only
the methods used in the tools and provide a list of available tools. The more
commonly used functional size measurement methods are usually supported by
a broader variety of software estimating tools compared to less disseminated
methods. However, beware that the quality of the data used to generate esti-
mates as well as the match to your organization’s needs are more important
than the number of tools. For example, many of the estimating tools rely on a
database of SLOC sizing values that are “backfired” into function points based
on using a language level multiplier that divides the number of SLOC by a

5.1 The Challenges of Estimation Methods

mine the functional size. To-date, the IFPUG Method, the Mark II Method,

that the “Feature Point” method originally developed by Capers Jones in the

elementary process (function) that they count. Whether it is better to independ-

1990s added “Algorithms” as a sixth base functional component to be counted

124

constant to derive the function point size. See the chapter on usage of tools for
further information.

We define a software estimation process as “a method with detailed regula-
tions and standards that is effectively supported by tools.” Two examples
illustrate an estimation process:

Example 1:
In a large organization, for example, the following estimation process is

installed:
Methods:
International standardized size measurement method IFPUG (current release)
A Certified Function Point Specialist (CFPS) in the central competence center
Quality- and risk-metrics
A bimonthly internal newsletter for the project leaders, published by the
competence center

 Tools:
Function Point Workbench (LAN-Version) from Charismatek, Australia
Knowledge PLAN (formerly Checkpoint) from SPR (Software Productivity
Research, founded by Capers Jones) in Burlington, Massachusetts
Excel charts for different metrics
All documents, standards, and tools publicly available in Intranet and LAN
Example 2:
In a large governmental organization, for example, the following estimation

process is installed:
Methods:
International standardized size measurement method FiSMA 1.1
Qualified and knowledgeable measurement specialist in the central compe-
tence center
Quality- and risk-metrics
A monthly progress report of each project’s FP completion (in % delivered)
for the customer organization and project leaders, published by the meas-
urement specialist on the project

 Tools:
Experience® Pro software from 4SUM Partners, Finland which houses the
function point details, maps progress, controls scope and produces reports
Microsoft Word is used to produce the standard written project progress
report
A challenge to estimating methods overall is the low degree of dissemination

and serious consideration granted to the estimating theme by researchers, scien-
tists, and educational institutions. Two noted German authors, Achim Kindler
and Wolfram von Schneyder, address the lack of widespread acceptance and
support of estimation as a serious discipline:

5 Estimation Methods

125

“In project management it is typical to find that the basic methods such as
Delphi and the Three Point method (for estimating) are described. Regrettably,
project management (and its associated estimating tasks) is not acknowledged
as a science and thus shows up only as an exception in universities. The low
priority of estimation in science shows up also in research.”

Estimation in academic studies as well as in training and literature is often
dealt with at a peripheral level in that it is mentioned as a necessary task to be
done with the existing methods and processes (with no mention of its impor-
tance or how to do it properly). This impression is also valid for monographs
and literature about project management as, for example, the ISO/IEC 17024
Standard conform 4-Level Certification System (4LC) of the IPMA (Interna-
tional Project Management Association, http://www.ipma.ch) or the PMBOK
Guide (Project Management Body of Knowledge, PMI – Project Management
Institute http://www.pmi.org).

It is common in large- and medium-sized organizations for there to be a
series of project management manuals and standards with regulations how to
proceed in projects. However,

These standards mostly give mandate that estimation has to be done (with-
out any hint how to do this).
If there are detailed descriptions about how to perform estimating, it is
based on a theoretical premise that the organization is sufficiently equipped
with all the information outlined – this is seldom the case. In other words, the
estimation procedures are sound; however, it is impossible to enact them in
practice because of, for example, nonexistant historical data, inapplicable
project types in the model (that do not match the reality of the types of pro-
jects being done), or changed organizational structures.

Should you purchase a commercial tool or rely on a publicly available
model to do your estimating? The answer depends on a number of factors, in-
cluding size of your estimating initiative, your organization’s maturity level
and the sophistication required by a tool (i.e., giving a CMMI® Level 1 orga-
nization a CMMI® Level 5 tool to do estimates will lead to frustrating results
and a poor investment. Morale will suffer and resistance will grow – the tool
must match the needs!), the budget for estimation support, data quality (of the
historical experience database provided in some tools), accuracy required, and
the fit to your organization’s needs.

While commercially available products generally feature a larger historical
experience database than those that are publicly available, it is important to
know how the model actually works and how good the quality of the collected
data really is. You may have heard the saying: A fool with a tool is still a fool!
And this adage applies if you do not take the time to research the estimating
model that will best fit with your goals.

5.1 The Challenges of Estimation Methods

126

5.2 Determination of the Effort

The result of a work effort estimation is a figure for the human resource effort
that characterizes the development or enhancement of the software system (or
a part of it). Work effort is generally estimated in units of person month (PM)
or derived measures, for example, person year (PY), person day (PD), or per-
son hours (PH). It was synonymously called man month or staff month in
older publications.

The usage of estimation processes, for example, with experience curves
or estimation equations implies the existence of mathematical functions for
calculation of effort, and can seduce one to the wrong conclusion by assuming
that exact results can be calculated. This is not true! Remember the adage that
garbage in equals garbage out – and if one uses approximate or rough values
for input variables in an estimating equation, the results will be even more
approximate, and never more accurate than the least accurate input value.

After determination of the size of an application, for example, by counting
Function Points, one tries to find an applicable relationship between the func-
tional size and the work effort for software development. Two such relation-
ships include the following:

Size-based estimates

Some of the heuristic methods are described in the chapter Overview of
Methods. The size-based methods can be divided into three categories:

Estimation with an experience curve
Estimation with an estimation equation
Estimation with an expert system
In addition, the often-discussed method of backfiring will be addressed.

5.2.1 Estimation Based on an Experience Curve

Project postmortems or retrospectives should provide actual project work effort
figures in at least person months, and the actual project delivery size in Function
Points for each project. Using this data in statistical regression analysis, one
can calculate an “experience curve.” Once there are at least five high quality
data points for similar projects (same hardware platform, same development
language, similar team size, same business area, and same application type),
one can build a table from this curve showing the relation between person
months and Function Points. Subsequently, when the Function Points for a
new project are counted, one can estimate the project work effort from the table
or can calculate it using the regression formula.

5 Estimation Methods

Heuristic estimates.

127

Obviously, the validity of the table and the equation is better if the projects
are fairly homogeneous. A further point to note is that the effort recorded for
the project postmortems must be measured in a standardized form (using a
standard definition of what constitutes “project work effort”) according to the
time accounting practices in place.

When performing the regression analysis, one should also check to ensure
that the usage of the (simpler) regula falsi (linear interpolation between data
points) leads to acceptable results. Depending on the scatter of the data
between projects, one of the methods (table or regression equation) will deliver
better results. Figure 5.2 shows an example of an experience curve from IBM.

Fig. 5.2. IBM experience curve

5.2.2 Estimation using an Estimation Equation

Estimation using standard equations relies on established industry relationships
between effort parameters that has been proven to strongly influence the pro-
ductivity of software development. At least 50 or more such methods abound
in software tools and published literature. Two of the most popular traditional
models are (1) the Monte Carlo distribution equation used by Larry Putnam
who established Quantitative Software Measurement (QSM) and developed the
SLIM (Software Life Cycle Management) estimating model; and (2) COCOMO
II developed by Barry Boehm at the University of Southern California, which

IBM Experience Curve

Person Months

5.2 Determination of the Effort

128

is also based on a Monte Carlo distribution of work effort throughout a soft-
ware development project.

The majority of effort estimation equations follow the general form y = f(x1,
x2, x3,…), where y is the estimated work effort and xi are the input parameters
influencing the effort. When IFPUG or another functional size measurement
method is used to determine the size of the software to be developed or en-
hanced, the work effort equations most commonly used are in the form y = a*xb,
with a and b calculated by a regression analysis process, y is the estimated
work effort, and x is the functional size. The exponent b varies normally
between 0.5 and 1.5. Researcher Horst Zuse proved mathematically in his paper
(Zuse 2005) about the Halstead complexity metric that the only mathemati-
cally correct and valid prediction models related to software estimating are of
the form y = a*xb. With regression analysis, normally the regression- or reli-
ability-coefficient R2 (R squared) should be documented. It indicates how good
the regression curve fits (e.g., is smoothed) to the measured data points. Gen-
erally values of R2 > 0.7 are accepted as good (this translates to an R > 84%).

Note that estimation based on a simplistic estimation equation as well as those
based on a fit with an “experience curve” may lead one to the erroneous con-
clusion that the work effort for an IT project is a function of only one variable:

E = f(S), E, Effort, S, Size. – This is not true!

While experienced practitioners realize that this is a gross oversimplifica-
tion that can lead to the wrong results, we have witnessed managers and even
specialized measurement and statistics professionals under the misguided be-
lief that size multiplied by a “silver bullet” constant equals effort. Software
development effort depends on a myriad of parameters, such as, for example,
the skill of project team members, development language, technology, com-
plexity of the problem, development environment, etc. When we use the anal-
ogy of building construction the situation becomes clear: the effort to build a
1,000 square foot or square meter building has a relationship with the overall
size; however, effort is also a function of the type of building (e.g., an aircraft
hangar or a house), the geographical location (e.g., in Alaska or in Germany,
on a hill or at the bottom of a valley), the type of project (e.g., new or reno-
vated construction), the intended use (e.g., a bank might require a more secure
building than a grain silo), and the type of construction (e.g., custom built
from scratch vs. using a prefabricated log cabin kit, or a premanufactured set
of connectable trailer units).

Now, when we apply the analogy to software development, the effort to
develop a 1,000 FP piece of software has a relationship with the overall size;
however, the effort is also a function of the type of software (e.g., avionics
software or banking software or pacemaker software), the location of the
development team (e.g., if ½ the team is in India and ½ the team is in the US,

5 Estimation Methods

129

as opposed to an entire team in the same location), the type of project (e.g.,
new development or enhancement or conversion of existing software), the
intended use (e.g., a single user vs. tens of thousands of users), the quality or
nonfunctional requirements (including the ISO/IEC 9126 quality attributes
plus accuracy, performance, etc.).

Barry Boehm remarked on the impact that can be caused by nonfunctional
requirements: “A tiny change in NFRs (nonfunctional requirements) can cause
a huge change in the cost” (Boehm 2005, in the preface). Boehm went on to
cite the tripling of a $10 million [USD] project to $30 million [USD] when the
response time (of a NFR) went from four seconds to one. It is important to
document assumptions for NFRs, especially if project complexity is likely to
increase.

For this reason one must suggest that the effort of an IT project depends on
many variables:

E = f(x1, x2, x3,…).

The International Software Benchmarking Standards Group (ISBSG) is a
not-for-profit consortium of software measurement organizations and main-
tains one of the world’s leading software measurement repositories of actual
project data – based primarily on function points (functional size measurement
of projects) and other project data (including software development effort,
complexity, defects, etc.). Currently, the database is the only publicly accessi-
ble database housing over 4,000 projects from over 20 countries, and it is
growing weekly. The ISBSG scrubs the data submitted from companies
around the world, anonymizes it (removes the unique company identifies),
analyzes the data, and then makes it available for public purchase (at a cost-
recovery price).

The analysis of the ISBSG data results in experience curve equations pub-
lished by the ISBSG in the form of such books as Practical Project Estimation
(Hill 2005) and The Software Compendium (ISBSG 2002). The American
author of this book contributed chapters to the Practical Project Estimation
book. The reader is encouraged to explore the latest releases of the ISBSG
resources and available publications. (See www.ISBSG.org.) The experience
curves published by the ISBSG follow the same form as the equation above.
The four largest drivers of effort found by the ISBSG include business sector,
application type, hardware platform, and development language.

5.2.3 Estimation with an Expert System

The third variation of estimation methods aside from experience curves and
estimation equations is a knowledge based expert system. This method of esti-
mation relies on a database of historical knowledge stored in a standardized

5.2 Determination of the Effort

130

form, often within a specialized software package. While there are close to a
hundred software packages that promise accurate estimates for work effort and
cost that range from the simplistic to the obscenely complex (with price tags
that also range widely), the reader is cautioned to make sure that any expert
system they purchase meets their specific corporate needs, just because the
package promises to deliver accurate results does not necessarily mean it suits
your particular organization or the way you may develop software. We have
included a section on tool support in this book; however, we only endorse those
with which we have had personal and positive results at our organizations.

When an effort estimate is desired, many of the tools require, at a minimum,
software size as an input variable. While size is a driver of effort and cost, re-
member from the preceding paragraphs that it is not the only driver! When
inputting size, these expert estimating systems ask for it in either SLOC or in
IFPUG Function Points (FP). A few will accept number of screens, sizing by
analogy (based on past projects that are “similar”), or one of the other ISO
conformant functional sizing units (FiSMA, NESMA, Mark II, or COSMIC),
and other sizing units (such as the once popular Feature Points). Be aware that
for the simplest expert system for which size is the only explicit input value,
this means that all of the other input variables (such as type of project, devel-
opment language, business area, etc.) will be considered to be average values
and that the resultant estimate will be a high level guess based purely on the
project raw size. Note that it is important to know whether the expert system
asks for adjusted or unadjusted function point size in the case of IFPUG, and
older Mark II, or NESMA function points, which can cause a variation of up

that this type of high level estimate based purely on the FP size is similar to
saying “How much will it cost to build a 1,000 square foot building?” without
any consideration of the type of building, geographic location, number of

estimating method, and especially careful if the expert system gives you an
estimate that appears to be precise! (Again think of putting 1,000 square feet
into a construction estimating model and getting out a number that includes
decimals after the hours such as 10,506.92 h!!! It would be absolutely ridicu-
lous for a builder to report back such a figure to a prospective client – yet the
same thing happens in software estimating all the time! Someone guesses that
a piece of software is “about” 500 FP and puts it into an expert system to dis-
cover that the tool estimates 5062.86 h to build whatever it might be, and then
has the ignorance to report that to management! Not only is the tool perform-
ing a disservice by giving a too-precise guesstimate, the user is misleading
management by reporting this guesstimate as if it is a precise estimate.)

5 Estimation Methods

to 35% (for IFPUG counts) relative to the raw unadjusted FP count. Note also

floors, construction approach, etc. So be very careful when using such a coarse

131

Remember a fool with a tool is still a fool!
Now that we have got that out of the way, let us look at doing estimates

based on more than a pure raw number for size. As such, detailed estimations
require more details to be input, such as

Information about the complexity of the software (nonfunctional require-
ments and constraints)
The business area
The type of project (new development, enhancement, conversion, etc.)
Information about the skills of the project team
The programming language(s) to be used
The hardware platform(s)
The methodology
Etc.
The principle behind the process of estimation with an expert system is

simplified as shown in Fig. 5.3. If an organization already has a historical base
of measured actual effort, some tools will allow you to enter this information
to augment their “experience” database. Whether or not the tool accepts your
own historical data to alter their expert system or as a comparison against the
estimates they generate is a matter of each particular tool. In our experience,
your own organization history of actual completed projects can often be a bet-
ter (or at least as good) estimator as a theoretical model. This is especially true
if the expert system model has not been calibrated to your own organizational
practices. (A good exercise for this is to take one of your completed projects
and its actual size, complexity, and other characteristics and run them through
the tool as if you were doing an estimate. Then compare the estimated work
effort to your actual work effort it took to do the project in reality; if the num-
bers are far apart, then you know that the tool needs to be calibrated to your
own environment. If you do not calibrate the tool, you will consistently end up
with estimates that are based solely on the tool defaults and will be either too
high or too low compared to your actuals.)

An example of an expert system for which the German author of this book
has extensive experience is SPR KnowledgePLAN (formerly known as Check-
point). The American author has experience using Experience® Pro by 4SUM
Partners, SLIM (and Estimate Express) by QSM, as well as a number of other
expert systems. Experience® Pro includes the ISBSG current database release
as one of its estimating databases (the full database as well as an ISBSG subset
with only the highest quality “A” projects) to augment its proprietary database
of completed projects. SPR is also in the process of including ISBSG data in
the KnowledgePLAN tool, as are several other tool vendors. It is not known at
the time of this writing whether the SLIM tool suite intends to utilize the
ISBSG database as part of their expert system data.

5.2 Determination of the Effort

132

Fig. 5.3. Estimation with an expert system

The advantage of such expert systems is obvious: The knowledge base can
be administrated from a central competence center, enabling the user to access
a substantially larger database than if he would only use his own projects with
an experience curve. Currently, the knowledgebase of KnowledgePLAN con-
tains historical data of about 6,700 projects, Experience® Pro includes almost
1,000 projects as well as the 4,000+ of the ISBSG database. The SLIM Suite
of tools relies on Monte Carlo simulation equations as the basis for its experi-
ence data in addition to customized databases that can be provided using the
SLIM Metrics tool based on an organization’s own data.

5.2.4 Backfiring

At times it is necessary to replace a legacy application and obtain an estimate
of the work effort to redevelop the same set of functionality. As such, one can
typically use existing documentation (user manuals or other document that
describes the functionality provided by the software) to count the FP size for
input into one of the previous estimation models. But what if there is no docu-
mentation or the documentation is so out of date to render it useless? In such a
case, one can do a rough approximation of the FP size if the number of SLOC
is known along with the development language(s) used. The SLOC can then

5 Estimation Methods

Estimation comprises:
1. Measurement of the (functional) size
2. Analysis and evaluation of project attributes and additional

influencing factors
3. Input of reuse and other implementation (build) specific factors
3. Rules, how 1. and 2. and 3. will be correlated

Expert
System

(experience
database)

Software-
size

(hard data)

Reuse and
implementation

factors
(technical)

Project-
attributes
(soft data)

Additional
influencing

factors
(situational)

Estimate of
work effort

133

be divided by a language specific constant (such as 25 SLOC of COBOL code
per FP) to arrive at an approximate number of FP. This method of estimating
the functional size of software is called “backfiring” and its use is discouraged
unless there is no other way to approximate the software size. The reason that
it is discouraged is that the results can vary from hand counted FP by up to
400% according to comparisons done in industry. For a more detailed discus-
sion of the issues and considerations involved in Backfiring, see Dekkers’
article Using “Backfiring” to Accurately Size Software – More Wishful Think-
ing than Science? a copy of which is available in PDF format by emailing the
American author.

So you need an approximation and have exhausted all other options – the
functionality can be at least approximated by backfiring. This method is often
passionately discussed (see also the last paragraph of this chapter) between
advocates of SLOC and Function Points, since Function Points and SLOC are
not equivalent, but sometimes are considered to be complementary to each other.

Backfiring concludes that the functionality (in Function Points) can be in-
ferred from the source code size (in SLOC).

History of Backfiring

Since the size of a software’s code depends on the programming language, IBM
first introduced language levels intended to describe how many Assembler
statements are, on average, necessary to program the functionality of a statement
in the chosen programming language. Table 5.1 shows the Assembler equiva-
lents for some programming languages.

Soon further research started in search of a second conversion that would
answer the question of how many SLOC are necessary to code one Function
Point. Capers Jones called this second conversion (level) the average expan-
sion rate. Table 5.2 gives an overview of some known programming languages
and their expansion rate.

Backfiring Today

Since publishing Table 5.2 in the 1990s, SPR and Capers Jones have refined
and expanded their backfiring conversion table to include over 700 program-
ming languages together with upper and lower bounds to help qualify the
SLOC to FP conversion factors. It is offered to clients and visitors on their
website at www.spr.com (Language Level table).

5.2 Determination of the Effort

To illustrate a simple example of backfiring using Table 5.2, let us consider
that we have an application with 10,000 SLOC of ANSI COBOL 85 code.
Using the conversion factor is 107, the FP can be backfire approximated at other

134

Programming language Assembler equivalent
ABAP/4 20.00
Access 8.50
ANSI COBOL 74 3.00
ANSI COBOL 85 3.50
Microfocus Cobol 4.00
Basic assembly 1.00
Macro assembly 1.50
C 2.50
C++ 6.00
Symantec C++ 11.00
Visual C++ 9.50
CICS 7.00
IBM CICS/VS 8.00
Clipper 17.00
Cold Fusion 18.00
EIFFEL 15.00
Excel 3–4 55.00
Excel 5 57.00
Focus 8.00
Fortran 3.00
Fortran 90 4.00
Framework 50.00
HTML 4.0 24.00
Interpreted Basic 3.00
Java, JavaScript 6.00
LISP 5.00
Lotus Notes 15.00
ORACLE 8.00
Programming Generators 20,00
SAS 10.00
SmallTalk, SmallTalk/V 15.00
ANSI SQL 25.00
Visual Basic 2 9.00

FP = (10,000 SLOC)/107 = 93 Function Points.

For example, for COBOL,
1 FP = 145 SLOC COBOL (John Barnes Consulting, England),
1 FP = 105 SLOC COBOL 40% (SPR, Burlington, MA).
Regarding the issue of code complexity, Capers Jones stated that very complex

code needs generally more Function Points per SLOC compared to extremely
simple code. While he is not an advocate of backfiring, he does recommend

5 Estimation Methods

consultants and measurement practitioners have published their own conver-
sion factors that vary from the SPR table, sometimes considerably.

this additional step to those who use the method: after determining the size the

Table. 5.1. IBM’s language level equivalents to 1 SLOC in Assembler

135

Table 5.2. Average expansion rate

Programming language Average expansion rate
(SLOC per FP)

Basic Assembler 320
Macro assembly 213
C 128
ANSI COBOL 74 107
Fortran 107
Interpreted Basic 107
ANSI COBOL 85 107
Fortran 90 80
Microfocus Cobol 80
LISP 64
C++ 55
CICS 46
IBM CICS/VS 40
ORACLE 40
Visual Basic 2 35
Visual C++ 34
SAS 32
Symantec C++ 29
EIFFEL 21
SmallTalk/V 21
ABAP/4 16
Program generators 16
ANSI SQL 13
Excel 3-4 6

above calculated value is divided by a code size adjustment factor as presented
in Table 5.3. If, for example, the above-mentioned application had a complex-
ity sum of “6,” Table 5.3 shows a corresponding value of 0.85. This would
adjust the FP size accordingly:

FP = (10,000 SLOC)/(107 0.85) = 110 Function Points.

This means that the application has a less than average complexity. In other
words, more functionality can be programmed per SLOC.

One more cautionary note about SLOC-based measures: Albeit measure-
ments with source code need always special attention, backfiring is often the
only chance to approximate the functionality of legacy systems. While some
may argue with this, we have found that sometimes an imprecise estimate is
better than none at all. Some projects have been immediately cancelled when
the “ballpark” guesstimates based on SLOC backfired into FP and expert sys-
tems have been way out of their budget. Often the recognition that the customer
cannot afford to redevelop a system is enough reason for them to live with
software that was adequately working in the first place. Think – pet projects!

5.2 Determination of the Effort

136

Table 5.3. Code size adjustment factor

Sum of problem-, code- and
data complexity

Code size adjustment factor

3 0.70
4 0.75
5 0.80
6 0.85
7 0.90
8 0.95
9 1.00
10 1.05
11 1.10
12 1.15
13 1.20
14 1.25
15 1.30

And there are users who made good experiences with backfiring. A prereq-
uisite is a homogeneous and stable development environment. SLOC-based
estimates can be used very well for migrations (data conversions), since there
is typically little functionality that is changed. Additionally, there is also the
reverse use of backfiring when an estimating tool will only take in SLOC
estimates for the software size. In those cases, a FP estimate is sometimes
done and the SLOC is then estimated by “front firing” or multiplying the FP
by SLOC conversion factor instead of dividing it.

When using backfiring for calculation of Function Points from SLOC and vice
versa one has to regard in any case that the SLOCs are counted, which belong
to certain Function Points. Only then can a reliable calculation factor be derived
(i.e., does not include SLOC that is used entirely in the back-ground or across
multiple applications unless it is used to deliver specific functionality).

A prerequisite for backfiring is that historical data are available. When
counting SLOC it is important for comparisons if the SLOC are counted from
physical or logical source code, as well as how compiler declarations and data
declarations are considered. Counting SLOC makes no sense at all when using
generators. Consensus is that commentary lines are not counted, since that
would lead to the fact that programmers would document their code worse. A
good recommendation is to count according to the IEEE Standard 1045.

Generally, SLOC are seen as a technical or physical measure and Function
Points as a functional measure. Hence believing on backfiring implicates
believe that a technical measure is also a functional measure. That is why
backfiring is a heavily debated method, and it ties into the overall function
point vs. SLOC debate that has no clear end in sight.

5 Estimation Methods

137

5.3 Overview of Methods

Estimation methods can be characterized by areas of application and radius
of action. This results from different utilization during the process of system
development and from the requirements of the involved persons and instances.
From many documented estimation methods, the following ones are a little bit
more known and thus are presented here in a few words. Because we have
devoted an entire chapter to the size-based FSMs of estimation, we do not spe-
cifically address them in this chapter.

5.3.1 Heuristic Methods

Heuristic means “grown by experience.” We use this term to describe those
methods that are both simple and practical, for example, the Pi Times Thumb
Method or Percentage Method, as well as or methods developed internally
by organizations. The latter are primarily applicable to the organizations that
developed them, and in some cases, they may not be suitable for usage else-
where. We include them here because they are examples that depict how one
can initiate organization specific methods. The disadvantage of such organiza-
tional solutions is naturally that they lack comparability.

The Expert Estimation

This method is likely the most used estimation method worldwide because it
relies on one’s own personal experiences in software development and is there-
fore based in reality and has a sense of comfort (termed at times, expertise).
This is no more than estimation done by one or more persons with expertise
(at whatever level). All other heuristic methods simply pertain to measures in-
tended to improve on such Expert Estimations.

The Delphi Method

The Delphi Method involves asking multiple Experts for their estimation of
effort. The results are compiled and sent back to the experts anonymously, and
they are asked for an improved estimation regarding the answers. After several
iterations, the results generally converge towards a similar estimate.

The Pi Times Thumb Method (Three Point Method)

This method, also called Three Point Method, is part of the PERT network tech-
nique. In its most simple variant it works with two figures: the average from a
worst case (most pessimistic) and a best case (most optimistic) estimate. When
three estimates are involved, there exist the following variants: A quarter of a

5.3 Overview of Methods

138

worst case plus a quarter of a best case and half of a realistic expected estima-
tion. Or put another way is the worst case estimate plus the best case estimate
plus four times the most likely (expected) estimation, divided by six. This can
be done using estimates from one project leader or by asking several persons
and calculating the average of their estimates. Of course, better results emerge
when those doing the estimates have some expertise in the type of projects being
estimated. They should also be asked how they might change the estimate if a
less experienced person would perform the work. The most beneficial situation is
when the estimator(s) have fresh experience from a similar task or set of tasks,
so that they do not rely on pure memory. The best case is when there are naturally
measured data available to support this estimation.

The disadvantage of such methods is that estimates depend on subjective
evaluations and mostly undocumented recollections of historical task effort.
The documentation of premises and the environment of estimation, the persons
involved, and assumptions made during the estimation are all necessary pre-
requisites if there is to be any lessons learned or experience gained for future
estimates of this type.

The effort to conduct this type of estimating is often better spent by doing
standard estimation using one of the more formal methods. At least the effort
is not larger using a formal method, and it provides a lot of benefits as, for
example, interorganizational comparability, and increases the potential accu-
racy of the estimate. Our recommendation if your organization demands a
heuristic estimating method is to supplement it with a second method of esti-
mating so that the estimate has the benefit of the experiences of third parties
(e.g., benchmarking).

The Analogy Method

The Analogy Method estimates the effort by comparing the new development
with historical projects, by relying on postmortems (sometimes called retro-
spectives) regarding certain aspects of the project. Possible criteria include the
size of deliverables in SLOC or number of programs of a software product.
The challenge with this method is to find enough “similar projects” that are
comparable with the one you need to estimate. Projects are per se solitary with
the implication that comparability is the exception.

Example of how to use the Analogy Method in practice:
1. First develop a raw model showing the user and technical requirements

of the system to be developed.
2. Search for similar projects already completed by using organizational

project postmortems.

5 Estimation Methods

139

3. Once you find one or more similar projects, compare the features be-
tween your project and the analogous project(s) to estimate the size of
the deliverables of the planned system development and the development
productivity.

4. The team size is calculated by dividing the estimated size of deliverables
by the estimated development productivity.

The Relation Method

Using the Relation Method, the effort is estimated similar to the Analogy Method
by comparing the system with completed project postmortems. The only differ-
ence in the relation method is that the comparison is done using indices where
the basic index (=100) characterizes the normal measure, the average. For the
Relation Method, the same remarks are valid as for the Analogy Method. The
usage of indices implies that estimations can be calculated exactly thus distracting
from the uncertainty, which is imminent in estimation methods.

Example of how to use the Relation Method in practice:
1. Definition of the partial indices
2. Determine the basic index 100
3. Evaluation of the program to be developed regarding the indices
4. Calculate the effort for the new development based on the evaluation in 3.
In the following example (see Table 5.4) the programming language COBOL

is used with the basic index 100 for programmers with a programming experience
of 3 years. Compared to these, projects with programming language PL/1 would
be calculated with 15% less and Assembler projects would be calculated as need-
ing 30% more effort.

Table 5.4. Part of an index table for estimating with the relation method

Index (%) Indices
70 85 100 115 130

Programming
language

RPG PL/1 COBOL – Assembler

Programming
experience

More than
5 years

 3 years Less than 1
year

The Weights Method

Weights methods associate objective and subjective factors that influence sys-
tems development with certain weights. The weight should relate to the relative
influence on the effort of the specific factor. These influences are estimated
and then multiplied by the weight. The total effort is calculated as sum of the
component results. A prerequisite for using such weighting methods is avail-
ability of measurement data for elaboration of the weights in the formula.

5.3 Overview of Methods

140

Example 1 for how to use the Weights Method:
The “Time Cost Planning Method” (a specific instance of the Weights

Method developed by a large IT department of a worldwide operating indus-
trial organization) is suitable for performing estimates at the end of the require-
ments analysis. It estimates the effort for the team from the rough IT design
until the end of testing. The basic formula is

Programming time = (file factor + run time factor)(problem knowledge
factor + knowledge experience factor).

After add ons for organizational effort and an allowance for time slack dur-
ing the project, we arrive at estimated effort for programming of each task.
This estimate calculation is done for every task in the project work breakdown
structure according to the software development processes (per the lifecycle
model chosen) and organizational specific regulations. The size of the tasks
should not exceed 1,000–1,500 Cobol statements (the equivalent effort of
approximately three person months). The classification of each task is done
with tables provided to the estimator (see Table 5.5).

This method is a bit antiquated and is fairly inflexible to consider actual in-
fluences, especially when there are ranges in the transactional processing and
database processing involved between projects. However, it still can add value
(as a second estimating method) and the equation can be adapted with some-
effort (using analogies) to modern software development environments. It was
developed in the early 1970s based on the IBM Manual Method, and was
checked in 1984 from Noth and Kretzschmar in the early 1980s showing up to
a 300% difference between early estimation and the actual effort.

Example 2 for the Weights Method: The EGW Method
The EGW method was developed in the early eighties and got its name from

the developers: End, Gotthardt, and Winkelmann. It calculates the total effort by
adding the estimated functional effort to the estimated IT technical effort using
the formulae

Total effort = functional effort + IT technical effort,

Functional effort = FS FO FE, with

FS = Functional Size
FO = Functional and Organizational Tasks
FE = Functional Experience
FS is the functional size measured by the number of user functions or func-

tional tasks. FE regards the relation between required and existing skills.

5 Estimation Methods

141

Table 5.5. Example of a weight table used for a specific organization

Time effort for the organization
Kind of effort Stage Stages of Effort
Organization of phases No Effort 0
Standards, determination of con-
ventions

 Small Effort 1

Reading of rough/detailed require-
ments concept

 Medium Effort 2

IT-technical analysis Large Effort 3
Becoming familiar with existing
software

 Extra Large Effort 4

Not to be anticipated changes of
user requirements

Elaboration of test data
Support for data migration
Sum:

Table 5.6. Table for determination of FE

Necessary experience Existing experience
Low Average High

Fair knowledge of the application area and pro-
ject experience

1.00 1.00 1.05

Knowledge of the application area and project
experience

1.00 1.10 1.15

No knowledge of the application area but project
experience

1.05 1.15 1.25

No knowledge of the application area and no pro-
ject experience

1.15 1.30 1.50

Table 5.6 shows an example for some factors.

IT technical effort = PS CP PE OC DR PL,

PS = Program Size
CP = Complexity of Programming Tasks
PE = Programming Experience
OC = Organizational Complexity
DR = Degree of Reuse
PL = Programming Language

The Percentage Method

The Percentage Method distributes the costs relative to phases or tasks, is
quite easy to use, and can be used in parallel with other estimation methods. It
is the only process-oriented estimation method, and is based on the (in some
organizations antiquated) waterfall model that divides a project into sequential
(and somewhat overlapping) phases. In theory, each phase starts only when

5.3 Overview of Methods

142

the predecessor phase is finished. A “bonmot” is that the design phase is
declared to be finished when the project team has consumed the planned time
or the budget.

Frederick Brooks in his famous and timeless book The Mythical Man Month
recommended the following ratios as rules of thumb:

1/3 <of project work effort allocated to> planning
1/6 <of project work effort allocated to> programming

The effort of the entire project or of a single phase of the development proc-
ess can be estimated by using the actual measured effort spent up to the point at
which estimation is done (assuming that the planning is complete at that
point). For example, planning using Brooks’ rules is 33% of the total project
effort; therefore, the total effort can be derived to be three times that effort. A
prerequisite to the use of the Percentage Method is to analyze your own orga-
nization as the variation between Brooks’ ratios and your own can negate the
ratios. Calibration to one’s own organization and recurring factors in the deve-
lopment environment are always more relevant and useful than theoretical
models. Remember:

History is always a better predictor of future performance than theoretical
models!

Table 5.7. Example of mapping the ISO/IEC 12207 life cycle phases to ISBSG

Phase
Nr.

Steps in ISO 12207 – Software
engineering lifecycle processes

ISBSG phase ISBSG
phase
percentage

0 Plan (Feasibility
Study)

5%

1 Requirements analysis
2 System requirements analysis
3 System architectural design
4 Software requirements analysis

Specification 23%

5 Software design Design (Plan)
6 Software construction (code and unit

test)
7 Software integration

Coding 41%

8 Software test
9 System integration
10 System test

Test 22%

11 Software installation
12 User support

Implementation 9%

5 Estimation Methods

1/4 <of project work effort allocated to> component test and early system test
1/4 <of project work effort allocated to> system test (integration testing).

143

The ISO/IEC Standard 12207 (prior to the 2007 version that integrated soft-
ware and systems distinguishes 12 phases for “standard” software development.
ISBSG has reduced this down to five phases. Table 5.7 shows the relative per-
centages calculated from the ISBSG benchmarking data-base (release 7) on the
basis of 404 projects.

The ISBSG database contains further details of the Percentage Method (see
Practical Project Estimation featuring the American author). It includes break-
downs specific to diverse criteria such as, for example, new development vs.
enhancement vs. redevelopment etc. See also our later chapter in this book
about benchmarking.

5.3.2 Size-Based Methods

Since functional size-based measurements are so important, we have dedicated
several special chapters to functional size measurement methods and variants.
Here we present only the method of parametric-based estimation equations
featuring SLIM, COCOMO II, and the Multiplicator method.

Parametric-Based Estimating Equations

Parametric-based estimating equations rely on the input of a measured size
(e.g., KSLOC or FP) into a standard estimation equation that follows a para-
metric approach such as Monte Carlo simulation. Depending on the degree of

ferent complex applications. To achieve this, the stronger effort-influencing
parameters are used as independent variables. The validity of the formulas used
in the models should be calibrated to ensure conformity with one’s own organi-
zational data. The typical estimation formula is of the following form:

Y = f(Xn),

where Y = the dependant variable such as effort, duration, or cost,
n

number of subprograms, application size, etc.

Example: The Formula used in the SLIM suite of tools (www.qsm.com).
The SLIM Method from QSM, Inc. (Putnam and Myers 1992) estimates the

effort for software development based on the software life cycle starting at
project initiation through to implementation of the system. Putnam found a
repeatable, functional relationship between system size, the development work
effort, and project duration:

5.3 Overview of Methods

and X = the independent variable(s), for example, programming language,

detail available, the models may employ different estimation formulas for dif-

144

Development effort = E = S 3/(Ck 3 td 4),

Legend:

Ck = technological stage of the development organization

For Ck, for example, following empirical values were found:
Ck = 8 for systems with many interactions
Ck = 15 for stand alone systems

(Note: This formula can be retrieved from the following URL: http://ivs.cs.uni-
magdeburg.de/sw-eng/us/java/sweq).

Putnam’s company, QSM, developed their software estimating tool SLIM
that relies on this equation plus a growing database of projects (http://www.
qsm.com/database.html). According to an email received by the authors from
Larry Putnam, Jr.: “The numbers change as we continue to collect project data
(250–500 per year). Every 18–24 months we analyze the most recent data in
the major application categories, and do statistical fits that are updated in the
products. The SLIM-DataManager is the metrics repository product that stores
the historic data. SLIM-Metrics is the analytical tool that allows the user to do
queries against the database and do statistical analysis of the data. All the
products in the SLIM-Suite have the QSM database information contained in
them.”

Example: COCOMO II
COCOMO was originally published in 1981 in Barry W. Boehm’s book

Software Engineering Economics. Through years of refinement and practical
enhancements (based on industrial participation), COCOMO II emerged and
was featured in Boehm’s 2000 book: Software Cost Estimation with COCOMO
II. The earlier COCOMO model and the COCOMO II model are both based
on the Weights method and parametric-based equations. COCOMO II distin-
guishes three levels of software development:

1. Organic: relatively small teams develop in known environment. Product
size <50 KSLOC.

2. Semidetached: Situation between 1 and 3. Medium complex software
projects <300 KSLOC.

3. Embedded: development is restricted by time and costs, complex soft-
ware projects

Table 5.8 illustrates the corresponding COCOMO II estimation equations.

5 Estimation Methods

E = work effort for the software development life cycle in person years
S = the expected system size measured by KSLOC

Td = development duration in years.

Ck = 27 for partial systems of large systems.

145

Table 5.8. Example COCOMO II

COCOMO II mode Organic mode effort Semidetached and embedded
mode effort

Small SW project PM = 2.4 (KSLOC)
 1.05

PM = 3.2 (KSLOC) 1.05

Medium SW project PM = 3.0 (KSLOC) 1.12
Large SW project PM = 3.6 (KSLOC)

 1.20
PM = 2.8 (KSLOC) 1.20

Generally the following formula holds:

PM = a (KSLOC) b ci,

where i = 1,…,15; PM = work effort expressed in person months
a and b = constants

i

Boehm defines a person month as 152 net working hours (i.e., holidays,
sickness, and other nonproject related work excluded). Again, this formula is
available from the following URL: http://ivs.cs.uni-magdeburg.de/sw-eng/us/
java/COCOMO/index.js.shtml. Barry W. Boehm’s COCOMO II tool is based
on approximately 8,000 completed projects in its database.

In addition to the three modes, COCOMO II uses three submodels:
1. Application Composition Model

For software development in ICASE environment (Integrated Computer
Aided Software Engineering) with a high degree of automation. The size
of the projects is measured in Application Points. It is often used in early
project phases and during prototyping.

2. Early Design Model
Also used in early project phases for evaluation of architectural alterna-
tives and/or incremental development strategies. The size of the projects
is measured in KSLOC or unadjusted Function Points.

3. Post Architecture Model
Based on the Application Composition Model but much more detailed. It
is used after the design phase. The size of the projects is also measured
in KSLOC or unadjusted Function Points. The Post Architecture Model
regards 17 cost drivers.

A Freeware estimation tool for COCOMO II can be downloaded from the
University of Southern California’s URL http://sunset.usc.edu.

Since COCOMO II is widely used (particularly in the large government and
defense contractor industries in the United States and elsewhere), there exists a
wide number of variants. Andreas Schmietendorf and Reiner Dumke (MetriKon
2003) reported the following:

5.3 Overview of Methods

c = cost factors.

146

COPSEMO (Constructive Phased Schedule and Effort Model) for cost esti-
mation of each of the development phases
CORADMO (Constructive RAD Model) for support of RAD (Rapid Appli-
cation Development)
COCOTS (Constructive COTS) for estimation of effort to customize COTS
(Commercial Off The Shelf Packages) such as ERP systems like SAP® or
PeopleSoft®)
COQUALMO (Constructive Quality Model) for general estimation of quality
based on defects introduced during each of the development phases
COPROMO for estimation of productivity according to CORADMO and
COPSEMO (above) for phase scaled productivity evaluation

Parametric-Based Estimating Equations in Practice

A benchmarking-type experiment for which results were presented at the IWSM
2005 (International Workshop on Software Measurement) congress, Ton Dek-
kers compared the estimates for a project done conventionally (i.e. with expert
estimates) and in-parallel using the ISBSG Reality Checker (also the online
version showing slight difference) and estimates done using the QSM software
estimating tool SLIM (also with 2 simulations). The project size was estimated
at 540 Function Points to be developed on a mainframe platform. The project
was in the domain of business applications and the programming language
was assumed to be third generation language COBOL. The results are shown
in Table 5.9.

Table 5.9. Results of various estimating methods for a 500 FP software project

Estimating approach Duration Cost Peak staff
Conventional estimate 10 months 1 million Euro –
ISBSG Reality Checker
v3.0-R9

9.5–23 months Range between
656 thousand and
2 million Euro

–

ISBSG Reality Checker
Online (based on R9)

30.5% of the database
projects delivered in
10 months, median
14.6 months

72% of the
database projects
delivered with
expected cost

–

QSM SLIM 6.1 quick
estimate

12.8 months 1.2 million Euro 8.5
 persons

QSM SLIM 6.1 simulation
with restrained duration

10 months 3.3 million Euro 30 persons

SLIM 6.1 simulation with
restrained costs

13.5 months 1 million Euro 6.7
persons

The size of an application is, without doubt, a major driver of project work
effort but, as mentioned already numerous times in this book, it is not the only
one. Considering this, we present the next estimation variant: the Multiplicator
Method.

5 Estimation Methods

Expert COCOMO for risk assessment of projects.

147

The Multiplicator Method
The costs of a new project can be calculated by multiplying the estimated

number of units with predetermined effort per unit (based on historical actual
ratios). In this way, the average programming productivity is multiplied by the
estimated SLOC. A variant of the Multiplicator Method is the Wolverton
Method, which refines the effort per unit figures by the type of software and
the degree of complexity.

Example: The Mutliplicator Method
A consultancy derives a ratio of “1,200 instructions per month” (1,200 SLOC

per month) for an average programmer based on an assessment of the average
delivery rates on their historical projects for which data are available. Their
costs per person month are determined to be $9,000 USD.

Using these values = Costs per instruction = $9,000 USD divided by 1,200 =
$7.50 USD per SLOC.

Now, to estimate the cost for a similar program with an estimated 5,000
SLOC:

Cost = 5,000 SLOC $7.50 USD per SLOC = $37,500 USD.
Example: The Wolverton Method
Taking the multiplicator method above, the Wolverton refinements (see

Table 5.10) provides a more differentiated result. For example, considering the
example used in the Multiplicator method above:

Cost of 5,000 SLOC with an average complexity and type C software =
5,000 SLOC $24 USD per SLOC = $120,000 USD.

Table 5.10. Costs in US-$ per instruction stratified by type of software and degree of com-
plexity (Wolverton 1974)

Type of software (specific types) Degree of complexity
A B C D E F

Simple 15 17 18 21 24 75
Average 20 23 24 27 31 75
Complex 23 26 27 30 35 75

5.4 Evaluation of an Estimation Method

Cost estimators and software developers alike need estimating methods that
deliver reliable estimates that cover their entire software development life cycle.
To reach this goal, different authors have published requirements catalogues to
assist in evaluating estimation methods. Noth and Kretzschmar published such
a catalog, which also contains criteria gathered from other authors and enriched
by their own experiences.

5.4 Evaluation of an Estimation Method

148

The criteria for evaluating which estimating method is best for your organi-
zation falls into three categories:

1. User comfort
2. Project management

5.4.1 User Comfort

Considering the user comfort with an estimating method involves the follow-
ing criteria:

Usability (ease of use)
Ease to learn
Effort to arrive at an estimate
Tool support

The method should be usable without having to do too much preparation in
advance (e.g., collection of historical data from project postmortems). It is
beneficial when existing documentation can be used, (e.g., the existing re-
quirement documents can be used to derive the functional size, or the existing
SLOC can be counted).

The method should also be easy to learn and master after a number of uses. If
the estimating method requires hundreds of inputs that must be gathered using
new processes, it is unlikely that the effort to do so will be cost effective. In other
words, if it takes longer to perform the estimation than it does to actually do
the work (of software development) then the method is not a good fit. This is
also a measure of the efficiency and profitability of the method for your usage.

It should be easily possible to evaluate the level of tool support for a given
estimating method. A market review (or internet search) can provide a quick
answer to this question.

The acceptance of an estimation method grows with automated support. This
is an essential element behind motivation of the estimators and the efficiency of
the estimation method. On the one hand, it is difficult to be taken seriously
when one must do manual (pencil and paper) calculations in IT management
meeting, especially when project leaders want to do “what-if” analysis by chang-
ing project parameters to see the results on the estimates. On the other hand, it
is also important for a tool to support a valid method that CAN be done by
hand, but it is more convenient that it is automated. Remember the adage:

A fool with a tool is still a fool! (In other words, a fool with a tool can get to
the wrong answer more quickly but with better graphs than the fool without.)

5 Estimation Methods

3. Quality of result.

Transparency.

149

Transparency of the estimating equation is also an important criterion on
which to judge an estimating method. If the tool becomes a “Black Box” into
which input criteria is entered, and through a magical transformation an esti-
mate emerges, there will be a lack of trust on the part of both the customer
(acquiring the software) and the supplier. It is important that the method of
transforming the input variables into an output estimate be easily seen (espe-
cially for the customer) so that the result can be trusted. Again an American
adage holds:

Trust, but verify!
In other words, without revealing the innermost estimating “secrets” any esti-

mating method worth using will be transparent about the object of estimation
and the general approach used to estimate the work effort to develop it.

The evaluation of the category Project Management consists of the following
criteria:

Early applicability
Structuredness
Ability to iterate the results for better estimates

Early applicability means that the method can be used for early estimates
when the core minimum of input parameters (influential factors) is known. Some
methods pride themselves at being able to be applied early in the development
lifecycle, while others do not. It is important to use a method that is consistent
with the phase or point at which you want to use it to develop estimates.

Structuredness refers to the fact that the result of the calculation should be
structured to the same level as the chosen work breakdown structure. It is not
feasible to use a method that gives only a single value for an overall software
development effort if your project management requires a breakdown to the
level of their work breakdown structure tasks. Conversely, if an estimating
method provides you with estimates that are much too granular to be applica-
ble (i.e., multiple decimal places in hours estimated by task before require-
ments), then you should be wary of the “perceived” precision that simply cannot
exist despite the fact that they come out of a “sophisticated tool”. Correct
alignment of an estimating tool to its desired support of project management
activities is important. Not every estimating tool suits every organization –
examine your requirements for estimating before choosing the estimating method.

Ability to iterate the results for better estimates aims at usability of the esti-
mation method repeatedly at multiple times during the project. Hence one can

5.4 Evaluation of an Estimation Method

5.4.2 Project Management

Sensitivity analysis.

150

monitor and track variances of the estimates developed at different phases of
the development. The estimates should converge to the center (i.e., become more
reliable and accurate) as more information becomes known during the project.
This criterion is especially important on projects involving the management of
complex dynamic systems (as, e.g., software development projects) that are
mission critical. Note that the weekly newspaper reports of publicly tendered
software development projects that are now in excess of their original esti-
mates by hundreds of percentages have not used an estimating model based on
reality, or the information used to generate the original estimates was too
vague to be of practical use. While one would think that our industry would
learn from its experience when subsequent projects are undertaken, it seems
that history has a way of repeating itself. In the words of Albert Einstein:

Insanity is doing the same thing over and over again and expecting differ-
ent results.
If we do not change how we do estimates after grossly over- or under-esti-
mating a prior project, then we are in Einstein’s words: insane.

System Dynamics research led to the understanding that complex dynamic
systems tend in critical situations to deliver abnormally quick changing and
strong measurements. Early warning signs such as these can only be recog-
nized, and therefore acted upon, if measurements are taken repeatedly as the
project progresses.

Last, but not least, the method should enable sensitivity analysis or have
them integrated into the overall model.

5.4.3 Quality of Result

This category comprises following requirements:
Exactness
Traceability
Evaluation
Influence
Number of parameters
Objectivity
Stability
Defect localization
Flexibility

Exactness measures the difference between a former estimate and the resul-
tant actual measurement during project progress. This aims to address the prob-
lem of the precision of estimation.

5 Estimation Methods

Adaptability.

151

An estimate is traceable if a third party can understand and repeat the calcu-
lation. It must be clearly understood why certain evaluations and/or assump-
tions were made.

Evaluation requires that those influencing factors used (available) at the time
of the estimation need to be evaluated (i.e., they are objectively measurable)
at this stage of project progress. The factors must also be available when com-
paring the actual effort at project postmortem to enable the organization to
learn (i.e., make process improvements based on finding out which factors
changed during the projects). Influence means that the influencing factors are
also relevant to the project and that they can be measured quantitatively or
qualitatively.

The number of parameters fits in with usability (from the previous section)
and also comprises the requirement that all of the factors used in the calcula-
tions should be ones that directly influence the estimate (i.e., the estimating
model does not ask for irrelevant or superfluous information).

To reach objectivity, the majority of variables used in the estimation must
rely on objective rather than subjective (i.e., opinion only) evaluation.

Stability is reached when the influence of the factors does not exceed the
measurable influence. Estimates prepared using the same input data and the same
method must deliver the same result.

Defect localization is the attribute that reflects whether the estimation method
recognizes when influences are evaluated incorrectly (i.e., there are checks
and balances to detect incorrect data entries or conflicting data).

The method should be flexible to be used in different development environ-
ments and for all types of development projects without major alteration.

Adaptability refers to the ability of a method to react (and consider the in-
fluence) of changed conditions.

Other requirement catalogues contain similar criteria with slight differences.

requirement catalogue published in academic literature may contradict others
in practical usage.

At the end of 1981, the Institute for Management of the Free University of
Berlin asked the IT managers from a number of large organizations and soft-
ware consultancies to evaluate the estimating methods they used:

Question: How would you rate the precision of the software development
estimating methods you use?

5.4 Evaluation of an Estimation Method

5.4.4 Precision of Estimation Methods

Be aware that because of the range of requirements for estimating tools, one

152

Answer: By a large margin, the estimators lacked trust in the estimates pro-
duced out of their estimating methods. The majority of IT managers admitted
that their estimates were of the actual effort by up to 300%. A full 70% con-
ceded that their best estimates ranged from 10 to 50% off from the actual
effort, and rarely they were on the lower (10%) end of the scale. Almost 10%
admitted that their estimates were routinely out by at least 100% or more.

When pressed for the reasons for these deviations, IT managers typically said
that the requirements changed during the project and that the objectives and
goals were not precise enough. But, more than half of those surveyed (61%)
claimed that their estimation methods and processes were insufficient to per-
form accurate estimates.

A test of the various estimation methods used confirmed the concerns of
these IT managers since most of their methods could not meet even the basic
criteria listed in the previous section.

Note that these results must also be taken with a grain of skepticism because
a mere 20% of software developers industry-wide use any form of structured
estimating and only a small number of them have experience with solid estima-
tion methods.

In this light, it is interesting that the traditional criticism of the FPM focused
on the argument that different Function Point counters arrived at a different
number of Function Points, and therefore, somehow the function point mea-
sure is subjective. In an effort to counter this argument, the UKSMA (United
Kingdom Software Metrics Association) performed an experiment. They con-
ducted a “blind” test based on a case study whose functional size was deter-
mined by expert counters to be 139 Mark II Function Points. Taking two
groups of function point counters:

Group 1: new estimators with only two days training and meager experience
and expertise, and
Group 2: experienced Mark II counting experts with more than 4 years
experience.
When checking the resultant functional sizes that each group came up with,

the new estimators had a variance of 26%, while the experts varied in their
estimates by 13%.This lead to some improvements in the Mark II counting
manual. New experiments after the improvements produced a variance of 5%
for the experts. Similar results (with a 3.4% deviation) were reported in an as-
sessment of Function Point counts done by Compass Consulting on a large IT
department of an international organization. This is a minor variance consider-
ing that the size of the assessment was 9,000 Function Points across a wide
number of pieces of software.

Caper Jones wrote in his book Software Quality in 1997 that research at
M.I.T. (Massachusetts Institute of Technology) on behalf of IFPUG confirmed

5 Estimation Methods

153

that CFPS varied in their results by a mere 10%. It is important to realize that
a focus on size to the detriment of the accuracy of other input variables deli-
vers inaccurate results NOT due to the FP counts but due to the least accurate
input variable.

Remember that any estimate can only be as accurate as its least accurate
input variable!

A benchmarking study based on function points conducted by Gartner Group
for an Asian customer (not publicly available) was subsequently critically ex-
amined by a group of in-house customer FP counters. Using IFPUG 4.1 rules
as their basis for counting, the result was that the Gartner-estimated Function
Points counts were underestimated on average by 22% (band width from 9 to
34%). Again, before “throwing the baby out with the bathwater” (a North
American saying), it is important to realize that Function Point counting is
more consistent than many of the other inputs to the estimating models.

Barbara Kitchenham attests that the complexity of software systems in and
of itself can cause major differences in resultant estimates. The worse the qual-
ity of the data (or the increased ignorance of the influence of nonfunctional
requirements), the worse the outcome and reliability of the estimate on which
it is based.

Many organizations measure (if at all) their actual project work effort to a
precision of 20%, which translates into 1 h and 36 min for an average 8-h
working day. This means that the functional size measurement, especially if
done by an expert, is more precise and is a viable and reliable measure of
software size, and is definitely suitable for use during the requirements analy-
sis, and for use to measure the output of outsourcing contracts, and in bench-
marking. If this precision and consistency can be preserved, there can be more
effort allocated in the future for the measurement of actual data such as actual
work effort, unplanned overtime work, defects, etc.

Carlos Granja and Angel Oller presented at the IWSM/MetriKon 2004 a
case study comparing estimates on three projects done by three groups who
addressed the same problem from different perspectives:

Group 1 used a Linux platform and a Posgre database
Group 2 used Windows Professional XP (W) and an Oracle database (O)

The Functional sizes of the projects (in FP) were first measured during the
analysis phase, after use cases were completed. A second Function Point mea-
surement was done after implementation by backfiring from SLOC according
to Brian J. Dreger’s 1983 method. The following precision was observed (see
Table 5.11):

5.4 Evaluation of an Estimation Method

Group 3 used a reutilization approach, and also W and O.

154

Table 5.11. Precision of estimation in the Granja/Oller case study

Estimated FP Implemented FP Deviation (%)
Group 1 78.57 50.28 36
Group 2 96.72 73.72 24
Group 3 97.85 35.79 63

As can be seen from Table 5.11, the size was always underestimated.
Note that the implied precision (two decimal places) of each of the estimated

and implemented Function Point counts as reported leads one to the belief that
functional size is a precise value. This is not the case as the components that are
used to create the FP counts are based on whole numbers. Nonetheless, this
study simply reports the relative accuracy (not precision) of the case study and
shows that functional size measurement can be used effectively as an estimate
of the resultant implemented size of a piece of software.

The working group “Precision of Estimations”of the German metrics orga-
nization DASMA reports that the ISBSG did research using more than 400
selected projects in its database (release 9) concerning the precision of effort,
costs, size, and duration. The results are shown in Table 5.12.

Table 5.12. ISBSG study: Precision of costs, size, and duration based on 400 completed
projects

 Effort Costs Size Duration
Number of projects 200 86 130 222
Higher/earlier than
estimated by >10%

19%
(38 projects)

16%
(14 projects)

12%
(16 projects)

4.5%
(10 projects)

Exact estimation
(< 10%)

23.5%
(47 projects)

49%
(42 projects)

50%
(65 projects)

51.5%
(114 projects)

Lower/later than
estimated by >10%

57.5%
(115 project)

35% 38%
(49 projects)

44%
(98 projects)

Table 5.12 shows that about half of the projects are estimated within a range
of 10%. In most cases, the effort was underestimated.

The principal steps of the process of estimation start with a measurement of the
functional size of each piece of software to be developed, delivering a numerical
value for the size of the object of estimation.

Using the functional size (FP count) value for each piece of software, together
with the environmental (situational and technical) and nonfunctional factors
(quality constraints) for the software, the work effort estimate can be deter-
mined.

5 Estimation Methods

5.5 Management Summary

(30 projects)

155

The next step after estimating the project work effort is usually to calculate
a cost value from the effort using a metric-like US-$ per hour for the project.

In the simplest case to determine a preliminary estimate of project duration,
the total work effort is apportioned across the various SDLC phases of an IT
project using a Percentage of time per phase Method.

The above mentioned estimate of the total effort can be compared with the
estimation calculated by the Percentage Method, post project completion by
using the actual measured effort of the first phase of the IT project, and calcu-
lating from this the total effort using the proportion percentage for this phase.

Practically, Function Points and SLOC are two principles used for measuring
the size of the object of estimation (the software product size) and for calculating
the effort needed to develop it.

The problems of the SLOC methods are that SLOC can be measured only
in a late phase of a project’s progress (after coding is complete) and when the
majority of software development is already complete (coding is approximately
about 10% of the effort of system development).

The paradox of the Assembler equivalent (see Chap. Backfiring) is a doubtless
argument against the SLOC methods: the mightier a programming language, the
less SLOC are necessary for the programming of certain functionality.

The advantage of Functional Size Measurement Methods is that they can be
used early (in the requirements phase) in the software development life cycle.
In addition to the IFPUG FPM, there exist some established variants (some of
which are ISO conformant been published as ISO/IEC standards) of it.

The problems of the FPM are that the requirements are not detailed enough
after project start and that the IFPUG complexity factors (e.g., 1 ILF low = 7 FP)
are a continuous object of debates (for reason of their origin and being antique).

The problems of the FPM occur when the requirements are not detailed
enough after project start.

Purists of the object-oriented paradigm often use the killer phrase that these
estimation methods are not suited for object-oriented system development.

It is possible to estimate the effort of object-oriented system development
using functional size measurement together with solid historical data from
such projects and earnest endeavor using the known estimation methods.

Mathematicians attest that it really does not make sense to measure the
“length of algorithms” (when performing functional size measurement), since
anytime someone can develop a new and shorter algorithm for the solution of
a problem.

5.5 Management Summary

156

We define a software estimation process as “a method with detailed regula-
tions and standards that is effectively supported by tools.”

A challenge to estimating methods overall is the low degree of dissemina-
tion and serious consideration granted to the estimating theme by researchers,
scientists, and educational institutions.

Estimation in academic studies as well as in training and literature is often
dealt with at a peripheral level in that it is mentioned as a necessary task to be
done with the existing methods and processes (with no mention of its import-
ance or how to do it properly). This impression is also valid for monographs
and literature about project management.

The result of a work effort estimation is a figure for the human resource
effort that characterizes the development or enhancement of the software sys-
tem (or a part of it).

The usage of estimation processes, for example, with experience curves or
estimation equations implies the existence of mathematical functions for cal-
culation of effort, and can seduce one to the wrong conclusion by assuming
that exact results can be calculated.

After determination of the size of an application, for example, by counting
Function Points, one tries to find an applicable relationship between the func-
tional size and the work effort for software development.

Using size measures in statistical regression analysis, one can calculate an
“experience curve.”

The majority of effort estimation equations follow the general form y = f(x1,
x2, x3,…), where y is the estimated work effort and xi are the input parameters
influencing the effort. When IFPUG or another functional size measurement
method is used to determine the size of the software to be developed or en-
hanced, the work effort equations most commonly used are in the form y = axb,
with a and b calculated by a regression analysis process, y is the estimated
work effort, and x is the functional size.

The third variation of estimation methods aside from experience curves and
estimation equations is a knowledge-based expert system.

So you need an approximation and have exhausted all other options – the
functionality can be at least approximated by backfiring.

Regarding the issue of code complexity, Capers Jones stated that very complex
code needs generally more Function Points per SLOC compared to extremely
simple code.

When using backfiring for calculation of Function Points from SLOC and
vice versa, one has to regard in any case that the SLOCs are counted which
belong to certain Function Points. Only then can a reliable calculation factor
be derived.

5 Estimation Methods

Hand in hand with estimation goes the usage of tools.

157

Generally, SLOC are seen as a technical or physical measure and Function
Points as a functional measure.

The expert estimation method is likely the most used estimation method
worldwide because it relies on one’s own personal experiences in software
development and is therefore based on reality and has a sense of comfort
(termed at times, expertise).

The disadvantage of such methods is that estimates depend on subjective
evaluations and mostly undocumented recollections of historical task effort.
The documentation of premises and the environment of estimation, the persons
involved, and assumptions made during the estimation are all necessary pre-
requisites if there is to be any lessons learned or experience gained for future
estimates of this type.

The effort to conduct this type of estimation is often better spent by doing
standard estimation using one of the more formal methods. At least the effort
is not larger using a formal method, and it provides a lot of benefits as, for ex-
ample, interorganizational comparability, and increases the potential accuracy
of the estimate.

The Analogy Method estimates the effort by comparing the new develop-
ment with historical projects, by relying on postmortems (sometimes called
retrospectives) regarding certain aspects of the project.

Using the Relation Method the effort is estimated similar to the Analogy
Method by comparing the system with completed project postmortems. The
only difference in the relation method is that the comparison is done using
indices.

Weights methods associate objective and subjective factors that influence
systems development with certain weights.

The Percentage Method distributes the costs relative to phases or tasks, is
quite easy to use, and can be used in parallel with other estimation methods. It
is the only process-oriented estimation method.

The effort of the entire project or of a single phase of the development proc-
ess can be estimated by using the actual measured effort spent up to the point
at which estimation is done (assuming that the planning is complete at that
point).

History is always a better predictor of future performance than theoretical
models!

The SLIM Method from L.H. Putnam (Putnam and Myers 1992) estimates
the effort for software development based on the software life cycle starting at
project initiation through to implementation of the system.

5.5 Management Summary

158

The size of an application is, without doubt, a major driver of project work
effort but, as mentioned already numerous times in this book, it is not the only
one.

The acceptance of an estimation method grows with automated support.
This is an essential element behind motivation of the estimators and the effi-
ciency of the estimation method. It is difficult to be taken seriously when one
must do manual (pencil and paper) calculations in IT management meeting.

System Dynamics research led to the understanding that complex dynamic
systems tend in critical situations to deliver abnormally quick and strong
measurements. Early warning signs such as these can only be recognized, and
therefore acted upon, if measurements are taken repeatedly as the project pro-
gresses.

An estimate is traceable if a third party can understand and repeat the calcu-
lation. It must be clearly understood why certain evaluations and/or assump-
tions were made.

Remember that any estimate can only be as accurate as its least accurate
input variable!

Barbara Kitchenham attests that the complexity of software systems in and
of itself can cause major differences in resultant estimates.

5 Estimation Methods

6 Estimating Maintenance Effort

Project estimation usually does not include lifetime (or even the first year) of
maintenance effort. The lifetime maintenance costs, however, typically exceed
the original application development effort by up to 10 times. Software main-
tenance is often defined as the correction or modification of a software product
after delivery, to correct faults, to improve performance or other attributes, or to
adapt the product to a changed environment. Practical experience shows that IT
systems live longer than expected, with the recent case-in-point being the Year
2000 conversion of applications originally intended to be replaced during the
1980s, but surviving through to the turn of the century.

It is a common practice that the costs for maintenance are accumulated during
the lifetime of a system without controlling the amount and without differen-
tiating between the different kinds of costs. Yet, the maintenance and support
area can be prone to inefficiencies (i.e., cost excesses) and the lack of consistent
processes, resulting in IT spending that is not only misunderstood, but many
time uncontrolled.

Capers Jones states (Jones 2007): “The word maintenance is surprisingly
ambiguous in a software context. In normal usage it can span some 23 forms
of modification to existing applications. The two most common meanings of
the word maintenance include the following:

1. Defect repairs

Using a supermarket analogy: The shopper is astonished at how many cheap
goods fit into a shopping basket (i.e., in software, this is akin to comparable
maintenance requirements) but accumulates to a large sum when all items are
rung up at the cash register. While the grocery shopper can remove items and
reduce the overall costs, this is not the case with software maintenance where
the work done before production cannot be corrected (or done more correctly)
after the products are released. In software, many smaller defects lead to large
costs postproduction.

Note that the International Function Point User Group (IFPUG) definition
holds that software maintenance does not change the functionality of an appli-
cation. If a project results in new/changed/deleted functionality, it is classified
by IFPUG as an “enhancement” project.

2. Enhancements or adding new features to existing software applications”.

160

6.1 International Standards for Software Maintenance

There are two main sources of maintenance standards:

ISO/IEC standards
Other standards.

Besides these we present in the first paragraph of this chapter a short overview
of the following standards:

FiSMA: Finnish Software Measurement Association
IFPUG: International Function Point Users Group
NESMA: Netherlands Software Metrieken Gebruikers Associatie
UKSMA: United Kingdom Software Metrics Association.

6.1.1 ISO/IEC standards

At least two ISO/IEC standards exist to provide direction for software main-
tenance:

ISO/IEC 14764: Software Engineering: Software Maintenance
ISO/IEC 9126-3: Software Measurement: Quality In Use (metrics).

6.1.2 FiSMA: Finnish Software Measurement Association

The FiSMA published their MT22 situation analysis for maintenance and
support, which is composed of 22 standard productivity factors that influence
the amount of effort to maintain a particular piece of software. MT22 is classi-
fied into six organization factors, five process factors, six product factors, and
five people factors.This situation analysis is freely available from www.fisma.fi
and can also be found in the Appendix of this book. The purpose of this method
is to help to estimate annual maintenance and modification projects.

6.1.3 IFPUG: International Function Point Users Group

In January 2004, IFPUG published its Counting Practices Manual (CPM)
Release 4.2, which contained in Part 2, Chap. 4 Enhancement Projects and
Maintenance Activity. This chapter provides guidance to practitioners of Func-
tional Size Measurement to discern between maintenance projects for which
there may or may not be function points, and enhancement projects for which
there is typically functional change.

6 Estimating Maintenance Effort

161

IFPUG states, “Once an application has been developed and installed, it
must then be maintained (modified) in order for it to continue to meet the needs
of an ever-changing business and technical environment. This maintenance inclu-
des a wide range of activities that are performed during this phase of the appli-
cation life cycle, some of which involve functional changes that are applicable
to FPA.”

The chapter goes on to use the IEEE (Institute of Electrical and Electronics
Engineers) definitions for maintenance based on three categories:

Adaptive Maintenance: Software maintenance performed to make a computer
program usable in a changed environment.
 Corrective Maintenance: Software maintenance performed to correct faults
in hardware or software.
Perfective Maintenance: Software maintenance performed to improve the
performance, maintainability or other attributes of a computer program.
Further, IFPUG states, “While the body of this chapter has provided Function

Point Counting hints and guidelines for enhancements to existing applications,
there is no industry-wide standard for consistent classification of activities that
fall within the above categories. This section provides a framework based on
common industry experience from which to evaluate the applicability of FPA
in the support of installed applications. Since maintenance and support activi-
ties are subject to inconsistent reporting, locally developed guidelines should
address these areas. The following are some of the more commonly encoun-
tered activities, with suggested handling relative to FPA.

For example, a project involving only upgrades from one platform, language,
or technical environment to another, with no change in user functionality, should
not be subject to an enhancement function point (EFP) count.”

IFPUG goes on to outline the various application maintenance and support
activities as presented in Table 6.1.

Table 6.1. IFPUG categories of maintenance and their relationship with function points

Type of
maintenance
and support
activity

Description

Maintenance
Requests

Regardless of duration or level of work effort required, it is the
type of activity that determines how the work is classified. Fun-
ction Point Analysis should not be used to size perfective or cor-
rective maintenance work. Corrective maintenance should be
charged to the development or enhancement project that intro-
duced the defects. Perfective maintenance should not be charged
to any development or enhancement projects.

(Continued)

6.1 International Standards for Software Maintenance

162

 There may be a tendency to track some enhancement functionality
as maintenance work, but that work should be monitored and
reported separately. The usual rationale for inclusion is for either
immediacy or expediency. Organizations often provide a fast path
for small enhancement requests, usually 40 h or less, in order to
reduce the overhead burden on the project. When business require-
ments are affected, Function Point Analysis should be applied at
least for results measurement.
If a release contains a mix of adaptive, corrective, and/or perfec-
tive maintenance requirements, care must be exercised in separa-
tion of work effort, since the latter two categories contribute zero
function points to the business. While such work effort segrega-
tion may be relatively easy during the construction phase, depend-
ing on the level of granularity in effort tracking, it is generally more
difficult during most final test phases. One possible approach would
be an apportionment of the entire release based on proportional
content.

Activity Within enhancement
counting scope

Correction of production errors
(“break/fix”)

No

Perfective or preventative mainte-
nance

No

Platform upgrades, new system
software releases

No

Project with both fixes and en-
hancements

Partially

On-Demand
(Ad Hoc)
Requests (for
definition see
Glossary of
IFPUG CPM
4.1, 1999)

Functionality that is provided to the end user in the form of one-
time/on-demand reports and data extracts is certainly countable. The
decision to count should be made based on whether the functions
will be maintained and the business need that the function point
count will meet. It must be noted that this discussion is limited to
reports/extracts produced by I/S Development and does not cover
user generated Ad Hoc reports or queries. It should be noted that
the methodology to produce ad hoc reports is usually not as rig-
orous as for a full enhancement project. Therefore, care should be
taken when comparing the relative costs of such work with those
of general enhancement activity.

Activity Within enhancement counting scope
One-time reports Local convention
Table updates No
Special job setup No
Data correction No
Mass data changes Yes, as conversion if associated with

a project.
End User
Support

Any nonproject work effort related to activities classified as “not
countable” should be charged to a labor classification other than

6 Estimating Maintenance Effort

Table 6.1. (Cont.)

(Continued)

163

New Development or Enhancement. For Preliminary Estimation
or Feasibility Studies, the problem is that user requirements are not
yet well defined. Also, a project at either stage is usually not yet
funded (and may never be funded). At best, a Rough Order of
Magnitude (ROM) function point estimate can be determined,
but no quantitative measurements should be applied at this point.
Any resulting number is for budget and planning purposes only.
General nonproject user support activities, such as answering
“what-if” questions and helping users, should not be subject to
Function Point Analysis.

Activity Within enhancement
counting scope

Preliminary estimation or feasibil-
ity analysis

At best, ROM

Answering “what if” questions No
General nonproject client support No
Help desk support Partially

6.1.4 NESMA: Netherlands Software Metrieken Gebruikers
Associatie

In 2001, NESMA published their Function Point Analysis for Software Enhan-
cement Guidelines Version 1.0, (Downloadable from http://www.nesma.nl/
download/FPA).

In this document, NESMA developed a measure (with special weighted
impact factors) called Test Function Points (TFP) and Enhancement Function
Points (EFP) for calculating the total enhancement effort including testing:

E = (EFP hours per EFP) + (TFP hours per TFP),

where E is the total enhancement effort in hours, EFP is the enhancement FP
count in NESMA FP, TFP is the testing FP count in NESMA FP, hours per
EFP and hours per TFP are measured effort.

6.1.5 UKSMA: United Kingdom Software Metrics Association

In July 2001, UKSMA together with the International Software Benchmark-
ing Standards Group (ISBSG) published (as part of the UKSMA Quality
Measurement Standards) their standard Measuring Software Maintenance and
Support, Version 0.5 Draft (available for free download from the URL: http://
www.uksma.co.uk).

This standard distinguishes between maintenance, support, and operations
work as distinct from development or enhancement (see Table 6.2).

6.1 International Standards for Software Maintenance

164

Table 6.2. The UKSMA activity based model of support and maintenance

Type of work activity Definition
Development (1) Development – as defined in IFPUG 4.1
Enhancement (2) Enhancement

– As defined in IFPUG 4.1
– 5 person days effort – changes the functionality
(3) Maintenance: can be
– Corrective maintenance
– Perfective maintenance
– Preventative maintenance
– Adaptive maintenance (5 person days effort) –

 may change the functionality!

Maintenance (3) and
Support (4)

(4) Ad hoc help desk responses
– Problem analysis
– Decommissioning

Operations (5) (5) System administration
– Deployment/rollout
– Database management
– Information retrieval support

The aim of the standard is to define the measures from which up to 23
metrics could be derived, including the following:

Productivity: Function Points supported per person year
Departmental Proportion for Minor Enhancements (D): maintenance effort
(ME) divided by support effort devoted to minor enhancements (SE) per
department, expressed in percent. The formula is D = ME/SE 100%
Proportion of Application Minor Enhancements (AME): Departmental effort
for minor enhancements (ME) divided by the sum of maintenance effort
and support effort (ME + SE), expressed in percent. The formula is AME =
ME/(ME + SE) 100%

6.2 Enhancement Projects

In some organizations, the maintenance and enhancement activities are well
defined and separate pieces of work. In such organizations, work done to fix
defects (corrective maintenance), make it run better (perfective maintenance),
or prevent future business issues (preventative maintenance including upgrades
to new releases of packaged components) are all considered to be categorized
as maintenance and support that does not change the functionality of the appli-
cation. Work that results in new or modified functionality (by user request) is
typically categorized as adaptive (maintenance) or enhancement that is man-
aged more as a project or service request (SR) and typically would involve

6 Estimating Maintenance Effort

165

modifications to the application functionality. However, this seemingly simple
way of categorizing work is often anything but simple.

The American author has direct experience where a large organization cate-
gorized work to an SR by estimated effort hours – if it exceeded 50 h it was put
to an SR, otherwise it was considered production systems support (i.e., main-
tenance). The organization decided to use function points to measure the size
of enhancement projects (i.e., SRs) and simply record straight hours for main-
tenance work. The result was that there were many SRs that had no functionality
change (i.e., zero function points) – even though they were assumed to be en-
hancement projects.

Capers Jones published (in Estimating Software Costs, 3rd ed., 2007) a
table outlining 23 types of work that are variously considered to be maintenance
or enhancement (see Table 6.3).

Table 6.3. Major kinds of work performed under the generic term “maintenance” (Jones 2007)

 1. Major enhancements (new features of >20 function points)
 2. Minor enhancements (new features of <5 function points)
 3. Maintenance (repairing defects for good will)
 4. Warranty repairs (repairing defects under formal contract)
 5. Customer support (responding to client phone calls or problem reports)
 6. Error-prone module removal (eliminating very troublesome code segments)
 7. Mandatory changes (required or statutory changes)
 8. Complexity or structural analysis (charting control flow plus complexity metrics)
 9. Code restructuring (reducing cyclomatic and essential complexity)
10. Optimization (increasing performance or throughput)
11. Migration (moving software from one platform to another)
12. Conversion (Changing the interface or file structure)
13. Reverse engineering (extracting latent design information from code)
14. Reengineering (transforming legacy application to client-server form)
15. Dead code removal (removing segments no longer utilized)
16. Dormant application elimination (archiving unused software)
17. Nationalization (modifying software for international use)
18. Mass updates such as Euro or Year 2000 Repairs
19. Refactoring or reprogramming applications to improve clarity
20. Retirement (withdrawing an application from active service)
21. Field service (sending maintenance members to client locations)
22. Reporting bugs or defects to software vendors
23. Installing updates received from software vendors

There is a critical difference between the definition of the word enhancement
in the IT and customer world (where anything that makes the application run
better, makes it easier to use, reformats screens, or adds function is categorized
as an enhancement by the users) compared to the definition in the functional size
measurement world (where enhancement means “functional” change).

6.2 Enhancement Projects

166

Table 6.4. ISBSG function point component percentage profile for enhancement projects

Functionality Added Changed Deleted Total
N (number
of projects,
overlapping)

408 306 83 454

EI (%) 31.9 37.8 38.0 34.4
EO (%) 31.4 25.9 35.1 29.4
EQ (%) 13.5 16.0 10.7 14.1
ILF (%) 15.6 18.0 11.1 16.5
EIF (%) 7.5 2.3 5.1 5.6
Totals (%) 55.3 42.0 2.7

Table 6.5. Analyses of changes in enhancement projects

Enhancement project functionality N (number of
projects)

Percentage

Only added functions 143 31.5
Only changed functions 46 10.1
Added and changed functions 183 40.3
Added and deleted functions 5 1.1
Added, changed and deleted functions 77 17.0
Total 454 100.0

The ISBSG database (The Metrics Compendium, ISBSG 2002) contains
slightly more new development projects (60%) than enhancement projects
(40%), of which the following function point profile was published based on a
sample size of 454 IFPUG 4.0 Function Point Enhancement projects (see Tables
6.4 and 6.5).

FP percentages of enhancement projects in the ISBSG database release 10
(2007), which contains 4,106 completed software projects:

The ISBSG Database release 10 from 2007 has 59% enhancement projects,
39% new development projects, and 2% redevelopment projects.

When counting the Function Points for software enhancements, one must
remember the domino effect, that is, that a functional change to an ILF typically
also causes a change to the elementary functions that use it (e.g., add, change,
delete, and potentially query functions). All elementary functions need to be
considered that have relationships to other functions (e.g., functions may also
be related via interfaces).

Nevertheless, when considering software maintenance, remember that the
functional size measurement definitions indicate that maintenance does not
alter the system size in Function Points. If a project does alter the function-
ality of an application, it is typically considered not to be maintenance per se,
but an enhancement instead.

6 Estimating Maintenance Effort

167

6.3 Software Metrics for Maintenance

Referring again to the analogy of the supermarket-shopping basket, we can
direct our attention to measures that can aid us in the estimation of maintenance
effort. The aim is to develop measures and threshold figures to determine if the
amount of effort hours could exceed the costs of redevelopment of the soft-
ware. Often it is not considered that software – like other products or goods –
ages over time and that preventive maintenance and eventual replacement
(redevelopment) of software will someday be necessary.

There is broad consensus in the metrics community that annual support ratios
(i.e., how many FP can be supported by one person in one year) depends on the
same factors as software productivity (as previously discussed). As such, main-
tenance effort is a function of software size, plus a myriad of other factors,
including the type of software and development language.

The COCOMO-M(aintenance) Model and SLIM model for maintenance both
rely on only one parameter related to maintenance, while PRICE-S, SEER-SEM,
KnowledgePlan, and Experience® Pro all use multiple parameters for their main-
tenance models.

Some of the dominant parameters related to maintenance are shown in
Table 6.6 (see Abran et al., 2002).

Table 6.6. Factors influencing software support rates

Dominant parameters influencing software support rates
Type of application
Programming language
Age of software
Quality of existing documentation
Necessity of a complete system test
Restrictions in availability of resources
Functional complexity
Technical complexity
Degree of reuse

Note: For readers interested in further academic research in this area (some of
it experimental and inconclusive) refer to the University of Quebec at Montreal
studies including the following:

The above mentioned field study of Abran et al. conducted at the University
of Quebec at Montreal showed as result a positive, but weak relationship
between application size and effort.
Further research of this same data (Tran Cao et al., 2004) outlined a field
study to investigate how cyclomatic complexity, together with the number of
data groups and COSMIC Function Points affected the maintenance effort.

6.3 Software Metrics for Maintenance

168

Abran and Robillard (1996), about 21 maintenance projects of the Manage-
ment Information Systems (MIS) type with larger functional enhancements.
The average effort for these projects was more than 2,200 person hours or
332 person days. The authors found a strong (R2 = 0.81) statistical relation-
ship between size and effort. The data were from an organization that was
known to deliver its projects successfully on time, in costs, in functionality,
and in quality. The organization had by the beginning of the 1990s reached
CMMI® level 3 with an evidentially strong quantitative management of the
Key Performance Indicators (KPI) on CMMI® level 5), or
Abran and Nguyenkim (1993), study of an organization with strong data
collection and effort records. The projects involved smaller maintenance
tasks that were all performed by one person only. The average effort per
maintenance task was 37 h with a minimum of 27 h and a maximum of 52 h
for corrective maintenance), or
Zuse collected the following metrics that can be used when estimating main-

tenance effort:
Number of defects occurring after delivery. Often the measurements are
performed during 6 months after delivery
Number of changes or change requests
Effort for defect search and correction
Defect density (recorded as defects per Function Point)
Mean time until defect occurrence (similar to mean time between failures)
Software Maturity Index (SMI), defined as difference between the number of
modules/functions of the actual release (R) minus the number of modules/
functions changed, added, and deleted in the previous release (P). This differ-
ence is divided by the number of modules/functions of the actual release:

SMI = (R P)/R.
This list can be enhanced with the following metric:
Maintenance hours per installed Function Point. If this figure is very high,
(or remarkably higher than for other applications), reengineering or new
development should be considered.

From all of the research and industrial findings, we can conclude that a simple
counting of the maintenance tasks and the defect reports can hint at where there
are error-prone modules, and can furthermore deliver information for making
decisions about the future enhancement of modules/functions. Such metrics and
results from collections of relevant data can provide information on best prac-
tices and know-how collection of organizations and estimation of future main-
tenance tasks.

6 Estimating Maintenance Effort

Two aspects should be considered when considering maintenance metrics:
Estimation of maintenance effort after delivery of the application (perhaps
by type of maintenance)
Estimation of (single) maintenance tasks.

169

6.4 Estimation of Maintenance Effort after Delivery

From the beginning of the 1990s, Großjohann (1994) at Volkswagen AG (VW)
used a VW-specific variant of the Function Point Method to estimate the service
effort for IT systems. He calculated the relationship between the service year
and the hours per Function Point per year (service factor). This resulted in a
“bathtub” curve (see Fig. 6.1), the name derived from the shape of the curve.
The relationship was calculated by the formula (S, service factor; Y, service
year):

S(Y) = 1.604 0.37268Y + 0.04684Y 2 – 0.00166Y 3.

The total effort to support the complete life cycle of an application (ST) is
calculated according to the following formula:

ST = FP S(Y – 0.5) B(Y).

In this formula B(Y) represents the influential factors (skills, number of users,
system-specific and environment-specific parameters) correlating to the service
year. This total effort is divided into the following:

Maintenance 65%
User support 25%

6.4 Estimation of Maintenance Effort after Delivery

Note that if maintenance budgets are reduced below the minimum level
required to keep the application up and running per the user specifications (pro-
duction system support), problems and user satisfaction issues will occur. It is

Fig. 6.1. “Bathtub” curve for postdelivery support of applications at Volkswagen AG, 1994

Production 10%.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Year in service

Pe
rs

on
 h

ou
rs

 p
er

 F
un

c t
io

n
Po

in
t p

e r
 y

e a
r

170

every user’s right to expect (and demand) at a minimum, correct and up-to-
standard functionality of their software system. Without an adequate level of
funding, this cannot be guaranteed.

Enhancement projects that add, change, or delete the functionality of the
application are not included in this formula, and such effort (not included in
the maintenance effort) must therefore be added separately to the estimate.

6.5 Estimation of Small Changes

Small changes for maintenance reasons are sometimes necessary to meet legal,
technical, or organizational requirements, as well as for defect correction. In
an international insurance company in Germany these small changes due to
maintenance reasons are called “maintenance tasks”. Typically, the effort for
such maintenance tasks is less than 3 person months, and therefore, the effort
to do a Function Point count is usually unfeasible – especially if the Function
Point documentation is not readily available.

The estimation Competence Center within the IT department of an interna-
tional insurance company in Germany worked with a number of experienced
project leaders to develop an Excel spreadsheet containing typical tasks for such
small changes caused by maintenance reasons and the parameters that were
considered to be influential for each. Each factor was correlated with an esti-
mated effort for estimation, which could be changed by 100%. During the
first 2 years, five of the application deve-lopment departments performed

Fig. 6.2. Estimates of small changes due to maintenance reasons (using the Excel spread-
sheets) ordered by Application Development Department during the first 2 years

6 Estimating Maintenance Effort

more than 220 estimates based on these spreadsheets (see Fig. 6.2), and for
more than 90 of these projects, the actual effort expended at the end of the
project was recorded (see Fig. 6.3).

171

Fig. 6.3. Comparison of effort for small changes due to maintenance reasons estimated with
the Excel spreadsheets to actual effort, for 93 projects during first 2 years

Based on the results depicted in Fig. 6.3, corrections were made to the esti-
mating assumptions in the Excel spreadsheets. On average, these corrections
resulted in a reduction to the formerly estimated efforts by 44%.

Example: Excel Spreadsheet for estimating the effort of Host Maintenance
Tasks.

Table 6.7 shows the revised Excel estimating spreadsheet for host maint-
enance tasks.

Three experiences for this pilot project were interesting:

1. During the pilot phase in three of the departments, the existence of the
estimation spreadsheets was discovered by colleagues from four of the
other application development departments. This resulted in the pleasant
surprise that a total of seven departments participated and made their
data available at the end of the pilot phase.

2. As a follow-up to this initial 2 year activity and spreadsheet revision,
several other departments developed their own specific variations of the
spreadsheets (e.g., for data warehouse applications), which were later
approved and published as part of the standard set of estimating spread-
sheets by the Competence Center.

3. One experienced senior manager contradicted the previously stated opin-
ion by the Competence Center that the effort for a Function Point count
could not be economically justified in the case of small changes. Not
only did he conduct FP counts on his projects, he presented his count
data and demonstrated that it was no grand effort to do so as part of the
effort estimating process. As such, for easily documented FP counts,
management subsequently demanded that all other departments count

6.5 Estimation of Small Changes

172

Table 6.7. The estimation spreadsheet used to estimate effort of small changes due to main-
tenance reasons in host environment

Parameters Counted item Effort in
person days
(PD), 1 PD = 8
Person Hours

Project
management
(coordination)

10% from total effort of third column (inserted
as last item in column 3)

Number of involved IT persons 0.2 PD
Number of involved users of the insurance
branches

0.3 PD
Discussions

Number of involved interfaces 0.4 PD
Number of new tables/databases 3 PD Databases
Number of affected tables/databases 2.5 PD
Number of trivial program changes 0.1 PD
Number of small program changes 0.3 PD
Number of “normal” (average) program
changes

3.0 PD

Number of large program changes 5.0 PD

Programs

Number of all programs to be changed 0.1 PD
Number of affected Program Status Blocks
(PSBs)

0.2 PD

Number of new or to be changed production
jobs

0.7 PD

Other elements

Number of changed layouts 0.3 PD
Number of affected pages of system
documentation

0.3 PD Documentation

Number of new pages of system
documentation to be written

0.3 PD

Number of new test cases to be defined 0.1 PD
Number of existing test cases that must be
verified

 0.05 PD

Amount of IT testing effort 0.8 PD

Test

Number of test cycles for end user testing 2.8 PD

and organize their Function Point counts in a similar manner. In response,
the Competence Center developed an additional small Excel spreadsheet
that became known as the “FP Counting Sheet” (see Table 6.8). Today,
for those estimates for which a quick FP count can be readily obtained,
this counting sheet accompanies each small customer change order due
to maintenance reasons and ask for an estimate of how many Function
Points will be added, changed, or deleted as part of the order.

Today, all of the measures collected are recorded and documented in the
metrics database so that they can be used for ongoing project tracking and for
the future development of metrics.

6 Estimating Maintenance Effort

173

Table 6.8. The FP counting spreadsheet for small customer change orders
Customer
M.
Orders

Several S. col. C.
A. data (order #
and status, account
#, AS #, FP
counter name,
actual effort in
hours)

of
F.
CHG

 # of
FPs
for F
changed

of
F.
NEW

of
FPs
for
NEW
F.

of
F.
DEL

of
FP’s
for
DEL
F.

Total
of
FP’s
(sum
of FP
col.)
for
this
order

Release
04/2008

Order 1
Order 1
Order 1
Order 2
Order 3
…
Total for
Release 04

Release
09/2008

Order 1
Order 2
Order 3
…
Total for
Release 09

Total of all
releases and
orders for
the year

Abbreviations: M. Maintenance orders, S. spreadsheet, col. columns, C. containing,
A. administrative, AS. application system, F. Functions, # Number

Example: PC estimating spreadsheet for small customer change orders due
to maintenance reasons

The department involved in PC-based application development uses a modi-
fied version of this Excel sheet. It can be easily modified (tailored) by the pro-
ject leaders and is widely accepted. Table 6.9 shows this variant.

Both Tables 6.8 and 6.9 depict possible heuristic estimation methods based
on practical experience correlated with actual historical data. The spreadsheets
and the values they include are not necessarily transferable to other organi-
zations directly, at least not 1:1 because they were specifically developed to be

6.5 Estimation of Small Changes

174

Table 6.9. The estimating spreadsheet as tailored for PC-based small customer change
orders

Parameters Effort in
person days
(PD), 1
PD = 8
Person Hours

Project
Management
(Coordination)

10% of the total effort

Number of involved IT persons 1.0 PD
Number of involved users of insurance
branches

1.0 PD

Number of involved existing interfaces 2.0 PD
Number of involved new interfaces 5.0 PD

Discussions

Number of discussions with computing center 5.0 PD
Number of complexity 1 5.0 PD
Number of complexity 2 10.0 PD

Concept (data
model, data
search, processes,
authorizations,
security system,
DB2)

Number of complexity 3 20.0 PD

Number of data searches of complexity 1 2.0 PD
Number of data searches of complexity 2 5.0 PD
Number of data searches of complexity 3 10.0 PD
Number of functional interface integrations
(Security, memo routing, ...)

5.0 PD

Number of data migrations 5.0 PD
Number of search algorithms 5.0 PD
Number of functionality (folders,
business processes, ...) of complexity 1

1.0 PD

Number of functionality (folders,
business processes, ...) of complexity 2

2.0 PD

Number of functionality (folders,
business processes, ...) of complexity 3

3.0 PD

Number of reports, printouts, listings of
complexity 1

0.5 PD

Number of reports, printouts, listings of
complexity 2

2.0 PD

Number of reports, printouts, listings of
complexity 3

5.0 PD

Number of graphics 1.0 PD
Number of administration dialogues for meta 2.0 PD

Number of others complexity 1 2.0 PD
Number of others complexity 2 5.0 PD

Coding

Number of others complexity 3 10.0 PD

6 Estimating Maintenance Effort

data/key tables

(Continued)

175

Number of host tables small (10 data fields) 0.1 PD
Number of host tables medium (30 data
fields)

0.5 PD

Number of host tables large (>30 data fields) 1.0 PD
Number of local data base tables small (10
data fields)

0.1 PD

Number of local data base tables medium (30
data fields)

0.2 PD

Number of local data base tables large (>30
data fields)

0.3 PD

Number of server data base tables small (10
data fields)

0.1 PD

Number of server data base tables
medium (30 data fields)

0.3 PD

Data Storage

Number of server data base tables g large (>30
data fields)

0.5 PD

Number of existing technical elements easy 0.5 PD
Number of existing technical elements medium 2.0 PD
Number of existing technical elements complex 5.0 PD
Number of new technical elements easy 1.0 PD
Number of existing technical elements
medium

5.0 PD

Techniques

Number of existing technical elements complex 10.0 PD
Tuning Number of tuning measures 5.0 PD

Number of installations complexity 1 1.0 PD
Number of installations complexity 2 2.0 PD
Number of installations complexity 3 3.0 PD
Number of releases complexity 1 1.0 PD
Number of releases complexity 2 2.0 PD
Number of releases complexity 3 3.0 PD
Number of supports for installations by
computing center

5.0 PD

Installation
/Release

Number of concerned formats 0.3 PD
Documentation 10% of the total development effort

Program system test, 20% of the total
development effort

Test

Functional integration test, 30% of the
total development effort without project
management, test and project post mortem

Project post
mortem

5% of the total development effort

used by IT application development teams within a certain business area and
software development environment. In particular, while the effort hours allo-
cated in person days may be typical for the individual environment of this large
company, they will be different for others. Nonetheless, these models can be
understood as a basic concept that could be adapted to your own environment.

6.5 Estimation of Small Changes

176

They are presented here to provide readers with some easy and practical ideas
to get started.

These MS Excel-based estimation spreadsheets for small customer change
orders due to maintenance reasons were made available to the project leaders
via the corporate local-area-network (LAN). As these spreadsheets increased in
popularity within the organization, they were used to develop several hundred
estimates every year. A formal Cold Fusion application was later developed to
increase user comfort and add flexibility for actualization of the parameters, as
well as providing an easier way to collect and report the corporate metrics.

6.6 Management Summary

Project estimation usually does not include lifetime (or even the first year) of
maintenance effort. The lifetime maintenance costs, however, typically exceed
the original application development effort by up to 10 times.

Practical experience shows that IT systems live longer than expected.
Note that the IFPUG definition holds that software maintenance does not

change the functionality of an application. If a project results in new/changed/
deleted functionality, it is classified by IFPUG as an “enhancement” project.

There is a critical difference between the definition of the word “enhance-
ment” in the IT and customer world (where anything that makes the applica-
tion run better, makes it easier to use, reformats screens, or adds function is
categorized as an enhancement by the users) compared to the definition in the
functional size measurement world (where enhancement means “functional”
change).

When counting the Function Points for software enhancements, one must
remember the “domino effect,” that is, that a functional change to an ILF
typically also causes a change to the elementary functions that use it (e.g., add,
change, delete, and potentially query functions).

Often it is not considered that software – like other products or goods – ages
over time and that preventive maintenance and eventual replacement (rede-
velopment) of software will someday be necessary.

There is broad consensus in the metrics community that annual support ratios
(i.e., how many FP can be supported by one person in one year) depends on
the same factors as software productivity (as previously discussed).

From all of the research and industrial findings, we can conclude that a sim-
ple counting of the maintenance tasks and the defect reports can hint at where
there are error-prone modules, and can furthermore deliver information for
making decisions about the future enhancement of modules/functions.

6 Estimating Maintenance Effort

177

Such metrics and results from collections of relevant data can provide infor-
mation on best practices and know-how collection of organizations and esti-
mation of future maintenance tasks.

Note that if maintenance budgets are reduced below the minimum level
required to keep the application up and running per the user specifications (pro-
duction system support), problems and user satisfaction issues will occur.

6.6 Management Summary

7 Software Measurement and Metrics:
Fundamentals

Only 20% of all metrics programs are successful. (Howard Rubin)
Software metrics are useful to measure both the process to develop and the
ultimate product characteristics associated with software development. We
differentiate between the word “measure” and the word “metric” (or indicator)
although these terms are frequently confused in general practice.

Depending on their roles in an organization, different people focus on dif-
ferent metrics (see Table 7.1).

Table 7.1. Metrics viewpoints

Participant Interests Goal Metric
Manager Economic Costs, dates Effort, quality
Developer Technical Development

environment
Size, complexity

End user Social Usability Functionality
Estimator Economic Costs, effort, dates Effort, budget,

project size,
duration

Project manager Technical Effort, dates, size,
complexity

Earned value,
progress to date,
impact of
change

The relevance of software and systems measurement has increased over
the past decades; however, the interest in establishing a sustainable software
measurement program appears to follow some sort of cyclical trend where
waves of commitment surge to a frenzy at times, then wanes to barely a whisper –
almost a “management flavor of the month.” In the 1960s and 1970s the focus
for IT was on product evaluation in the 1980s and 1990s it was on process
evaluation and quality initiatives, and changed in the 1990s to measurement
process integration. Today, for measurement to succeed, it must provide a
positive return on investment with a direct tie to improvement of the business
(the “bottom line” finances so to speak) - not simply to the IT department.

Philip Theden distinguishes three characteristics of metrics:

Information character: where metrics permit one to make judgments about
important subjects and relationships in organizations.
Quantifiability: where subjects and relationships between them are meas-
ured on a standard scale.
Specific form of information: where complicated structures and processes
can be presented in relatively simple ways through a specific form of
metrics.
This chapter provides an overview about the potential use of software

metrics.

7.1 Terminology

One generally distinguishes between basic measures (measures) and metrics.
Often the term indicator is incorrectly used interchangeably with the word
metrics. Definitions are included in the sections that follow.

7.1.1 Formal Definitions

To define our use of terms here, we went to the comprehensive source for soft-
ware engineering terminology: the Software and Systems Vocabulary website

terms used in ISO/IEC standards and IEEE standards.
http://pascal.computer.org/sev_display/index.action.The definitions for mea-

sure, metric, indicator, and value are listed below:
Measures:
1. Variables for which a value is assigned as the result of measurement

(ISO/IEC 25000:2005 Software Engineering – Software product Quality
Requirements and Evaluation (SQuaRE) – Guide to SQuaRE, 4.32)

2. Make a measurement (ISO/IEC 25000:2005 Software Engineering –
 Software product Quality Requirements and Evaluation (SQuaRE) – Guide
to SQuaRE, 4.33)

3. A way to ascertain or appraise value by comparing it to a norm (IEEE
1061–1998 (R2004) IEEE Standard for Software Quality Metrics Meth-
odology, 2.6)

4. To apply a metric (IEEE 1061-1998 (R2004) IEEE Standard for Soft-
ware Quality Metrics Methodology, 2.6)

5. A number that assigns relative value (ISO/IEC 20926:2003 Software
engineering – IFPUG 4.1 Unadjusted functional size measurement method –
 Counting practices manual)

180 7 Software Measurement and Metrics: Fundamentals

of the IEEE Computer Society which contains a consolidated vocabulary of

6. To ascertain or appraise by comparing to a standard (ISO/IEC 20926:2003
Software engineering – IFPUG 4.1 Unadjusted functional size measure-
ment method – Counting practices manual)

7. The number or category assigned to an attribute of an entity by making a
measurement (ISO/IEC 14598-1:1999 Information technology – Software
product evaluation – Part 1: General overview, 4.18)

8. A quantitative assessment of the degree to which a software product or
process possesses a given attribute (IEEE 982.1-1988 IEEE Standard
Dictionary of Measures to Produce Reliable Software, 2)

Metric:
1. A combination of two or more measures or attributes (ISO/IEC 20926:

2003 Software engineering – IFPUG 4.1 Unadjusted functional size meas-
urement method – Counting practices manual)

2. A quantitative measure of the degree to which a system, component, or
process possesses a given attribute (ISO/IEC 24765, Systems and Software
Engineering Vocabulary)

3. The defined measurement method and the measurement scale (ISO/IEC
14598-1:1999 Information technology – Software product evaluation –
 Part 1: General overview, 4.2)

4. A quantitative scale and method which can be used to determine the
value a sub-characteristic takes for a specific software product (ISO/IEC
14102:1995 Information technology – Guideline for the evaluation and
selection of CASE tools, 3.1.6). Note: The term metric is used in place of
the term software quality metric. See also software quality metric

Indicator:
1. Measure that provides an estimate or evaluation of specified attributes

derived from a model with respect to defined information needs (ISO/
IEC 25000:2005 Software Engineering – Software product Quality Requi-
rements and Evaluation (SQuaRE) – Guide to SQuaRE, 4.24)

2. A measure that can be used to estimate or predict another measure (ISO/
IEC 14598-1:1999 Information technology – Software product evaluation –
 Part 1: General overview, 4.11)

3. A device or variable that can be set to a prescribed state based on the
results of a process or the occurrence of a specified condition (ISO/IEC
24765, Systems and Software Engineering Vocabulary). Note, for exam-
ple, a flag or semaphore

Value:
1. Number or category assigned to an attribute of an entity by making a

measurement (ISO/IEC 25000:2005 Software Engineering – Software
product Quality Requirements and Evaluation (SQuaRE) – Guide to
SQuaRE, 4.63)

7.1 Terminology 181

2. Numerical or categorical result assigned to a base measure, derived mea-
sure, or indicator (ISO/IEC 15939:2002 Software engineering –Software
measurement process, 3.41)

3. An entity that may be a possible actual parameter in a request (ISO/IEC
19500-2:2003 Information technology – Open Distributed Processing –
 Part 2: General Inter-ORB Protocol (GIOP)/Internet Inter-ORB Protocol
(IIOP), 3.2.26)

4. Magnitude of a particular quantity, generally expressed as a unit of
measurement multiplied by a number (ISO/IEC 19761:2003 Software
engineering – COSMIC-FFP – A functional size measurement method, 3.3)

These definitions are copyrighted © 2006 by the IEEE. The reader is granted
permission to copy the definition as long as the statement “Copyright © 2006,
IEEE. Used by permission.” remains with the definition. All other rights are
reserved.

7.1.2 Basic Measures (Measures)

Measures are used to assist in business operations, especially in reporting, con-
trolling, and quality planning; Measures are quantifiable figures derived from a
product, a process, or a resource. By definition, measures are quantitative, and in
the software and systems development industry, they can be applied to applica-
tions and projects, and other initiatives. Measures should be documented and
often are instantiated with estimated, planned, and actual values. Examples of
measures include start and end dates, software functional size, effort, and defects.
Effort values can typically be detailed further by phase (proportion of effort by
phase) and by other breakdowns, including type of resource (e.g., by end users,
IT core team, technical support and interfaces, and proportions thereof). Meas-
ures are also called “absolute measures” because they can be taken directly from
business data without requiring calculations.

7.1.3 Metrics

Metrics are used to evaluate applications, projects, products, and processes,
and they enable a quantitative comparison with other products, processes, appli-
cations, and IT projects. Metrics typically facilitate a common denominator type
of comparison between two or more observed measures.

Metrics are most often calculated from (basic) measures or their combina-
tions and are typically compared with a baseline or an expected result. Some-
times they are more precisely called relative metrics since they bring absolute
figures in a relation to each other. Their actual and estimated values have to be
measured incidentally and must be documented on several aggregation levels
to allow for drilling down into more detailed data.

182 7 Software Measurement and Metrics: Fundamentals

Metrics should deliver “orientation support,” that is, direction, for planning
and management of the key production processes in an organization. Therefore,
appropriate metrics can be the critical success factors of organizational
management.

In this book, we present metrics that are often found in literature or as argu-
mented proofs used in the software market. A measurement (or metrics) system
must continuously be fostered, administered, and enhanced to ensure its ongoing
sustainability. To ensure that there will be a future collection of detailed, actual
values of (basic) measures and metrics, one requires (as a prerequisite) current
catalogues of applications to be measured on an annual basis.

7.1.4 Indicators

Indicators compare a metric to a baseline or to an anticipated result. They are
also sometimes called coefficients. Indicators are collected over a time period
to derive trends – often these can serve as early warning indicators. According
to David Card (1997), an indicator consists of a measured variable, a goal
(expected by historic experience, industrial average, or best practice), and an
analysis technique, allowing a comparison between measurement and goal. It is
the comparison between the measurement and the goal that permits one to rec-
ognize if some action has to be performed.

According to Teade Punter, an indicator is a visualization of a metric or a
model where raw data are aggregated. Indicators are used to present measured
data in a manner that useful information can be derived from them. Table 7.2
gives a short overview of categories of metrics.

Dueck (2003) presented the following view in his regular column in the
magazine Informatik Spektrum of the German GI (Gesellschaft für Informatik
e.V.) in order to foster awareness of software metrics. He describes how many
things that we believe we can measure are really indicators based on other
measures. Other important thoughts of him include:

“A measurement is for me a kind of statement. If the clinical thermometer
indicates 38 degrees (centigrade), then it is 38 degrees. The number of publi-
cations is an indicator of research efficiency, but not a measurement of it.
Frequency of citation or keynote payments is also only indicators, not meas-
ures. An indicator delivers only evidence for a real fact. It does not prove it as,
for example, a measurement could do. We often measure not what is reality
when measuring, but only indicators. Since we measured the indicator very
correctly and objectively, we often take the indicator as reality. But no matter
what, it is only an indicator!”

There are as many opinions about metrics as there are metrics. However,
four governing opinions abound about indicators.

1837.1 Terminology

Table 7.2. Overview of metrics types

Metric Description Forms Examples
Absolute
metrics

Basic measures
manipulated
to provide new
information as metrics

Single data sums,
averages, differ-
ences,

Start- and end-dates,
software size, effort
in person hours

Relative
metrics

Relative data,
structuring data,
relational data, relating
several absolute
measures together

Factorial
figures,
relationships,
derived data

Percentages of Function
Points attributable
to EIs compared
to the total size
of the software

Coefficients Indicators, maximum,
average, and Minimum,
calculated from other
metrics on a time series
basis and used for
comparison

Measured data
chronicled over
time, metrics

The relation of IT
effort to total business

Index
figures

Figures for general
presentation
of many changes
of organizational data

Percentages, single
figures indexed,
basic values
(mostly 100)

Annual increase in
productivity

Opinion 1: “What you can’t measure, you can’t manage.” Organizations
that hold this opinion are typically dominated by managers seeking easy-to-
measure indicators that will equip them to drive their world in a certain direc-
tion. Indicators for these managers include, for example, the index of customer
satisfaction, the sum of third party investments. Management imports these
indicators into Excel tables stating: “more!” (or concerning costs etc. “less!”).
Experiences of the authors show that managers want these indicators quickly,
no matter how right or wrong they may be. Another twist on this is how to lie
with statistics, also known as “just give me the numbers and I’ll make them say
whatever I want.” This is not a productive environment for a measurement
program.

Opinion 2: People whose behavior is driven by indicators bitterly complain
that indicators do not tell the truth and do not reflect reality. They cite pub-
lished studies that were subsequently proven to be falsified. Organizations
where cynicism is the mode d’etre (the way to be) will have difficulty with
implementing a realistic measurement program.

Opinion 3: We all secretly know the difference between indicator and mea-
surement. We better try to escape now before everyone become an expert on
the subject. We publish citations of each other to gain acknowledgement. We
make fifty papers out of one idea. All of these tricks for survival use the dif-
ference between an indicator and a measurement. The tricks optimize the
sharply measured indicators. The essential is lost since the indicators do not touch
it at all.

184 7 Software Measurement and Metrics: Fundamentals

Opinion 4: “Measurement is characterized by the despair about the distrac-
tion of the attention from reality. Indicator driven management by “Quick!
More!” paints a picture in my mind about people who are lazy and must be
urged on trot.”

7.1.5 Metrics

of the dominant reasons that software measurement often fails – the collected
data has little relationship to corporate goals, and ends up being a tawdry mix-
ture of disparate data points – that practitioners hope to compile into “informa-
tion” with meaning.

In the American author’s experience of teaching Goal/Question/Metric work-
shops and also implementing software measurement programs in Fortune 500
companies, one of the biggest mistakes that corporations make is failing to
plan a goal-driven measurement program (Dekkers 1999). Goal-driven meas-
urement (also called the Goal-Question-Metric (GQM) approach by Dr. Victor

ment, then once those are set, moves to the Question part where the answers to

goals, and then the metrics are determined solely in support of the questions
they must answer.

This sounds like a sane, straightforward approach, yet the majority of com-
panies who embark on a measurement initiative will approach the process
completely backwards: they will first try to figure out what measures and met-
rics to collect, then try to figure out what decisions they can make based on
the data they collect, and then hope that somehow, someway the decisions and
metrics will support the corporate objectives and move their division towards
their attainment.

The American author often emphasizes particular points in her workshops
by using analogies from other industries or real life situations. To explain the
concepts of GQM, here is one such analogy: “if I (living here in Florida) were
to invite a group of 20 of you for dinner to my home, and all of you agree to
attend, I should be able to clarify my goals – to provide ample and varied food
and drink for 20 people of various gourmet likes and dislikes. Now if this was
a measurement program instead of a dinner party, I would then go straight to
the grocery store and start shopping for ingredients. After selecting suitable
and not-too-expensive ingredients I would pay for them, go home, and then
say, “I sure hope that I can cook up a great evening set of food platters with all
the stuff I just bought.” Completely backwards isn’t it? I should have started
with the goal, chosen some recipes (questions), made a list, and then (and only

1857.1 Terminology

These seems to be a widespread misunderstanding that by simply collecting and

Basili) is built by starting with the sustainable strategic goals for measure-

reporting data is the same as implementing a metrics initiative. This is one

said questions will determine the decisions to be made to move towards the

then) gone shopping for ingredients (the metrics in a software measurement
program). In software measurement, too often people try to “cook something
up” with all the data that has been collected, yet the data are all at different or
uncomparable levels, and not of the right kind. So, to go back to the analogy, it
does not matter if I have a pantry full of ingredients (collected data) if I cannot
use it in a meaningful way.”

The Software Engineering Institute (SEI) in the US endorses goal-driven-
measurement in their training programs, as does the ISO/IEC 15939 standard:
Software mea-surement framework, which was built on the basis of Practical
Software and Systems Measurement (PSM) initiative out of the US Depart-
ment of Defense (see www.psmsc.com for details). Today, the SEI has added
an “I” to their GQM offerings to make it GQIM - Goal Question Indicator
Metrics, likely in part to ensure that the resultant measures and metrics pro-
vide targeted and indicative answers to the questions.

Fenton (1991) found four different definitions for a metric:

A figure derived from a product, process, or resource
A scale for measurements
An identifiable attribute
A theoretic, data-driven model describing a variable as a function of an
independent variable.

A software quality metric is a function mapping of a software unit onto a
figure. This calculated value could be interpreted as degree of fulfillment of a
quality characteristic of the software unit. A quality characteristic is, at first
thought, a lack of defects, efficiency, user comfort, maintainability, etc. and,
according to the CMMI®, also includes process related quality characteristics
as, for example, productivity or fulfillment of plan. Thus, software quality metrics
must be able to derive figures from software development that are related to
the aforementioned quality characteristics.

The supporting structure for a metrics system includes automated tools for
estimation and project control and the retained knowledge in these tools or in
metrics databases.

The following adage should be remembered:
No single metric can provide wisdom!
This statement tells us that, like estimation methods, there should always be

several metrics considered to control an organization. On the one hand, metrics
can be similar to pieces of a puzzle: they individually contain pieces of informa-
tion, but their true value lies in evaluating them in terms of their context and
the relationship with other data. On the other hand, metrics form an integral part
of the total picture and, like a puzzle, one must go one step ahead to view the
whole before the meaning of each part can be understood. A metrics initiative

186 7 Software Measurement and Metrics: Fundamentals

when integrated with the organization can deliver insight about gaps in organ-
izational processes and help to kick start improvement initiatives.

7.2 Goals and Benefits of Metrics

Even in a major international insurance company well acquainted with the
benefits of metrics in the core business, it was a tough business to sell the
benefits of software metrics. With appropriate and targeted metrics, data are
collected and analyzed, which relate to the software product and the develop-
ment process and support effective management. The first objective is to iden-
tify the actual state of the processes and/or product. The Capability Maturity
Model Integration (CMMI®) of the SEI includes the process area: measurement
and analysis at maturity level 2.

7.2.1 Goals of Metrics

Goldensen et al. from the SEMA Group (Software Engineering Measurement
and Analysis Group) of the Software Engineering Institute (SEI) at Carnegie
Melon University states that the following goals can be achieved with a good
metrics program:

To establish a common understanding throughout the organization.
To determine the information requirements of the organization and manage-
ment processes.
To identify or develop a reasonable selection of measures according to the
information requirements.
To identify and accomplish the activities for measurement.
To collect, store, analyze, and interpret the results of measurement.
To use measurement results for decision support as well as as a basis for com-
munication.
To evaluated and communicate the measurement process to the process owner.

The analysis of metrics and the resultant reports are the most important
processes of a metrics initiative. Pure collection of metrics seldom leads to
success.

It should be remembered that metrics measure only aspects about software
products or processes, but never individual people. Ignoring this critical rule
most certainly leads to damage control and ultimately the failure of a meas-
urement program. Moreover, metrics must be seen in a larger context. In addi-
tion, management must be sensitive to the fact that there are many reasons for
differences in metrics results.

7.2 Goals and Benefits of Metrics 187

Two important concepts are critical to keep in mind:

1. People can make or break a measurement program. Paul Goodman in
his 1993 book Practical Implementation of Software Metrics stated in the
closing pages: you might be surprised to find out just how big a part people
play in the success or failure of a measurement program. It is critical to
include people in the planning and implementation of the measurement
program.

2. Metrics data reflect the current state and are passive. There is no such
thing as good data or bad data – there is only data and data are the status
quo of the current process or product. As such, when management asks
their staff to collect and report metrics, they must also understand that
the worse the current data are, the more opportunity there is for process
improvement. The adage “don’t shoot the messenger” is especially true
here when software personnel report their data.

Metrics can be a mighty tool to determine quality and improvements in com-
parison to a goal.

7.2.2 Benefits of Metrics

Metrics use measurements of the past to give guidance for future directions
(feed forward). Measurement should establish a basis for estimating and con-
trolling project progress. Continual observation of the collected metrics on
ongoing projects enables us to collect experience factors that can be used to
meet goal commitments. A continuous comparison of planned to actual values
can help to find weaknesses in the software development process and can
enable process improvement. The benefit of metrics cannot be measured by
the cost of installation, but on the costs of not having a working metrics system
in place.

Goldensen states that metrics provide support for the project leader, mainly
by answering the following questions:

Are there problems emerging on my project?
If so, what effects will they have?
What is the root cause of the problem(s)?
Can I trust my data?
What alternatives do I have to mitigate the problem(s)?
What measures should be collected?
When can I expect results?

The example of a project metrics report with fictitious values depicts a prac-
tical use of metrics (see Table 7.3).

188 7 Software Measurement and Metrics: Fundamentals

Table7.3. Example project metrics report

Metrics
Category

Metric Formula Calculation Comparable
Projects

Industrial
Average

Efficiency
of devel-
opment
process

Project
delivery
rate
(PDR)

Effort/size 1,000 h/100 FP
 = 10 h/FP

8.0 h/FP 10.0 h/FP

Churn
(process
rework)

Percent
rework

Rework
hours/effort
hours

6,500/13,000
= 50%

55% 45%

Testing
process
effective-
ness

Defect
removal
effective-
ness

Number of found
defects /number
of pre + post
production
defects (90 days)

300/400 100%
 = 75%

75% 85%

Product
quality

Defect
denity

Number of found
defects/ FP

20 defects/100
FP = 2 def/FP

0.4
defects/FP

0.3
defects/
FP

Product
enhance-
ment

Degree of
enhance-
ment per
year

Annual FP
enhancement
projects/FP base

250/1,000 100%
= 25%

35% 28%

Unit cost Cost ratio Cost/FP $1,800/FP $1,700/FP $1,100/F
P

Time to
market

Duration
delivery
rate

(End date – Start
date)/FP

180 days/100
FP = 1.8 days/FP

2.3 days/FP 3
days/FP

Metrics facilitate objective analysis of the challenges with processes, and
also enables early risk recognition that can support mitigation of those risks.
Metrics should improve communication between project team members and
also between the project team and the project steering committee and other
stakeholders.

Furthermore, metrics can be used to develop rules of thumb and are benefi-
cial for objective planning and estimation. When metrics are used as standards,
they provide a common understanding of software measurement that the staff
can understand and can use as a basis for process improvement. Appropriate
measurement makes the process of software development transparent so that it
can be evaluated. A properly planned and implemented measurement program
can be evaluated and, through corrective action can improve the quality of
software products and processes.

Metrics can also be used to manage contracting and outsourced software
development. Critical success factors for this area of application include the
following:

7.2 Goals and Benefits of Metrics 189

Up-to-date and exacting definition of requirements. This helps to minimize
risks for both parties in the contract
Appropriate and just-in-time training to empower the project team to suc-
ceed on the project
Support before and after the implementation to ensure the long-term
product success.

Successfully introducing a metrics initiative requires committed manage-
ment support. Furthermore, the people who will be responsible for metrics
implementation (i.e., function point counters, data gatherers, analysts) must be
chosen carefully and receive training. It is a measurement prerequisite to
engage the right human resources with the right skills to lead and drive the
measurement program. The minimum skills include a positive attitude about
software measurement, a curiosity and vision that measurement can make a
difference, knowledge about process and product improvement, analytical skills,
attention to detail, willingness to learn, and excellent communication skills.

7.3 Start and Implementation of a Metrics Initiative

The implementation of a metrics initiative needs time, committed resources,
projects, and measured data. Silveira recommends that metrics initiatives
should embrace the following concepts to be successful:

Do not measure individuals
Avoid “Big Bang” implementation
Committed support by management
Discussions, forums, frequent, and open communication
Information meetings at least monthly.

Another prerequisite for a successful metrics initiative is an organization
that fosters positive change and encourages individual innovations. We rec-
ommend implementing a Competence Center to provide recommendations to
decentralized experts and project leaders to collect and analyze data, develop,
refine, and analyze metrics. The competence center should be tasked with
developing the metrics “experience” database to support future projects based
on similar historical experiences. Improvements in IT take the following forms:
better control of project progress and decision-making based on measured
facts.

The following list of success secrets apply for measurement (Dekkers 1999):

1. Set solid objectives and plans for measurement
2. Make the measurement program part of the process – not a management

pet project

190 7 Software Measurement and Metrics: Fundamentals

3. Gain a thorough understanding of what measurement is all about –
including benefits and limitations

4. Focus on the cultural issues
5. Create a safe environment to collect and report true data
6. A predisposition to change
7. A complementary suite of measures.

7.3.1 Establishing a Metrics Initiative

The process of establishing a metrics initiative evolves in six steps (see
Fig. 7.1). This model was used by the ISO/IEC working group for the Meas-
urement Process Framework (for software and systems measurement): ISO/
IEC 15939.

Fig. 7.1. Steps to establish a metrics initiative

A modification of the well known total quality management Plan-Do-
Check-Act (PDCA) model can be effective for measurement program imple-
mentation. The American author conducts workshops titled: Guide to Software
Measurement Start-up, 2000 (see Fig. 7.2):

7.3 Start and Implementation of a Metrics Initiative

Definition of ObjectivesStep 1

Characterization of the
Concept to be Measured

Design or Selection of the
Meta-Model

Definition of the Numerical Assignment Rules

Construction of the
Assignment Rules

Construction of the
Software-Model

Development Library,
Documentation

Result

Productivity Model Budgeting Model Quality Model

Estimating Model Cost Model Quality Characteristics

Estimation Cost Estimation Quality Requirements

Step 2

Step 3

Step 4

Step 5

Step 6

191

Fig. 7.2. Steps to implement software metrics (Dekkers 2000)

Ayers reinforces Dekkers’ approach through her six steps that follow her
planning and design steps:

1. Determination of the goals for measurement
2. Development of the criteria for the measurement process (why, what, how,

when, where, and who)
3. Test of several measurement methods
4. Development of concepts
5. Inspection of the concepts and comparison with the goals
6. Detailing and improvement of the conceptual basis.

Ten Prerequisites for a Metrics Initiative

The establishment of a metrics initiative constitutes a change of the organiza-
tional culture. If management is not committed to measurement as part of the
new way of doing business, the chances for its success will be limited. Even
with management support, measurement may not succeed unless the involved
staff is willing to support it or if they do not understand why they should make
the effort. If staff suspect that measurement is a new management way to con-
trol their productivity, measurement will not succeed. As we have mentioned
elsewhere, the king’s road to acceptance of innovations can guide the initiative
to success through information, training, and participation of the involved staff.

192 7 Software Measurement and Metrics: Fundamentals

From the beginning, the metrics initiative should not be sold as an easy
task for delivering the organization important benefits, rather it needs to be
marketed as one part of a continuous improvement process. If an organization
is in a state of chaos, immaturity (i.e., level zero on the Capability Maturity
Model Integration’s five level maturity scale), or if it is in a state of continuous
organizational change, a metrics initiative can hardly be established. Metrics
need a stable environment (even if not terribly mature) in order to have a
chance of success.

A lack of tool support can bring with it problems with acceptance, that is,
one cannot implement a robust and plausible measurement program on purely
paper and pencil. Tool support and committed resources show the organization
that you are serious about measurement!

Nonetheless, in spite of all these challenges, never believe that your metrics
initiative is truly dead (i.e., management has “pulled the plug” on funding)
until you read about it in a public announcement or newspaper!

The following real-life international experiences partly overlap the afore-
mentioned and demonstrate which factors were truly indispensable for the suc-
cess of the large scale international metrics initiative. There are also some
practical hints for transfer in the own organization. Prerequisites cited by
Dekkers (2002) in How and When Can Functional Size Fit with a Measure-
ment Program? include the following:

Continuous and effective marketing as support for the physical, intellectual,
and especially cultural change associated with measurement
Secure the availability of the data to anticipate the uncertainty of the staff
External support for training and consulting to minimize start-up errors and
to gain knowledge-transfer to build internal expertise
Realistic goals and plans supported by management
Being prepared and willing for change
A defined choice of metrics implemented in bite-size-pieces incrementally
(the German author: “an elephant can only be eaten in slices”)
Accurate, actual and consistent data to support decision-making.

Mah agrees with the SEI by recommending that an organization start out
with the four core metrics: size (scope), effort, duration, and quality. The first
step is then to establish a baseline for productivity to answer the managerial
question about the capacity of a development department. Why these four core
metrics? Many projects are only managed by milestones and effort, even
though scope (per the functional size) and quality (defects and other measures)
are also equally critical elements. Measurement can be implemented in a pilot
projects; however, such projects should have (according to Mah) at least 3
months duration, comprise at least 12 person months effort, and be considered
of high level importance for the organization.

7.3 Start and Implementation of a Metrics Initiative 193

Russac recommends the following rules to maximize the success of a
metrics initiative:

Metrics must be integrated with existing processes.
Metrics must be part of the organizational culture.
Measured data must be collected on a project level and aggregated on an
organizational level for reporting.
Measured data must be exact, repeatable, and consistent.
In the beginning, only a few metrics should be implemented.
For benchmarking with other organizations, only industrial standards should
be used.
A metrics database should be installed.
A metrics initiative must be simple and consistent.
Metrics should be used for decision support, goal setting, and process im-
provement.
Results must be timely and be communicated adequately.
Support must be committed from management.
Metric specialists must be chosen according to their qualification and not
according to their availability.
All those involved in measurement should get training.
Metrics must change and evolve as much as the organization grows.
Metrics must be fostered in the organization.
Metrics must be used positively and not to measure individual persons.

All this expert knowledge shows that metrics should never be introduced
and used half-heartedly!

Ten Factors to Consider When Choosing a Measure

Dekkers and McQuaid (2002, pp 33–39) analyzed the measurement model
recommended by Kaner et al. He stated that the theory underlying a measure-
ment must take into account a set of ten questions as shown in Table 7.4
(Kaner 2002).

Table 7.4. Kaner’s 10 considerations for selecting a measure

Number Factor for
consideration

Description Example

1 Purpose of this
measure

What are you trying to
measure?

Size, quality, effort

2 Scope of this
measure

What range of applicability you
want to cover with the method, the
wider the range of issues that can
be affected by the measure. The
purpose must be closely mapped
to the scope of the measure.

(Continued)

194 7 Software Measurement and Metrics: Fundamentals

3 What attribute
are we trying to
measure

You need a clear idea of
the specifics of what you are
trying to measure, so your meas-
ure will have a strong
relationship to your purpose
and scope.

Software quality =
functionality?
Portability?
Usability? etc.

4 Natural scale
of the attribute

We might measure a person’s
height in inches, but what units
should we use for extent of
testing? Are the attribute’s mathe-
matical properties
rational, interval, ordinal, nomi-
nal, or absolute? You must pre-
serve the ratio relationship to
make measurement meaningful.

5 Natural
variability

When measuring two supposedly
identical items, some of their
characteristics are probably
slightly different. The attribute
itself is likely subject to random
fluctuations, so we need a model
or equation describing the natural
variation of the attribute.

For example, what
model can deal with
why a tester may find
more defects on one
day than on another?

6 What instrument
to measure

Examples include trying to meas-
ure the extent of testing with a
coverage program, or counting the
number of defects found.

7 Natural scale of
the instrument

Whether the mathematical proper-
ties of measures taken with the in-
struments are rational, interval,
ordinal, nominal, or absolute.

For example, bug
counts are absolute.

8 Natural
variability of the
readings

This is normally studied in terms
of “measurement error.” We need
a theory for the variation associ-
ated with using and reading the
instrument. The act of taking
measurements, using the instru-
ment, carries random fluctuations,
so even though you record your
result as precisely as you can,
there may be error and variability.

9 Relationship
of the attribute
to the instrument

What is your basis for saying that
this instrument measures this
attribute well? What mechanism
causes an increase in the reading
as a function of an increase in the
attribute? If we increase the

7.3 Start and Implementation of a Metrics Initiative 195

(Continued)

up in the next measurement? It
might be the model or equation
relating the attribute to the
instrument

10 Natural and
foreseeable side
effects of using
this instrument

When people realize that you are
measuring something, how will
they change their behavior to
make the numbers look better or
to provide you with the data you
desire?

For example, we
could drive people
to decrease the bug
count, but it might
make the testers much
less effective.

Fig. 7.3. Basili’s GQM and Kaner’s factors for choosing a metric (Dekkers et al. 2002)

Combining the GQM method and the Kaner’s model, Dekkers and McQuaid
(2002) produced Fig. 7.3.

7.3.2 Establishing a Metrics Database

The best basis for estimation is a metrics experience database. Hence metrics
and collected measures should be available in an automated database. Often they
are implemented using one or more software tools. For example, the function
point details may be stored in a tool such as the Function Point Workbench, in
combination with time reporting systems, problem tracking tools, or source code
checkers. Experience® Pro, a software estimating and scope management tool,
allows for estimates and actuals together with project characteristics and situa-
tion analysis factors to be stored in an experience database within the tool.
Other tools may also be available depending on your specific organizational
needs to store the measures and metrics. See the chapter on Tools for further
details.

attribute by 20%, what will show

196 7 Software Measurement and Metrics: Fundamentals

Experience shows that on average 5–10 years worth of historical project
data are necessary before an organization has elaborated such a central reposi-
tory housing the collection of information about estimates and actual project
values. The benefits for an organization are plentiful according to Beckett and
Llorence:

With the development of one’s own experience database, the organization
gains estimation know-how and data (expertise) is always available.
The database can be used to generate or derive project independent “neutral”
estimates.
Historical experience data are available and enable more precise estimates
than pure wishful thinking.
The knowledge that estimation is done professionally with the aid of the
database reduces the project risk for the customer.

A metrics database that is too complex in the beginning will hinder a met-
rics initiative more than it will support it. Therefore, one should start with a
core set of metrics targeted to answer the questions necessary to gauge the
progress towards the goals (see GQM based measurement programs earlier in
this chapter). This also requires collecting further information in a repository:

Project
o Project ID and name
o Responsible project leader and department

Project Management
o Start date (estimated, planned, actual)
o End date (estimated, planned, actual)
o Duration (estimated, planned, actual)
o Effort by phase (estimated, planned, actual)
o Cost (estimated, planned, actual)
o Special information

Product
o Function Points with all detailed information (estimated, planned, actual)
o Defects (actual by phase)
o Logical lines of code (estimated, planned, actual)

Process
o Programming languages and their proportions
o Software architecture
o Hardware architecture
o Percentage of reuse
o Proportions allocated to each project phase

To be effective, a metrics database must contain data on actual completed
projects and their attributes. This means that a formal process must be estab-
lished for transferring data from historical files. One challenge for database

7.3 Start and Implementation of a Metrics Initiative 197

o Proportions of end users, IT, technical support, and interfaces.

administration is that the important factors in the metrics database can change
over time. Therefore, the definitions of the metrics based on such factors also
can change, and comparisons in time series can be rendered unreasonable. For
this reason, a database historical mapping over time is also important.

In 2002, the IT department of an international insurance company in Germany
sent out an international request for information about the usage of metrics by
email to the CRIM listserv members and the mailing lists of international
metrics organizations, and received answers from 24 organizations all over the
world. The answers were varied:

Four of the organizations did calculations of productivity in FP per effort or
per cost (budget, planning).
Three of the organizations did calculations of the efficiency in effort per FP
(PDR) or they used Balanced Scorecards or did not answer or did not use
metrics at all.
Two of the organizations used Compass Analysis to do their metrics.
One organization calculated the quality in defects per FP and another one
measured only if their projects were delivered on time, on budget, or on
specification (OTOBOS).

Finck and Hampp presented an analogue survey and compared it with the
24 organization study above, and with the ESMIT survey (2003) by Löper and

viewed 7 of those organizations. Their overview is shown in Table 7.5.

Table 7.5. Fink and Hampp’s consolidated overview of surveys

Percentage of answers in Metrics used
This survey The ESMIT survey The above survey

Effort 100% 53%
Costs 95% 12%
Duration 90%
Productivity 50% 24%
SLOC 45% 46% 18%
Function points 20% 11% 59%
McCabe’s complexity
metric

 10% 9%

Halstead metric 0% 4%
OO metrics 10% 6%
Number of defects 60%

7.3.3 The Structure of a Metrics System

A metrics “system” consists of basic measures and metrics related to these
basic measures in an appropriate way. Figure 7.4 shows the basic structure of

Zehle of Sweden. Finck and Hampp encountered 21 valid answers and inter-

198 7 Software Measurement and Metrics: Fundamentals

Fig. 7.4. Basic structure of a metrics system

a metrics system. A solid metrics system is analogous to a cybernetic control
circuit, where the controlling activities can clearly be recognized.

A simple list of topic areas for which software development measurement
should collect metrics includes (Weller 2002) the following:

Precision of estimation regarding dates and effort
Product quality at delivery
Defect removal efficiency (number of defects in requirements divided by
total number of defects)
Inspections
Testing
Number of problems reported by the customer
Estimation of maintenance
Frequency of inspections and meetings
Effort proportions per project phase
Frequency of help desk calls.

Of course not all of these measurement areas are even examined, or collected
from every organization.

The six most common core measures (depending on the author 4–6 core
metrics are mentioned) are scope (sized in Function Points), effort (in hours or
person months), quality (typically measured as defects), cost (in USD or € or
currency unit), duration (in days or months), and physical size (source lines of

7.3 Start and Implementation of a Metrics Initiative

Metrics System

Improvement-
processes

Continual
Comparison

Software-Development

Continual
CONTROLLING

Metrics
Productivity,
Quality and
Assessment

Basic Measures
Function Points,

Effort,
Errors ...

PLANACTUAL

199

code (SLOC)). As a basis for a metrics system, the German author recom-
mends collecting at least the following three basic measures: Function Points,
effort, and defects. From this starter set the following metrics can be derived:

Quality (product metric)
o Defect rate:

Delivered defects = defect potential minus detected defects
Defect density = delivered defects per Function Point

o Defect detection rate:
Defect detection density = detected defects per Function Point

Productivity (process metric)
o P1 = Function Points divided by effort in person months

A number of software measurement consultants and tool vendors publish
rates for P1 and P2 above, including Software Productivity Research (SPR)
and Capers Jones (www.spr.com), David Consulting Group (www.davidcon-
sultinggroup.com), and the International Software Benchmarking Standards
Group (ISBSG) at www.isbsg.org.

The definition of suitable measures and the processes to collect and analyze
them can be a time consuming process. While the American author advocates
a GQM approach that is mandatory to ensure the measurement system is tar-
geted, the German author’s experiences in organizations show that partial suc-
cess is possible with systems that simply begin measurement by collecting
function points, effort, and defects. After measuring in an organization a pro-
ductivity of x FP per pm (Function Points per person month), for example, the
goals for the project leaders were set to (x + 3) FP per pm for the subsequent
projects. With a bonus system put into place, motivation was fostered and a
degree of success was achieved. The agreed productivity was reached within
12 months. Literature tells us that productivity can vary by a factor of ten.

Capers Jones writes that the productivity in Europe is less than that in the
United States purely for the reason that Europe observes more holidays and
vacation days. This is apparent when person months are used as the measure
of effort. For this reason and because of varying definitions of hours per per-
son month, we recommend reporting and collecting effort in units of hours.

Quality and productivity are in strong connection with process, persons,
and technology. Improvement concerning these three dimensions (process,
people, and technology) leads to increased quality and productivity. Jones fur-
ther mentions in his comparison across countries that Japan, India, Norway,
and Sweden have extraordinary good quality compared to the United States.
There may be a number of factors for this, including mandated quality levels
or standards.

200

o P2 = Function Points per FTE (Full time Equivalent).

7 Software Measurement and Metrics: Fundamentals

From the parameters influencing process improvement project duration and
project size proved to be especially flexible. When dealing with a stable size
(solid requirements), condensed project schedules to reduce the overall time-
to-market (duration) costs more money and delivers lower quality (think of
this similar to squeezing a balloon to reduce its diameter). A longer duration
enables the team to produce higher quality but typically delays the usability of
the required functionality. On the other hand, reduced scope (project size) can
provide a better chance to deliver important functionality earlier. Normally,
functionality is decreased in order to reach the overly optimistic milestones on
time. The other factors for improvement of processes such as staff, cost, and
quality are less flexible. This is caused by the devils square of project man-
agement. Note: the devils’ square depicts the effect that the primary goals
(costs, size, time, and quality) of an IT project unavoidably compete with each
other for the resources of the project. Hence, every additional consumption of
one resource leads to reductions of other resources.

It is also important to track change metrics in terms of thresholds and limits,
or to define them to gain improvements for the metrics initiative. Metrics re-
lated to project change measure the differences between estimation and
actual values measured (like, for example, the change of cost, effort, or dura-
tion), as well as requirements creep or relationships in changes of quality (e.g.,
defect detection rate: defects at delivery divided by total number of defects),
or rework proportions (percentage of rework). The last three mentioned met-
rics related to change can help to identify and manage risks. These measures
are more difficult to measure than the first three ones listed.

Galorath distinguishes between planning metrics and tracking metrics:

Planning metrics support planning of successful projects. They are strongly
connected with the goal and the size of projects. The size is the key metric
of the planning metrics.
Tracking metrics support successful management of projects. Planning met-
rics often serve both goals.

One of the best-known tracking metrics is the Earned Value Method that
explores two basic questions:

1. Is the actual (consumed) effort at the time of measurement being con-
sumed at a rate adequate to deliver the planned project?

2. Is the actual money spent to date less than or equal to the money budg-
eted for the project to get to this point of delivery?

If both questions can be answered “yes” then the project is typically on-
track. If the answer is “no” in both cases, then the Project has severe problems
of being overbudget and behind schedule .

7.3 Start and Implementation of a Metrics Initiative 201

If the first question is answered with no and the second with yes, then the

that planning was too conservative.

the degree of completion. This can be supported by milestones for different
degrees of completion. Just asking the staff to which degree they finished their
task leads to the famous 90% finished syndrome. The degree of completion is
always overestimated and then during a long time in the 90% stage. To avoid
this problem it is psychologically better to ask the involved staff how many ef-
fort they estimate for completion of their task. Using the already consumed
(measured) effort the degree of completion can easily be calculated.

Figure 7.5 depicts some strong Earned Value Method statements from
McKinlay’s (2006) IPMA/ICEC presentation.

Fig. 7.5. Earned Value Method figures (McKinlay 2006)

202 7 Software Measurement and Metrics: Fundamentals

productivity is less than expected. This may be caused by different reasons,
and if a project becomes more than 15% late it will never catch up. If the project

The challenge of the Earned Value Method is the exact measurement of

cannot recover quickly enough, the project most likely will be delivered later than
planned and cost more than it was budgeted.

that the motivation of the project team has been supported by incentives or
If the first question is answered yes and the second with no then it may be

Other tracking metrics are defect measurements, which can be accom-
plished in any phase of the project, but mostly in testing (defect metrics). A
widely accepted categorization of metrics distinguishes between the product
and the process of software development. In this system, Galorath’s planning
metrics fit better in the product metrics and his tracking metrics more likely to
the process metrics.

Besides that the project metrics are often viewed separate from these two
categories, neglecting the fact that they can also be seen from process or track-
ing view. The difference is only that the metrics derived show other values
since projects also have effort for software parts to be enhanced. This effort is
related to little or no functional software size at all because the “user function-
ality” has not changed, similar to how software maintenance is handled.

How important a reasonable choice of metrics is can be shown with the
definition of two tongue-in-cheek project measures, also published by Galorath:

The Pizza Metric: The count of the empty pizza boxes in the team area is a
measure of project delay, since people would not eat consistently at their
workplace if the project was on time.

The Aspirin Metric: A jar of headache tablets is supplied for the team, and
the tablets remaining are regularly counted. The higher the number of tablets
consumed the less motivated (and more under stress) is the team.

7.4 Management Summary

Software metrics are useful to measure both the process to develop and the
ultimate product characteristics associated with software development.

One generally distinguishes between basic measures (measures) and met-
rics. Often the term “indicators” is incorrectly used interchangeably with the
word “metrics.”

Measures are used to assist in business operations, especially in reporting,
controlling, and quality planning; Measures are quantifiable figures derived
from a product, a process, or a resource.

Metrics are used to evaluate applications, projects, products, and processes,
and they enable a quantitative comparison with other products, processes,
applications, and IT projects. Metrics typically facilitate a common denomina-
tor type of comparison between two or more observed measures.

Metrics are most often calculated from (basic) measures or their combi-
nations and are typically compared with a baseline or an expected result.

7.4 Management Summary 203

Metrics should deliver “orientation support,” that is, direction, for planning
and management of the key production processes in an organization. Therefore,
appropriate metrics can be the critical success factors of organizational
management.

Indicators compare a metric to a baseline or to an anticipated. They are also
sometimes called coefficients.

A widespread misunderstanding is that just collecting and reporting of data
is the same as implementing a metrics initiative.

A software quality metric is a function mapping of a software unit onto a
figure.

The supporting structure for a metrics system includes automated tools for
estimation and project control and the retained knowledge in these tools or in
metrics databases.

No single metric can provide wisdom!
It should be remembered that metrics measure only aspects about software

products or processes, but never individual people. Ignoring this critical rule
most certainly leads to damage control and ultimately the failure of a measure-
ment program.

People can make or break a measurement program.
Metrics data reflect the current state and are passive.
Metrics can be a mighty tool to determine quality and improvements in

comparison to a goal.
Metrics use measurements of the past to give guidance of future directions

(feed forward).
The benefit of metrics cannot be measured by the cost of installation, but on

the costs of not having a working metrics system in place.
Metrics facilitate objective analysis of the challenges with processes, and

also enables early risk recognition that can support for mitigation of those risks.
Furthermore, metrics can be used to develop rules of thumb and are bene-

ficial for objective planning and estimation.
Metrics can also be used to manage contracting and outsourced software

development.
Successfully introducing a metrics initiative requires committed manage-

ment support.
The implementation of a metrics initiative needs time, committed resources,

projects, and measured data.

204 7 Software Measurement and Metrics: Fundamentals

Another prerequisite for a successful metrics initiative is an organization
that fosters positive change and encourages individual innovations.

The establishment of a metrics initiative constitutes a change of the organi-
zational culture.

From the beginning, the metrics initiative should not be sold as an easy task
for delivering the organization important benefits, rather it needs to be marketed
as one part of a continuous improvement process.

A lack of tool support can bring with it problems with acceptance, that is,
one cannot implement a robust and plausible measurement program on purely
paper and pencil.

Nonetheless, in spite of all these challenges, never believe that your metrics
initiative is truly dead (i.e., management has “pulled the plug” on funding) –
until you read about it in a public announcement or newspaper!

Mah agrees with the SEI by recommending that an organization start out
with the four core metrics: size (scope), effort, duration, and quality.

All this expert knowledge shows that metrics should never be introduced
and used half-heartedly!

The best basis for estimation is a metrics experience database.
Experience shows that on average 5–10 years worth of historical project

data are necessary before an organization has elaborated such a central reposi-
tory housing the collection of information about estimates and actual project
values.

The knowledge that estimation is done professionally with the aid of the
database reduces the project risk for the customer.

A metrics database that is too complex in the beginning will hinder a met-
rics initiative more than it will support it. Therefore, one should start with a
core set of metrics.

To be effective, a metrics database must contain data on actual completed
projects and their attributes.

A metrics “system” consists of basic measures and metrics related to these
basic measures in an appropriate way.

The six most common core measures (depending on the author 4–6 core
metrics are mentioned) are scope (sized in Function Points), effort (in hours or
person months), quality (typically measured as defects), cost (in USD or € or
currency unit), duration (in days or months), and physical size (SLOC).

The definition of suitable measures and the processes to collect and analyze
them can be a time consuming process.

7.4 Management Summary 205

Quality and productivity are in strong connection with process, persons, and
technology.

It is also important to track change metrics in terms of thresholds and limits,
or to define them to gain improvements for the metrics initiative.

One of the best-known tracking metrics is the Earned Value Method.
The challenge of the Earned Value Method is the exact measurement of the

degree of completion.
Just asking the staff to which degree they finished their task leads to the

famous 90% finished syndrome.
Other tracking metrics are defect measurements, which can be accompli-

shed in any phase of the project, but mostly in testing (defect metrics).

206 7 Software Measurement and Metrics: Fundamentals

8 Product- and Process- Metrics

Basically one distinguishes between product metrics and process metrics. The
distinction is not always unambiguous since some metrics are used to evaluate
both products and processes. Even so, at times, the product and processes are
viewed so separately that it is almost as if there are two different worlds each

opment processes, there are several models that are representative: the water-
fall model, the spiral model, prototyping, agile methods, object-oriented, and
entity-based process models.

Table 8.1 gives an overview of the product metrics and process metrics dealt

metrics (functionality or cost related) or internal metrics (e.g., size or complexity

metrics (quality attributes related) or indirect metrics (quality criteria related).

Table 8.1. Examples of product and process measures and metrics

metrics
Measure or metric Suitable basic

measures
Suitable metrics Examples

Size Function Points
(FP); source lines
of code (SLOC
or KSLOC – kilo
SLOC) of appli-
cations

Functional size
per application;
technical size per
application

Average FP per
application, aver-
age SLOC per
application

Quality Defects and size
of applications

Defect density Defects per FP
after delivery,
defects per
SLOC (KSLOC)
after delivery

Documentation Pages and docu-
ments

Number of pages
per document

Number of pages
per requirements
document, and
per module of
specification

System complexity Complexity and
modules

Structural com-
ponents per
module

Data per module

(Continued)

related). Similar to quality metrics, product metrics can be divided into direct

with their own special scientific community. When discussing software devel-

with in this chapter. Product metrics can additionally be separated into external

Product

 Effort Expended team
effort hours

Effort for system
development

Effort per project
or project phase

Quality Defect density
for project or
phase

Defects per FP

Project delivery
rate (PDR)

Effort and size Effort (hours) per
unit size (FP)

Hours/FP

Costs Costs and size Costs per unit of
size

Dollar per FP

Duration Duration and size Size per unit of
duration

FP per month
(or per day) of
project duration

Efficiency Effort and size IT work unit per
unit size

Hours effort per
FP

8.1 Product Metrics

Product metrics relate directly to the result of a software development proc-
ess. Important features of the product that are often measured include but are
not limited to: size, quality, user requirements, product growth, and user com-
fort. Product measures (that can be used in product metrics) are, for example,
as follows:

Architectural measures (e.g., number of components, layers, coupling)
Quality measures (functionality, portability, reliability, usability, maintain-
ability, and performance)
Functional size (and technical size)
Documentation
Software and System complexity (both structural and data related).

8.1.1 Size of the Software Product

The result of a functional size measurement of a piece of software is normally
a measure of the size of an installed application or the size of software reno-
vated (enhanced). Note that adjusted Function Points are a size and complexity
metric, but unadjusted FP reflect functional size (without the complexity ad-
justment). The value adjustment factor currently or previously present in the
original models for some of the FSM methods, actually takes the functional
size (raw or unadjusted FP) and modifies/adjusts it by the impact of a method-
specific number of nonfunctional characteristics. Therefore, adjusted Function
Points could be called a metric, whereas unadjusted Function Points are a

8 Product- and Process- Metrics 208

(Cont.)Table 8.1.

Process
metrics

Measure or metric Suitable basic
measures

Suitable metrics Examples

Technical size is based on the physical size of the developed code in units of
thousand lines of source code or KSLOC (kilo source lines of code). These
are sometimes called source metrics in models such as COCOMO II or the
Wolverton method.
Functional size (functionality in units of functional size, e.g., IFPUG FP,
FiSMA fp, NESMA fp, COSMIC fp, Mark II fp, etc.)
Methodology specific size (such as object points, use case points, others).
Various product sizes are sometimes necessary for facilitating comparison
of large and small projects, which may have previously been sized with one
of these views. They can also be useful indicators as input to estimate the
project effort for subsequent development of similar products.

8.1.2 Source Code Metrics

Source code measures and metrics vary from module cohesion and proportion of
comment lines to object-oriented measures such as number of parameters, depth
of inheritance, number of instances, inherited methods, and abstract classes.

Simon and Simon (2005) reported how reactionary behavior of developers
emerged after introducing source code metrics in an organization, and how
they introduced incentives to overcome the behaviors. They categorized the
reactions of developers into behaviors of five types:

1. Optimism strategy. The developers used phrases such as “we are profes-
sionals,” “we use tool xyz and technology abc,” and when they were
confronted with the data, said things like: “it cannot be as bad as this,”
“that’s not actual performance, the next version is better.” To overcome
this, developers were encouraged to participate in the development of the
source code metrics, and were shown that high (or low) quality can
be proven based on the measures. Developers became motivated to im-
prove the overall work based on the metrics.

2. Delegation strategy. The developers argued initially that the purchased
software was defective and not their in-house developed software. (They
delegated blame to the purchased software.) To overcome this, the deve-
lopers were shown that the source code metrics make all errors transparent
regardless of the sources. The simple act of separating out the purchased
from the in-house software allowed visibility on the quality, and allowed
the defects to be allocated to the appropriate software. As such, developers
assumed responsibility for quality and risks occurring in their own code.

3. Automation strategy. The developers believed that the complete code
could be generated by tools automatically, and therefore defects were not
their fault. This was overcome by demonstrating that the application of

2098.1 Product Metrics

measure. There are at least three different product sizes that occur in practice –
each offering a different view of the product:

4. Special subject strategy. The developers attested that their tools, techno-
logy, and methods are so specific that they are outside the area of appli-
cability of source code metrics. This was overcome by showing that the
tools and metrics can be integrated smoothly in the development envi-
ronment.

5. The rabbit and hedgehog strategy. The developers said things such as “we
already have the concepts in place,” “we have already invented that,” “this
concept is already used in practices,” which ultimately led to decisions
to custom-deliver software instead of purchasing existing products. This
behavior was overcome by questioning, which ultimately led to answers
that the concepts under consideration had only been piloted or were not a
general practice of the organization.

Simon and Simon recommended that no matter what strategy was observed,
good cooperation must be fostered with developers when implementing met-
rics, so that they are not driven into a defensive position, feeling like they are
being attacked. They have to be convinced that measurement is worthwhile to
highlight improvement areas in their process and with the product. In addition,
their expertise should be used constructively in the metrics design to increase
the chances of metrics program success.

8.1.3 Source Lines of Code

The measurement of source lines of code (SLOC) is widespread in certain seg-
ments of the IT industry, but not without challenges. The advantage of SLOC
counts is that they for applications already in place, they are readily available,
take a minimum of labor to compile, and supporters state that they can be used
for very different software systems (real-time systems, system software, and
commercial software) – especially where the technology is homogeneous, and
the projects are to be identical to prior projects. The problem with then trying
to do SLOC-based estimating is that the SLOC numbers can only be estimated
before coding, and until the programming is complete, there are no SLOC
counts. Furthermore, there is a problem that the number of program lines
can vary depending on the programming language, programmer (‘spaghetti’
code amounts to a higher SLOC count) and inconsistencies of how to count
SLOC (logical source lines of code?). This leads to a paradox (see Table 8.2),.

As Table 8.2 demonstrates, a project done using Assembler as the source
code language, would appear to be more productive (measured in SLOC per
person month) as the same project done using Ada as the programming lan-
guage. This leads to the request to normalize all programming languages to
a base Assembler level (so-called Assembler equivalent). This Assembler
equivalent is also used for backfiring SLOC into Function Points.

8 Product- and Process- Metrics 210

source code metrics could insight into which parts of code truly can be
generated automatically, and which parts cannot.

Table 8.2. Paradox of SLOC metrics

 Assembler version Ada version
Source lines of code (SLOC) 100.000 25.000
Effort (person months)
Requirements Specification 10 10
Design 25 25
Coding 100 20
Documentation 15 15
Integration and Test 25 15
Management 25 15
Total effort (person months) 200 100
Total costs ($) 1,000,000 500,000
Costs($)/SLOC 10 20
Productivity (SLOC/person month) 500 250

One of the great challenges using SLOC-based sizing is to document clearly
how the SLOC have been counted. The users principally agree that comment
lines, empty lines, and lines that span across several lines for readability are not
counted, or would not increase the count (they are inserted for better read-
ability of the source code). The IEEE Standard 1045 for counting SLOC was
developed by the Institute of Electrical & Electronics Engineers, Inc.

SLOC is ineffective to be used to measure project productivity since more
than half of the software development effort belongs to noncoding-related tasks.

8.1.4 Functional Size

Functional size of the software reflects a size of the functional user require-
ments (i.e., what functions the software must perform). This size is easier for
customers to relate to because the focus is on the functionality to be delivered
to the users, and not on how it is developed. Users are less interested in which
manner, with which programming language, and how many SLOC a software
product may contain than they are in what functionality they will receive.
Since functionality is independent of the programming language, the afore-
mentioned paradox of SLOC does not appear when using Function Points.

The International Organization for Standardization and Electrotechnical
Commission (ISO/IEC) has standardized five worldwide functional size mea-
surement (FSM) method standards (IFPUG, COSMIC, FiSMA, Mark II, and

to estimate the functional size of software early in the development process,

Functional size can be updated after each phase of the development and after

2118.1 Product Metrics

and then measure the functional size as soon as the requirements analysis is

each change of the user requirements, similar to updating a floor plan after

finished.

NESMA). Regardless of the specific FSM method is selected, FSM can be used

each stage of construction completion and then counting the resultant square
foot size. Typically the functional sizing is done manually (using the various
method standards), and can be supported by various commercial software tools.
The project leader or someone from the competence center, both with the user
perspective in mind, should be responsible for the counting.

Automatic counting of Function Points (a functionality provided by some
commercial software tools) should always be augmented with a review by
someone experienced in functional size measurement of the method being
used in the tool. (This is similar to needing to know the basic mathematical
times tables before using a calculator – one must be able to discern mistakes
made by the machine – at least from a sanity point of view, should there be
errors made.) Automated counting from physically implemented code contra-
dicts the premise of the Function Point methodology to count everything from
the user view point. When counting automatically from implemented code, the
Function Points are typically derived from coded modules developed many
times based on technical or physical implementation reasons, i.e., from the
physical rather than from the logical data model. While using a physical code or
function counter may speed up the time to arrive at a numerical value for the
functional size, the benefit of early usage of Function Points during the develop-
ment life cycle is lost since automatic counting can only be done when the
code is finished – near the end of the project.

There are several Function Points counting software tools that can purport-
edly count based on the logical models such as use case or object models, but
the degree to which these can emulate manual counting is not known. More
often, it is our experience that such tools can produce an excellent set of can-
didate elementary processes (but do not eliminate duplicate funtions) that can
be used by Function Point practitioners to save time with the manual interpre-
tation of the user requirements into functional components.

Regardless of the type of automated counting tool, the rules must be docu-
mented thoroughly in terms of how the automatic counting is performed, and
the tools can assist with the identification of candidate elementary processes and
logical files to save time and energy, especially with poorly documented or
aging legacy applications.

The IFPUG has a three-tiered certification scheme for counting-related
software tools (IFPUG, 2008):

Type 1: Software supports Function Point data collection and calculation
functionality. The user performs the count manually, and the software acts
as a data repository of the data, and performs the appropriate Function Point
calculations.
Type 2: Software supports Function Point data collection and calculation
functionality, where the user and the software determine the Function Point

8 Product- and Process- Metrics 212

count interactively. The user answers questions presented by the software,
and based on the answers, the software determines the type of elementary
process (if any), records it, and performs the appropriate calculations.
Type 3: Software carries out an automatic Function Point count of an appli-
cation using multiple sources of information such as the application soft-
ware, database management system, and stored descriptions from software
design and development tools. The software records the count and performs
appropriate calculations. The user may enter some data interactively, but his
or her involvement during the count is minimal. Software type 3 instruc-
tions and criteria are currently under review by the IFPUG board of directors.

Based on the type 3 description, there is no automated counting software
currently certified by IFPUG as being of type 3. Any such software usually
keeps the business rules for such software secret for proprietary reasons.

8.1.5 Project Size Categories

Generally, projects can be categorized into a small number of size categories,
and there are several classification schemes available that vary according to
the originator. The most typical categories include small, medium, large, and
extra large in terms of the number of functional size measurement units.

is unadjusted FP

Project size category New development
(uFP)

Enhancement
(uFP)

Very small 0–150 0–60
Small 150–300 60–120
Medium 300–600 120–240
Large 600–1,200 480–2,000
Very large 1,200–5,000 >2,000
Extremely large >5,000

Most commonly, there are small or medium projects, followed by large pro-
jects (that are usually only successful with high productivity tools), and even
fewer extra large projects (most commonly these are Enterprise Resource Plan-
ning (ERP) programs that include PeopleSoft or SAP software implementation
projects). Such categorizations are always subjective and as a result are dif-
ferent in different organizations.

Natale et al. presented research done with GUFPI-ISMA (see Table 8.3)
based on the ISBSG Benchmark CD Release 8 (R8). It shows distribution
analysis of new development and enhancement projects, and obtained the pro-
ject size classifications presented in Table 8.3.

2138.1 Product Metrics

Table 8.3. Development and enhancement project size categories (Natale et al., 2004), uFP

Table 8.4. Rule’s (2005) relative size scale

Rule’s categorization
of size

Abbreviation Project size (IFPUG
uFP)

Extra-extra-small XXS >0 and <10
Extra-small XS >10 and <30
Small S >30 and <100
Medium 1 M1 >100 and <300
Medium 2 M2 >300 and <1,000
Large L >1,000 and <3,000
Extra-large XL >3,000 and <9,000
Extra-extra-large XXL >9,000 and <18,000
Extra-extra-extra-large XXXL >18,000

Rule (2005) presented his categorization of software size based on evaluation
of the same ISBSG database r8 as shown in Table 8.4.

Figure 8.1 shows that the project size variation is consistent irrespective of
the functional size measurement method. Note that NESMA and FiSMA func-
tional size measurement units were not evaluated, but it is reasonable to assume
that projects measured with those two methods would be consistent with these
results.

Fig. 8.1. Distribution of project size in ISBSG r8 database for IFPUG, Mark II, and COSMIC
units of measure (Rule, 2005)

8 Product- and Process- Metrics 214

Note: Because of their ISO/IEC status and worldwide usage, the IFPUG
Function Point Method is dealt with in a separate chapter in this book, with the
remaining four FSM methods also in a separate chapter following the IFPUG
chapter.

Since both methods, Function Point-based estimating and COCOMO II
(KSLOC-based estimating), are used internationally there is a demand for con-
version factors for backfiring. Such conversion factors provide an average
number of Function Points per non-commented source line of code, and only
make sense if they are measured in the same environment on similar types of
applications. This means that only for similar projects in the same organization
can reliable estimates for Function Points (based on lines of code) or for lines of
code (based on Function Points) be done with calculated conversion factors,
derived from historic counts. In all other cases, such conversion factors should
only be used as rough rules of thumb and for raw quality assurance (see also
the chapter about backfiring).

Because industry conversion rates take an average value for KSLOC to FP
or vice versa, manual counts of Function Points will not be the same as the
backfired count. Consider this analogy: if there was an average conversion
rate for the number of pieces of drywall (wall materials) per square foot in a
building, we would expect that the ratios would vary based on whether the
building had cathedral ceilings (more wall space per square foot) or it per-
tained to a manufactured home (less wall space per square foot). If we were to
derive the approximate square foot size of an entire village, the variations bet-
ween the drywall pieces per square foot would be trivial because the law of
large numbers would average out. A similar concept holds for software: back-
firing works for an entire portfolio because some applications will have more
FP per KSLOC, others will have less, and the average will end up typically
close to the backfiring conversion rate. Dekkers and Gunter warned against
relying on back-firing conversion rates because of the variations that can
occur between the actual functionality and SLOC.

8.2 Software Quality

The quality of software products can be measured by staff and by the customer.
It is both a measure of the product to be developed, as well as a measure of the
software process. Thus, two different viewpoints of quality can be measured,
and it is important to distinguish between the measure of quality of the process
and of the product. Product quality is typically measured in terms of the length
of time between occurrences of defects (mean time between failures) or defect
density (defects per delivered Function Point); process quality is typically
measured as defects over time (e.g. defect per time unit) or defects per phase.
Furthermore, it is differentiated between the severity of defects, customer

2158.2 Software Quality

claims, and the measurement of customer satisfaction. Quality has a variety of
definitions, and therefore there is a variety of metrics to reflect the different
viewpoints. The International Organization for Standardization (ISO) working
group on software and systems quality metrics (ISO/IEC JTC1 SC7 WG6)
published ISO/IEC 9126 in three parts:

9126-1 Internal attributes of quality
9126-2 External attributes of quality
9126-3 Quality in use.
In the past couple of years, this quality standard has been integrated in a wide

suite of software and systems quality standards currently under development
(which will replace the 9126 series). This new ISO/IEC 25000 series of stan-
dards is called SQuaRE (Software product quality requirements and evaluation).

Internal quality attributes are intrinsic to the software and can be measured
by the developer himself/herself. External quality attributes are a function of
the product and are measured by the customer. Quality in use is based on the
product and also can be measured by the customer use.

The product quality can be improved very early in the software life cycle
by performing reviews and inspections, enlarged test effort, and early defect
removal. Table 8.5 demonstrates the relationship between a quality model (not
the ISO/IEC 9126 quality model but rather a corporate quality model) and
quality metrics.

Table 8.5. Relationship between a quality model and quality metrics
Component
of quality
model

Quality charac-
teristic

Description Measure or metric

Functionality How well the product
meets the required
functionality

Functional completeness, trans-
parency of requirements

 Consistency Degree of contradiction
Stability Correctness Test coverage, review coverage,

defect rate, module test cover-
age

Reliability Stability against changes, defect
stability, degree of availability,
mean time to failure

 Safety Degree of safety
Robustness Test case coverage, degree of

robustness
Feasibility Completeness of documentation
Efficiency Storage efficiency, performance

Usability

User comfort Time for training, user con-
tentment, help texts, size, CUA
conformity

8 Product- and Process- Metrics 216

(Continued)

Maintainability System complexity, depths of
structure, number of functions
and parameters, effort for error
removal, proportion of com-
ments in code, module size

Ease of
administra-
tion

Verifiability Degree of verifiability
Portability Degree of portability Utilization
Reusability Degree of reuse, degree of reuse

production

In the chapter “Estimation Fundamentals, Estimation and Quality” an Excel
chart is provided for mapping and conversion of the 14 General Systems
Characteristics (GSCs) of the value adjustment factor optionally used in the
IFPUG function point method into the ISO/IEC 9126 Quality Attributes and
vice versa.

8.2.1 Defect Metrics
Defect metrics are a subset of quality metrics. Theories abound in research
and academia about defect prediction; however, actual defect metrics are less
prevalent. When defect metrics are released, they are published scarcely and
typically reflect only successful projects. An organization must have reached
a certain level of organizational process maturity in order to understand the
importance of localizing and documenting defects before delivering software
to its customers. For example, one of the organizational maturity models: the
Capability Model Integration (CMMI®) from the Software Engineering Insti-
tute introduces Measurement and Analysis as a process area at level 2 of the
maturity model. Organizations with a higher degree of maturity (level 2 and
higher) often also have lower defect rates.

According to Bierfert (2002) defects must be the following:

Localized, administrated, and removed
Defined beforehand
Systematically explained.

The main benefit of defect metrics is the prediction of (future) defect rates.
These rates become the thresholds for comparison of measurements of actual
software quality. The following list identifies the most common defect-based
metrics:

Defect density: Number of defects per KSLOC or per function point. The
number of defects increase (through a relationship that is more than linear)
with the size of the software. Note that defect density per KSLOC can again
be misleading - the larger the number of KSLOC, the higher quality is im-
plied, when in fact, it may simply be that the code is not written tightly and
extraneous lines of code may contribute to the illusion of higher quality.

2178.2 Software Quality

Again industry gurus such as Capers Jones join us in discouraging the use
of SLOC based quality or productivity metrics in favor of FSM based ones.
Defect ratios: Number of defects by:

Detection phase: that is, where the defect was discovered (requirements,
design, coding, test, installation, postdelivery)
Injection phase: i.e., where the defect was injected (requirements, design,
coding, test, installation, postdelivery)
Type of testing (specification-, design-, module-, system-, integration-
test)
Causes, origin (functional, interfaces, ambiguity, data)
Severity of defect (according to the four defect severity levels)
Size of the software to be developed (in Function Points or lines of code).

Jones (2007) defines the defect potential as “the life-cycle total of errors
that must be eliminated. The defect potential will be reduced by somewhere
between 85 percent (approximate industry norms) and 99 percent (best-in-class
results) prior to actual delivery of the software to clients. Thus the number of
delivered defects is only a small fraction of the overall defect potential. Testing
has a surprisingly low efficiency in actually finding bugs. Most forms of testing
will find less than one bug or defect out of every three that are present. The
implication of this fact means that a series of between 6 and 12 consecutive
defect-removal operations must be utilized to achieve very high-quality levels.”
Jones then added a rule of thumb for sizing defect-removal efficiency for test
steps: “Each software test step will find and remove 30 percent of the bugs
that are present.”

Jones (1994) reported that the standard for defect rates in the USA is app-
roximately five defects per function point where about 85% of the defects
are removed during software development. This implies that approximately
0.75 defects per function point are delivered in production software (15%
undetected × 5 defects/ FP).

Jones also reported that best performers are able to improve their defect
rate to three defects per function point predelivery and the defect removal
rate to 95%. A summary of Jones’ research into defect potential is shown in
Table 8.6.

Table 8.6. Defect potential per phase according to Jones (1994)
Defects in Defect density

(defects/Function Point)
Requirements 1.0
Specification 1.25
Coding 1.75
User documentation 0.6
Bad fixes (new defects caused by defect removal) 0.4
Total 5.0

8 Product- and Process- Metrics 218

Lucent Technologies’ Lubashevsky (2002) demonstrated the defect numbers
by severity level that was tracked for the development of an object-oriented com-
munication system (with a size of about 1,800 function points). See Table 8.7 for
details.

Grady (1992) of Hewlett-Packard supposed that about one-third of the effort
for new software development of software is used for defect removal. One
psychological effect is important: if a large number of defects are found, the
defect detection rate decreases. This is often regarded as a quality improvement
but leads to more delivered defects in contrary. But it may also be that the testers
become frustrated and reduce their attention to detecting further defects.

Table 8.7. Defect measures according to the four defect severity levels (Lubashevsky, 2002)

Defect severity level Potential
defects

Industry
standard

Detected
defects
(before

delivery)

Difference between
industrial standard

and detected
defects

1. System failure 87 103 67 22–35
2. Defect main

functions
 408 516 359 14–30

3. Defect subfunctions 1,185 1,446 1,076 10–25
4. Superficial defects 945 1,034 742 27–28 In

cr
ea

si
ng

 se
ve

rit
y

Total 2,626 3,098 2,244 17–28

A known effect is that defect rates correlate with schedule pressure. Highly
stressed people are naturally unable to produce the highest quality software.
This has been proven to hold especially when a large amount of overtime is
required over a prolonged period of time.

For an extensive discussion on defect categories, defect prediction, and qua-
lity measurement, we refer the reader to Stutzke (2005).

Rösler (2005) experimented with Fagan/Gilb style inspections and reported
that review teams find close to 95% of the defects during the individual check-
ing phase, with the remainder of predelivery defects found during the formal
review as long as double-checking was done. Without the double-checking
(two or more professionals checking the same code), he reported that only
80% of the defects will be found. The research was based on work with 92
professionals in 13 review workshops conducted between October 2004 and
September 2005. Conclusions included the following measures:

Individual checking was possible for 100–150 NSLOCs (noncomment SLOC)
per hour.
Proper review of text documents required 1 h per page (about 300 words per
page), with ±0.8 pages.

2198.2 Software Quality

Participants found minor defects in a typical specification at an average rate
of 9.8 pages per hour. 93% (86 persons) estimated that they would need 9.7
times longer to find major defects.
Theoretical research suggested a reading speed of 48 pages per hour. Par-
ticipants confirmed a reading speed average of 49.4 pages per hour.
Further, Rösler summarized his findings with the following rules of thumb:
Professionals can read 50 pages per hour, but can check (for defects) only
one page per hour.
Any manual defect detection method will find about 3–5% of the defects.
Since the defect density (defects per function point) is one of the most impor-

tant FP-based quality metrics, it is further discussed in the following paragraph.

8.2.2 Function Points and Defects
A familiar rule of thumb is that on average, there is 80% of project effort spent
on unplanned defect removal for defects elaborated earlier in the project. This
is one of the reasons why early defect removal brings immense economic benefits.
The other reason is that lower defect density results in a reduction of rework.
Rework accounts for 40% of software development effort according to Nelson
(1999).

Thus, it is important to measure and implement defect tracking and report-
ing during the software development life cycle. As mentioned previously, there
are many measures mentioned in the literature for this task, and also in several
estimation tools (see the chapter on tools.)

there is little information provided about the environment and phase concepts,
etc. As such, the basis for comparability across projects is missing, and the pub-
lished data are spread across huge bandwidths.

defect metrics shown in Table 8.8 on the basis of 189 projects that had
reliable records regarding defects.The United Kingdom Software Metrics As-
sociation together with the ISBSG, published in 2000 the Quality Standards: De-
fect Measurement Manual (UKSMA and ISBSG, 2000). A general part with
definitions and categorizations assists with defect comparisons and clarifica-
tions (especially in benchmarking environment), and for the implementation
of defect metrics in organizations.

There are three important experiences that should be regarded as general
rules:

1. Defect removal itself produces new defects (so called bad fixes).
2. Delivered software always contains defects (called latent defects).

It cannot be proven that there are no defects, only that there are defects
(Dijkstra).

8 Product- and Process- Metrics 220

The figures published in literature are typically devoid of solutions since

In contrast to the literature, the ISBSG published in its report of June 2002 the

Table 8.8. Defect metrics by various categories from the ISBSG Software Metrics Com-
pendium (2002)

ISBSG projects from
Software Metrics
Compendium (June 2002)

N (No. of projects
reporting nonzero

defects)

Defects per 1,000
FP

By level of defects: Mean Median

N (No. of pro-
jects reporting
zero defects)

 With minor defects 105 0.043 0.017 64
 With major defects 83 0.019 0.006 83
 With extreme defects 16 0.011 0.006 121
Total all defects 133 0.047 0.018 56
By organization type:
 Financial 50 0.078 0.27 14
 Public administration 22 0.039 0.022 9
 Service 12 0.014 0.013 6
 Production 14 0.046 0.013 5
Total all types 98 34
By application type:
 Transactional systems 59 0.073 0.023 17
 MIS 31 0.024 0.016 14
 Office communication 11 0.18 0.019 4
 Decision aid systems 5 0.008 0.011 2
 Process computing 6 0.093 0.023 1
Total all types 112 38

By development type:

 New development 73 0.043 0.016 16
 Redevelopment 4 0.017 0.028 0
 Enhancement 56 0.054 0.022 39
Total all types 133 55
By platform type:
 Mainframe 73 0.068 0.022 47
 Midrange 34 0.019 0.014 3
 PC 20 0.016 0.015 6
Total all types 132 56
By language type:
 3GL languages 57 0.039 0.023 24
 4GL languages 54 0.028 0.013 23
 Program generators 19 0.131 0.024 6
Total all types 130 53

One practical experience relating to the third rule was that a development
team once declared the test phase to be finished (earlier than planned) since all
potential defects were found and removed. This naturally contradicts the first
two rules.

2218.2 Software Quality

8.3 Documentation

There are generally two types of documentation, developer- and user- documen-
tation. In the following discussion, the focus is on user documentation, parti-
cularly those manuals written to aid in the use and maintenance of programs.

Documentation is often the stepchild of application development, since the
effort for it is typically not explicitly planned and it is the first task to be omit-
ted when there is excessive time pressure. However, every stakeholder of the
project depends on complete, correct, and actual documentation to facilitate
user satisfaction and knowledge.

Boehm (2000) suggests a rule of thumb effort of two person hours per page
of documentation for small projects, and double that amount for large pro-
jects. Documentation can have a negative effect on project productivity, and a
positive effect on the quality and customer satisfaction of the project, due to the
devils square of project management. Note: the devils square depicts how the
primary goals (costs, size, time, and quality) of an IT project unavoidably com-
pete with each other for the resources of the project. Hence, every additional
consumption of one resource leads to reduction in the availability of other re-
sources.

What about metrics for documentation? A simple kind of metrics is based
on using the statistical functions that are part of standard text software for
counting the number of characters, words, and pages of the documentation
(manuals) per week from start of the documentation development.

8.4 System Complexity

System complexity is a basic feature of software, and measures of it reflect the
relative simplicity of the system design. System complexity consists of several
interacting components:

Problem complexity
Technical complexity
Structural complexity
Data complexity.

Increased problem complexity and structural complexity increase the percei-
ved system complexity, whereas increased technical complexity and data com-
plexity actually reduce the perceived system complexity. Therefore, increased
structural complexity is associated with increased problem complexity, and
structural complexity decreases with increased technical complexity. Figure 8.2
depicts these interactions.

8 Product- and Process- Metrics 222

Fig. 8.2. Interactions of the components of system complexity

8.4.1 Structural and Data Complexity

System complexity in a narrow sense is calculated as the sum of structural com-
plexity and data complexity, together with a count of the number of interfaces
between the different system components.

The following formulae apply:
Structural Complexity (SC) = Sum (F 2(i))/N

Data Complexity (DC) = Sum (V(i)/(F(i) + 1))/N
where
 N = number of modules without library- and system- modules
 F(i) = Fan out of the ith module (number of modules calling the ith module)
 V(i) = Number of I/O variables of the ith module (module parameter).

8.4.2 Halstead’s Metrics
Halstead’s metrics are used to measure code complexity. They were introduced
in 1977 and calculate code complexity metrics based on the program length
(N), the sum of operators (N1, comparisons, arithmetic operations, alternatives,
loops, reads, writes), and the number of operations (N2, variables, constants,
marks, records, unions, etc.). The Halstead metrics can then be correlated to
the number of defects to provide a metrics of product quality.

The main advantage of the Halstead length (part of the overall Halstead cal-
culation) is that it can be estimated in a simple manner. Compared with the
SLOC metrics they can thus already be used in early phases of the software
development process.

2238.4 System Complexity

Structural
Complexity

Technical
Complexity

Problem
Complexity

Data
Complexity

Perceived
Complexity

+ +

+ -

-

-

DeMarco (1995) wrote about Halstead’s metrics: “Halstead sometimes
mentioned a notion of empirical work, but scientists who investigated his data
thoroughly couldn’t prove any of the relations which Halstead believed to have
observed.”

Wolle (2003) further describes the problems: “With traditional metrics like
SLOC or Halstead’s metrics the <industry> acceptance is mostly low. The cause
for this with Halstead’s metrics is the differences and weaknesses of origin
and interpretation, as well as the observed uncertainties when establishing the
according basic metrics. Furthermore investigations of the Halstead length N
showed large deviations which causes could not be explained or found in the
details.”

Al Qutaish et al. (2005) presented mathematical research into Halstead’s
metrics (Resolving the Mysteries of the Halstead Metrics) and proved that
only the Halstead lengths N and N2 are a proper measure in a mathematical
sense. All other Halstead metrics violated some rules (in 2 of 3 cases to be
regarded in the mathematical proof), which must be fulfilled in order to be a
true metric (in mathematical sense). In the best case (of the three), they can be
reduced to N or N2 (the measures E and V converge to N, the measure D con-
verges to N2 under certain conditions for large projects).

Nonetheless, Halstead’s metrics are incorporated into a number of software
measurement tools, but their usefulness and mathematical soundness are still
under debate.

8.4.3 McCabe’s Cyclomatic Complexity

The McCabe’s Complexity Design Metric, also called cyclomatic complexity,
quantifies the control flow within a program by counting the independent paths
on a control flow graph that indicates a certain degree of well structuredness
of an application. McCabe’s metrics are calculated by counting the number of
edges (conditional statements) minus knots (the intersections) plus not connec-
ted components times two. Thus, the McCabe’s cyclomatic complexity increases
with the number of branches through a program.

Stutzke (2005) states that a simpler way to calculate McCabe’s cyclomatic
complexity is to count all of the conditional statements in a module or proce-
dure and add 1.

McCabe’s metric is often used as an indicator for potential quality problems
because it gauges the difficulty of understanding a program. It is also a mea-
sure for the number of test cases. From practical experience (and reinforced
by literature), those modules with a cyclomatic complexity higher than 10 tend
to be prone to higher defect rates. It has been heavily discussed in literature
whether or not this metric can be transferred from modules to whole classes.

8 Product- and Process- Metrics 224

Büren and Hopf (2002) declared that McCabe’s cyclomatic complexity met-
ric is sometimes viewed as controversial because it is seen as a theoretical figure
without solid practical benefits or meaning.

DeMarco (1995) published the same devastating judgment about McCabe’s
cyclomatic complexity stating: “nevertheless this metric is widely unproven
albeit it is intuitively intelligible (McCabe’s original publication is mostly em-
pirical)”.

Abran et al. (2004) published a detailed analysis of the McCabe Cyclomatic
Complexity, highlighting, in particular, some misconceptions underlying the
measurement approach. The research also pointed out the necessity to have
well-grounded definitions and models for the measurement methods that prac-
titioners apply in the software industry.

Nonetheless, various literature outlines different levels of acceptable McCabe’s
cyclomatic complexity. As mentioned earlier, a McCabe’s cyclomatic complex-
ity metric equal to 10 or higher is generally considered to be the threshold above
which the code may be too complex. Error-prone modules typically score higher
than 10, and the use of McCabe’s cyclomatic complexity may indicate potential
candidates for redevelopment.

8.5 Process Metrics

Process metrics relate to the software development process, comprising the
activities, methods, and standards used.
 Process metrics consist of the following:

Maturity- and defect- metrics
Management metrics
Team resourcing and method metrics, e.g., productivity metrics based on
effort, cost, milestone dates, duration
Life cycle metrics
Metrics for measuring project progress
Metrics for measuring project dynamics, e.g., change requests, requirements
scope creep
Metrics for tracking team morale.
The remainder of this section further explains the various methods available

to estimate measures and metrics including work effort, productivity, project
delivery rate (PDR), efficiency, cost, and duration. Additional statistical data
(actuals) related to these metrics can also be found in the chapter on bench-
marking.

2258.5 Process Metrics

8.5.1 Work Effort

Work effort is the sum total of the actual time worked by all project team mem-
bers including necessary training, but not including holidays, days of sickness,
or other nonworked days. For further analysis of work effort, refer to the chapter
“Time Accounting,” which addresses key concepts such as the calculation of
person month from person hours.

The measurement of actual work effort is typically done using a project
management tool or a time reporting system. In these tools, specific resources
and the planned and actual effort are related to project tasks. Team members
report their actual working hours for project tasks, and the automated tool col-
lects and summarizes the team time reports automatically at different levels,
tasks, task groups, subprojects, and projects. The measured effort is reported
and updated in the project plan, and also used in the estimation tool for updat-
ing and comparing with the estimate(s). Changes (and deviations) from the
plan should be reported as part of the project status.

There are many rules of thumb for deriving work effort estimates as pub-
lished in literature. One such source is the ISBSGSoftware Metrics Compen-
dium (2002), which provides data analysis and resultant formulas for work
effort etimates (see Table 8.9).

Table 8.9. ISBSG Software Metrics Compendium effort equations

Project platform Number of projects Effort estimate (effort in person hours)
All platforms 605 projects Effort = 27.0 × FP0.438

Mainframe 197 projects Effort = 16.0 × FP0.892

Midrange 105 projects Effort = 35.6 × FP0.774

PC 105 projects Effort = 24.2 × FP0.725

8.5.2 Productivity

Productivity is the most popular and also the most misunderstood management
metric. Productivity is the ratio of the software development process output
(FP size) divided by the input resources (work effort hours or person months).

Productivity should not be confused with Project Delivery Rate or PDR,
which is a metric that reflects the number of input resources (in effort hours)
that it takes to produce one unit of output (FP of the software delivered). As
such, PDR is measured in units of hours per FP.

Units for productivity are Function Points per person month or per person
hour. The successful calculation of productivity depends on accurate measure-
ment of the output software size, as well as the actual work effort expended.
Putnam and Myers (2002) define Productivity (P) as

P = Size/(efforta × durationb),
where a and b are exponents.

8 Product- and Process- Metrics 226

Productivity is expressed in units of Function Points or SLOC per person
month (or person hour).

Table 8.10 demonstrates how productivity (P) was defined and calculated in
an organization for projects, change orders, and maintenance activity in order to
achieve comparable measurements.

Table 8.10. Productivity metrics for various types of software and systems development (or
maintenance) work

Productivity
metric
(P = S/E)

Standard Measure effort (E) Measure size
(S)

Goal/benefit

Project Projects
US$100 K

Total project effort
(IT + users + com
puting cen-
ter + external
staff)

Function
Points for
the project
(according to
IFPUG)

Measurement
of productivity
of projects;
improvement
of future project
estimates

Change order
(enhancement)

 Orders
<US$100 K

Total effort of
the order effort
(IT + users +
computing
center + external
staff)

Function
Points for
the order
enhancement
(according to
IFPUG)

Measurement of
productivity of
change orders;
improvement of
future change
order estimates

Maintenance Operations
and support

Sum of all IT
effort expended on
maintaining each
application for the
year

Function
Point size
of the base
application
(according
to IFPUG)
at end of the
year

Measurement
of support
productivity

A prerequisite for measuring productivity is that the resultant metrics are
based on measures of the processes (often on phase level). This requires that
the organization has already reached the CMMI® maturity level 2 (SEI, 2006)
indicating that the processes (in this case software measurement and analysis)
are defined and used responsibly. At maturity level 3 and higher, the process-
and product-metrics are measured with repeatable and comparable results.

Productivity rates vary widely across different organizations and application
areas, as well as development environments. Research shows that more than
100 factors can influence the productivity rate. (It is critical to note that the
effort figure used in the calculation of productivity must capture a consistent
definition of work effort. See the chapter on work effort for a full discussion
on the importance of consistency as a pre-requisite to being able to do “apples
to apples” comparisons between projects.)

2278.5 Process Metrics

Another measure related to the productivity of the software development
processes is the percentage of rework compared with total project effort. In this
regard, rework must be defined exactly. Rework usually means the process to
remove, correct, or repeat results of a former phase that are not due to the
changed requirements of the customer. IEEE Computer Society (2008) defines
rework as follows:

Rework: action taken to bring a defective or nonconforming component
into compliance with requirements or specifications. (Source: A Guide to the
Project Management Body of Knowledge (PMBOK® Guide) – Third Edition).
Project managers commonly regard productivity measurement with major skep-
ticism since it can easily be misused to compare dissimilar projects, and can be
misused to report the resulting efficiency of the project team and its project
manager. This is nonsensical because such a comparison is only valid if all
parameters influencing the software development process are identical, and
if the project team and project manager have sole control to influence (and
change) the project parameters. Another way to think of this is to compare it
to building construction where FP of the project is akin to the construction
square foot area. It would not make sense to compare the productivity (square
feet built per person hour) of a construction crew working on a hospital to
that of a project building a house. Yes, there are numbers that can be calcu-
lated and compared; however, it makes little sense to do the comparison and
then to report that the hospital crew is less productive per square foot. The same
thing goes for software development: it makes no sense to compare the pro-
ductivity for a new development project where a commercial off-the-shelf
(COTS) package is installed to the productivity of a project where specialized
custom software is developed to meet the needs of a new innovative business
area.

One must be very careful to compare like projects to like (apples to apples
as we have said several times before). Misusing productivity to reward or pena-
lize individuals or teams can damage the team morale and ultimately lead to
resistance, boycotting of the measurement methods, and a general distrust of the
entire measurement program and its management. Productivity must never be
deemed as the productivity of a single person or team!

DeMarco says: “The paradox of productivity is, that productivity and bene-
fit conflict each other. Maximizing benefit is only possible with alacrity for
risks and going new ways. Improvement of productivity needs as a prerequisite
confidence and repetition.”

Nonetheless, even though it is understood now that productivity is a function
of the functional size (relatively based on the category of size: small/medium/
large, etc.), the quality requirements, and the technical implementation (tools,
skills, techniques, methods, programming language, organization type, platform,
etc.), there are many published rules of thumb prevalent in literature. One must

8 Product- and Process- Metrics 228

be careful to understand the rationale behind each rule of thumb and the limi-
tations (and potential damage) that could result from its misuse.

8.5.3 PDR

The ISBSG routinely publishes in its analysis of the most current database as
a formal report called a Benchmark. The most recent Benchmark r10 was
released in March 2008, and it pertains to the analysis of ISBSG CD Repository
10 (with 4,106 projects). One of the most regarded (outside Europe) metrics
published there is the Project Delivery Rate or PDR, measured in hours per
Function Point (a metric for efficiency).

Shepperd et al. (2006) reported his research findings about PDR based on
data from 661 projects of the Finnish Experience database. The mean PDR
across all projects (without discernment of type of project) was 7.5 h/FP, and
the median value was 6.3 h/FP.

Shepperd extended the analysis to stratification by project type (see Table 8.11)
and organization type (see Table 8.12)..

Table 8.11. PDR by project type from Finnish Experience Database (Shepperd et al., 2006)

Project type N (number of
projects)

Mean PDR
(hours per FP)

Median PDR
(hours per FP)

Enhancement 70 7.913 6.551
Maintenance 96 6.545 5.815
New development 478 7.720 6.506
Other 17 4.499 3.967

The variance analysis showed that the project type has a significant impact on
the PDR. The PDRs for enhancements and new developments are surprisingly
similar as can be seen from Table 8.11, but the variation of PDR between new
development and other (nonenhancement, nonmaintenance) work was striking.

The variance analysis showed that organization type also had a significant
impact on PDR. As can be seen from Table 8.12, the organization types sepa-
rate into two groups with banking, CT, and insurance being less efficient (higher
PDR) than similar work done in the remaining organization types. This implies
that when working with productivity estimates, one must be well aware of the
type of organization with which data is being compared.

ISBSG Benchmark release 10 (ISBSG, 2008) reports the mean and median
PDR for new development and enhancement for Web development and non-
Web development. The results are presented in Table 8.13.

From the PDR, one can derive the productivity in FP per person month by
dividing it for example, by 120 h per person month (net working hours per
month) and then inverting the resultant ratio

2298.5 Process Metrics

Table 8.12. PDR by organization type from Finnish Experience Database (Shepperd et al.,
2006)

Organization type N (number
of projects

Mean PDR
(hours per FP)

Median PDR
(hours per FP)

Banking 137 9.657 7.651
CT 23 9.805 6.573
Insurance 285 8.010 7.018
Manufacturing 60 4.574 3.989
Other 23 5.333 4.275
Public administration 105 5.439 4.649
Retail 28 5.317 4.600

Table 8.13. PDR by type of project and Web- or non-Web-based development (ISBSG, 2008)

Type of project Web development Non-Web development
N Mean

PDR
(h/FP)

Median
PDR

(h/FP)

N Mean
PDR

(h/FP)

Median
PDR

(h/FP)
New development 122 10.7 7.6 359 14.9 8.3
Enhancement 148 4.3 3.0 777 5.7 4.3

The average of 421 projects of the ISBSG Software Metrics Compendium
(ISBSG, 2002) reports an overall (nonstratified) average PDR of 15.1h per
Function Point (with the median value = 11.2 h per Function Point).

Each ISBSG Benchmark Report and the Software Metrics Compendium
(2002) analyze various different aspects of software development including, for
example, the application area, team size, type of project, application type, data
base type, programming language, etc. The Software Metrics Compendium
provided the following conclusions (ISBSG, 2002):

Projects with Worse Efficiency

The PDR (hours per Function Point) in North America is higher (i.e.,it
takes more hours to produce one Function Point) as compared with European
or Asian countries.
The PDR of Client-Server projects is higher (more hours per FP) as com-
pared with other projects.
The PDR is higher (more hours per FP) in projects using formal methods.
The ISBSG suggests that this effect may arise since methods are used more
in large organizations and on larger projects where there are many stake-
holders and many interfaces between projects.
The PDR is higher (more hours per FP) in projects using process modeling or
business area modeling.

8 Product- and Process- Metrics 230

Projects with Better Efficiency

The PDR is lower (less hours to produce one FP) for team sizes from one to
four persons, as compared with teams of five to eight persons. (Statement
by the ISBSG: Team size is one of the most influential factors for produc-
tivity.) This is also valid regarding the experience of teams.
The PDR of new development projects is lower than that for enhancements
when each project is between 2,000 and 3,000 FPs.
In staged software development the PDR goes down (i.e., the delivery im-
proves) after the first phase (requirements).
The PDR of development of management information systems (MIS) is
lower (i.e., better) than that to develop transactional systems.
The PDR of single user systems is lower (i.e., better) than for multiuser sys-
tems. This is also valid for single/multiuser projects.
The PDR for projects using Access databases is less (i.e., better) than that
using other databases. This was also valid for comparisons of Access to other
programming languages.
Projects where the programming language is a fourth generation language
(4GL) have a lower PDR (i.e., better delivery) than projects where a third
generation language (3GL) is used.
The PDR is lower when using Upper Case Tools.
The PDR is lower when using prototyping, rapid application development
(RAD), and object-oriented analysis (OOA).

8.5.4 Efficiency

Efficiency means how quickly project goals can be reached. Rubin (2002) defines
efficiency of an IT development department as the throughput or IT work units
as work effort hours necessary to implement one Function Point. With an aver-
age productivity of 88 FPs per person year (for the average US-based software
and systems developer) as quoted in the Worldwide IT Trends and Benchmark
Report, 1,824 working hours per person year result in the IT work unit to be
20.7 h. That means that every hour effort relates to 0.05 IT work units (the
inverse of 20.7 h) on average.

With IT work units completed tasks are counted to measure project progress.
This is to avoid the 90% finished syndrome. The IT work unit is often used as
a basis for outsourcing and software contracts.

This metric has two disadvantages: First, the partially completed tasks are
not counted and second all tasks are weighted equally regardless of any differ-
ences in the complexity or difficulties encountered during development.

2318.5 Process Metrics

Generally, the measure for efficiency is the effort per FP, also called PDR
or project delivery rate (hours per Function Point). As a measure of processes,
it is sometimes called process capability.

8.5.5 Cost

Cost metrics (also called CER = Cost Estimation Relationship) need associated
and appropriate experience databases with expert knowledge as a prerequisite.
For industrial projects in the USA, particularly for military software projects,
there is generally applicable data available. Note that the data may not be opti-
mum; however, it may assist with creating a historical database from which
beginning comparisons can be made.

Similar to the discussion of productivity and work effort, it is critical to com-
pare apples to apples. Before using any historical cost data, one must know what
costs were included (i.e., hardware, software, effort, contracts, etc.), and which
were explicitly excluded. With cost, it is also important to know whether costs
were burdened (e.g., taking into account organizational resource costs such as
vacation, benefits, nonproductive hours, overtime, etc.).

Some software and systems development estimating tools are available in
many variants – each suited to a particular configuration of how an organization
chooses to perform costing and subsequent analysis. Therefore, it is not sur-
prising to find many variants of the PRICE-S cost estimation model, the many
COCOMO II variants, and the SEER-SEM variants by Galorath at installations
across the USA, and also in specific industries in Europe. Other automated tools
allow the user to define (to varying degrees depending on the tool) stratifications
and variations of cost models that can be set by means of user parameters. There
is no single correct way to do project costing; however, it is critical that the
assumptions and included components of cost be transparent and available in
order to perform comparisons between projects, or create cost estimates for
future projects.

Project costs can comprise combinations of hardware costs of components,
microelectronic components, life cycle costs of software and systems develop-
ment (typically from requirements to preparation for installation or beyond),
packaged or other software tools, costs of training, overtime hours, contracted
resources, systems integration costs, and software life cycle costs. One source
of freely downloadable information about project cost estimating can be found
in the freely downloadable 183 page book: National Aeronautics and Space
Administration (NASA) Cost Estimating Handbook (NASA, 2002) available from
http://eclipse99.ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/NASA_CEH_
Final_Production_Copy_April_2002.pdf or from Carol Dekkers’ website at
www.qualityplustech.com.

8 Product- and Process- Metrics 232

For information regarding COCOMO II (Constructive Cost Model II) and
its variations, visit the University of Southern California’s Center for Systems
and Software Engineering at http://sunset.usc.edu/.

Cost is the most important factor for the go/no go decision to proceed with
a software and systems development program or project. Cost overruns can
lead to project failure or cancelation before the work is completed, and it can
lead to dissatisfied customers.

According to the Standish Group CHAOS Report (2003), cost overruns
exceed their budgeted amount in over 15% of the projects. The report also
showed that successfully completed projects exceeded their budgets on average
by 43%.

The ISBSG database contains a rather insignificant number of projects with
reliable cost data (less than 10% and cost data is not even included in the dis-
tributed data repository), due to a number of inherent problems with reported
project cost. As such, we will not pursue cost data based on ISBSG projects.
Among the inherent issues with reported project cost are the following:

Fluctuating currency conversion rates. Project cost data is reported in US
dollars; however, with projects reported from over 20 countries and world-
wide fluctuations in currency that have varied by 100% over the past dec-
ade, reconciling the cost structures is almost impossible.
Cost varies depending on who reports it – the customer (acquirer) of the
software or the supplier (developer).
Cost is far more unreliable than reported work effort because there are many
more inclusions and exclusions related to cost that may not be explicitly
defined. (Work effort must also be defined and consistently reported as dis-
cussed earlier.)
Most project managers are responsible for reporting and tracking work effort
figures for their team, but this is not typically the case for project costs.
Even within the same organization for the same project, there are often vari-
ous cost figures discussed: original budget, capital acquisition costs, labor
costs, derived cost (total work effort hours multiplied by an average cost per
hour), etc. There is no single consistent definition of project cost.

Jones (2007) agrees with the inherent dangers of using global cost figures
and states: “Indeed the impact is so significant that it is quite unsafe and har-
zardous to use average cost per Function Point for any business purpose unless
the average in question is taken from information that meets the following res-
trictions: similar companies; similar geographic region; similar staffing patterns;
similar work habits; similar burden rate structures. Cost data is far too variable
for more global averages to be valid for specific projects or estimating pur-
poses.”

2338.5 Process Metrics

In terms of an average cost per Function Point there are published variations
that can assist in providing a ballpark cost range for preliminary budgeting
purposes. On page 331 of his 2007 book: Estimating Software Costs: Bringing
Realism to Estimating, 2nd edition, Jones provided a table of the average US
cost per Function Point from 2007 (both burdened and unburdened rates). The
following Table 8.14 is an excerpt from Jones’ table:

Jones (2002) also published that software development costs in Western
Europe are on average US$1,500/FP compared with US$350/FP and even less
in Eastern Europe.

Note: The reader is forewarned, however, to be cautious with any average cost
per Function Point figures for reasons mentioned earlier, plus one additional:
just as one would never rely on industry published averages for building on a $
per square foot basis – especially without knowing the context for the cost
(i.e., not knowing whether the $ per square foot is for an existing house, or
new construction of a hospital where land clearing will be required). Cost is
the most important factor that must be fully understood before any industry or
other cost ratios are used!

Type of
development

Unburdened
$/FP

Burdened
$/FP

Web $145 $232
MIS $1,053 $1,684
Outsource $890 $2,671
Commercial $1,281 $2,049
Systems $1,733 $2,773
Military $2,601 $8,453
Average $1,284 $2,977

Authors’ note: Remember that you need to know the details behind the costs before you can reliably
use these figures.

For this reason, the reader is urged to obtain the Jones (2007) book for a
full discussion about the context and what is included in the cost figures
BEFORE negligently applying the figures in the previous Table 8.14. (See ref-
erences for further details).

Norman R. Augustine (1980, former Lockheed Martin Corporation chair-
man; further details of this quotation are regretfully no longer available at the
time of this new edition) recommended a correction factor should be
applied to estimated costs with every incremental cost estimate to avoid cost
overruns. He discovered that his equation worked especially well for aviation
projects:

K = 1 + 0.8/(1 + 8 d 3)
where K = the correction factor, d = percent of project duration already elapsed
(i.e., d = 0 at project initiation and d = 1 at project postmortem).

8 Product- and Process- Metrics 234

Table 8.14. Capers Jones, (2007) US cost per FP in 2007

8.5.6 Project Duration

There are many rules of thumb for predicting project duration as published in
literature. The most important might be that the longer the duration is antici-
pated to be, the more imprecise will be the estimate. The project duration is a
prerequisite for scheduling (time planning) and resource planning and alloca-
tion. In addition, project duration (especially when it is compressed) can also
influence project quality. Besides that, the requirements (scope) creep can have
negative influence on the project duration because the more functionality one
attempts to put into an existing schedule, the longer the duration turns out to
be. There is also the concept of Fred Brooks’ Mythical Man Month, which states
that adding people onto an already late project will make it even later (and thus,
prolong, rather than shorten the project duration).

The ISBSG release 8 (2004) based on 662 projects (all platforms) presented
the following regression formula for duration:

Duration = 0.38Effort0.370, with R2 = 0.39,

The ISBSG Benchmark r10 (2008) published the following figures related
to duration (see Table 8.15):

Table 8.15. Duration averages (ISBSG, 2008)

Type of Project Web development Non-Web development
N Mean

duration
(months)

Median
duration
(months)

N Mean
duration
(months)

Median
duration
(months)

New
development

118 6.6 5.8 329 8.9 6.9

Enhancement 197 13.4 7.0 1,110 22.9 13.6

Boehm (2000) published Table 8.16 showing the relationship between dura-
tion and work effort using COCOMO II:

Table 8.16. Boehm’s COCOMO II based equations for project duration (2000)

Complexity of project Optimal duration
Simple software projects 2.5PM0.38

Medium software projects 2.5PM0.35

Complex software projects 2.5PM0.32

Note: PM = person months with 152 working hours.

2358.5 Process Metrics

Note: N=number of projects.

ation coefficient).
where effort is in person hours (The reader should be aware of the low correl-

The duration can be compressed by 25% (until 75% of the optimal dura-
tion) according to the COCOMO II model, if accordingly more staff will work
on the product. Further compression is not possible because beyond this point,
the duration actually increases with more staff as mentioned previously.

An additional, frequently found equation in published literature (source
unknown) also calculates the optimal project duration (D) and number of per-
sons (N) relative to effort (PM = person months):

D = PM 0.5

N = PM 0.5

When using the metric project duration it must be clearly defined what are
the conditions to be fulfilled for calling the project complete, or under what
conditions the project postmortem has been reached.

In the chapter “Benchmarking of IT Projects, Factors influenced by the Orga-
nization” we have included additional data from the ISBSG benchmarking data-
base regarding duration and team size.

8.6 Management Summary

Basically, one distinguishes between product metrics and process metrics.
Product metrics relate directly to the result of a software development process.
The result of a functional size measurement of a piece of software is nor-

mally a measure for the size of an installed application.
The measurement of SLOC is widespread but not without challenges.
SLOC cannot be used to measure project productivity since more than half

of the software development effort belongs to noncoding-related tasks.
Functional size of the software reflects a size of the functional user require-

ments (i.e., what functions the software must perform).
Function size can be updated after each phase of the development and after

each change of the user requirements.
Automated counting from physically implemented code contradicts the pre-

mise of the Function Point methodology to count everything from the user view.
The IFPUG has a three-tiered certification for Function Point counting related

software tools.
Dekkers and Gunter warned against relying on backfiring conversion rates

because of the variations that can occur between the actual functionality and
SLOC.

8 Product- and Process- Metrics 236

The quality of software products can be measured by staff and by the cus-
tomer. It is both a measure of the product to be developed, as well as a mea-
sure of the software process.

The product quality can be improved very early in the software life cycle
by performing reviews and inspections, enlarged test effort, and early defect
removal.

Defect metrics are a subset of quality metrics.
The main benefit of defect metrics is the prediction of (future) defect rates.

These rates become the thresholds for comparison of measurements of actual
software quality.

Testing has a surprisingly low efficiency in actually finding bugs. Most
forms of testing will find less than one bug or defect out of every three that are
present.

Grady (1992) of Hewlett-Packard supposed that about one-third of the
effort for new software development is used for defect removal.

A known effect is that defect rates correlate with schedule pressure. Highly
stressed people are naturally unable to produce the highest quality software.
This has been proven to hold especially when a large amount of overtime is
required over a prolonged period of time.

Rösler (2005) experimented with Fagan/Gilb style inspections and reported
that review teams find close to 80% of the defects during the individual check-
ing phase.

There are three important experiences that should be regarded as general
rules: Defect removal itself produces new defects (so called bad fixes); deliv-
ered software always contains defects (called latent defects); it cannot be proven
that there are no defects, only that there are defects (Dijkstra).

Documentation is often the stepchild of application development, since the
effort for it is typically not explicitly planned and it is the first task to be omit-
ted when there is excessive time pressure.

Boehm (2000) suggests a rule of thumb effort of 2 person hours per page of
documentation for small projects, and double that amount for large projects.

Documentation can have a negative effect on project productivity, and a
positive effect on the quality and customer satisfaction of the project.

System complexity is a basic feature of software and measures of it reflect
the relative simplicity of the system design.

Halstead’s metrics are used to measure code complexity.
The McCabe’s Complexity Design Metric, also called cyclomatic complexity,

quantifies the control flow within a program by counting the independent

2378.6 Management Summary

paths on a control flow graph that indicates a certain degree of well structured-
ness of an application.

McCabe’s metric is often used as an indicator for potential quality problems
because it gauges the difficulty of understanding a program. It is also a mea-
sure for the number of test cases.

Process metrics relate to the software development process, comprising the
activities, methods, and standards used.

Productivity is the most popular and also the most misunderstood man-
agement metric. Productivity is the ratio of the software development process
output (FP size) divided by the input resources (work effort hours or person
months).

A prerequisite for measuring productivity is that the resultant metrics are
based on measures of the processes (often on phase level). This requires that
the organization has already reached the CMMI® maturity level 2.

Productivity rates vary widely across different organizations and application
areas, as well as development environments. Research shows that more than 100
factors can influence the productivity rate.

Rework: Action taken to bring a defective or nonconforming component into
compliance with requirements or specifications.

Project managers commonly regard productivity measurement with major
skepticism since it can easily be misused to compare dissimilar projects, and
can be misused to report the resulting efficiency of the project team and its
project manager.

Productivity must never be deemed as the productivity of a single person or
team!

 DeMarco says: “The paradox of productivity is, that productivity and
benefit conflict each other. Maximizing benefit is only possible with alacrity
for risks and going new ways. Improvement of productivity needs as a prereq-
uisite confidence and repetition.”

One of the most regarded (outside Europe) metrics published is the PDR,
measured in hours per Function Point (a metric for efficiency).

The variance analysis showed that the project type has a significant impact
on the PDR.

The variance analysis showed that organization type also had a significant
impact on PDR.

When working with productivity estimates, one must be well aware of the
type of organization with which data is being compared.

8 Product- and Process- Metrics 238

From the PDR, one can derive the productivity in FP per person month by
dividing it with 120 h per person month (net working hours per month) and
then inverting the resultant ratio.

Efficiency means how quickly project goals can be reached.
Generally, the measure for efficiency is the effort per FP, also called PDR

(hours per Function Point). As a measure of processes, it is sometimes called
process capability

Cost metrics (also called CER) need associated and appropriate experience
databases with expert knowledge as a prerequisite.

Cost is the most important factor for the go/no go decision to proceed with
a software and systems development program or project. Cost overruns can
lead to project failure or cancellation before the work is completed, and it can
lead to dissatisfied customers.

The reader is forewarned, however, to be cautious with any average cost per
Function Point figures.

The project duration is a prerequisite for scheduling (time planning) and
resource planning and allocation. In addition, project duration (especially when
it is compressed) can also influence project quality.

When using the metric project duration it must be clearly defined what are
the conditions to be fulfilled for calling the project complete, or under what
conditions the project postmortem has been reached.

2398.6 Management Summary

9 Object-Oriented Metrics

The object-oriented paradigm shows some peculiarities when compared with
traditional software development. This is particularly apparent when one consi-
ders that object-oriented system development supports prototyping, and uses
its own object-oriented programming languages and tools. In addition, there
are terms specific to object-oriented development including the following:

Attributes and classes of objects: Data and its states are stored. Attributes
define the data that characterize classes.
Classes with attributes and methods: These are essential factors for des-
cribing and structuring software programs. Classes define the variables and
methods common to all objects of a certain class.
Cohesion: Is a measure of how logically related are the parts of an individ-
ual component (class) to each other, and to the overall component.
Coupling: Is a measure of the strength of the connection between any two
system components such as classes.
Interfaces: These are lists of methods.
Inheritance: Is the process by which one object acquires characteristics from
one or more other objects.
Message: Means of communication and interaction between objects.
Method: Operations that manipulate or process data.
Objects: These are instances of classes.
Object identity: Objects are unique and have a storage address.
Polymorphism: Allows a single name to be used for more than one related
purpose, which is technically different.

Practitioners and developers who use object-oriented methods often pur-
port that functional size measurement is not appropriate to size the func-
tional user requirements in object-oriented environments. However, research
by Fetcke et al. delivered a concept for counting function points for object-
oriented projects involving the Jacobsen method, and additionally provided
concrete rules to do so. In addition, presentations by Abran et al. reinforce the
applicability of functional size measurement to measure the size of software
developed using object-oriented approaches.

Additionally, the IFPUG has made available a detailed case study (case study
3) illustrating how to count function points in an object-oriented environment

where both an OOA part (object-oriented analysis) and an OOD part (object-
oriented design) are involved.

Classes are typically candidates for ILFs or EIFs, while subgroups are RETs
of such, and attributes are DETs. Objects themselves may be candidates for
EIs, EOs, and EQs. In OOD, Function Points already counted in OOA are not
counted again, but rather the size at OOD only increases if there is new func-
tionality identified at OOD (not typically). Use cases are an artifact of object-
oriented development that identifies functionality from the user viewpoint, and
therefore it is easy to count FP from use cases.

Object-oriented systems development claims the following design principles:

Data abstraction
Information hiding (Parnas’ law: “Only what is hidden can be changed
without risk.”)
Modularization by data encapsulation and well-defined interfaces
Dynamicism and flexibility by instantiation
Reuse of code by inheritance and aggregation.

The final two design principles objectively distinguish object-oriented deve-
lopment uniquely from its predecessors (object-oriented languages).

Sneed (1996) characterized the relationship between object-oriented software
components as shown in Table 9.1.

Table 9.1. Components of object-oriented software according to Sneed (1996)

Objects Build Classes
Objects Have (are composed of) Attributes
Objects Inherit Attributes
Objects Have (are composed of) Methods
Objects Inherit Methods
Objects Send Messages
Objects Receive Messages
Messages Are Data
Messages Are Relations

Generally, object-oriented metrics are characterized by unclear definitions,
and they are not based on extensive structures, contravening the prerequisite
rule for a good metric. Object-oriented software metrics are often used to meas-
ure complexity, maintenance, and clarity. As such, object-oriented metrics are
mostly quality metrics and can be categorized into the following three groups:

System metrics, e.g., number of files, classes, and inheritance trees
Tree metrics, e.g., number of children (NOC) or classes
Class metrics, e.g., number of methods.

9 Object-Oriented Metrics 242

Peter Rosner et al. state that object-oriented metrics are used mainly to
understand to which extent the concepts of object orientation are realized in a
system as evaluated at the class, method, and system levels. Henderson-Sellers
(1996) calls attributes that contribute to the total complexity as programmer’s
attribute.

These metrics can be used to evaluate the changeability and modulariza-
tion ability of a system. As such, object-oriented metrics can support decisions
regarding the future development of a system.

The results of factorial analyses concluded that the metrics suite could be
reduced to five relevant and quantifiable measures for evaluating the size and
complexity of object-oriented software:

The number of weighted methods per class (WMC) is an indicator of system
size. The weight in this case is caused by the complexity of the respective
method
The depth of the inheritance tree measures the complexity of the system
design
The NOC is a measure of the reusability of a class
The degree of coupling between classes indicates the degree to which the
classes are independent. This is an important indicator for understanding
classes and their division into subclasses. Strong coupling indicates a mal-
practice of modular design
The response behavior of a class.

An interesting result was that with the factorial analyses in neither of the
two categories, tree- and class- metrics, could a relationship be found between
Source Lines of Code and the depth of classes. (However, there are a number of
metrics based on relationships between them).

Gupta and Gupta (1996) characterized Object Points as having a structure
similar to the function point counting rules. However, object points are based
on counting objects instead of user functionality. Object Points derive complex-
ity from effective attributes as well as from instances and message connections.

9.1 Examples of Object-Oriented Metrics

More than 200 different object-oriented metrics have been propagated over the
past two decades. Zuse (1997) has identified more than 130 of them in A
Framework for Software Measurement (p. 568) and has partially characterized
them. In this chapter, we present more than eight examples focusing on some
of the early and renowned metrics as well as showing some actual examples
from studies presented in recent international metrics congresses.

9.1 Examples of Object-Oriented Metrics 243

9.1.1 Design metrics by Lorenz (1993)

Lorenz identified and quantified design metrics:
System level (e.g., number of files, classes, and inheritance trees)
Prototype classes typically consist of 10–15 methods, with 5–10 SLOC of
C++ each, and require an average of 5 person days of development effort
Production classes typically consist of 20–30 methods, with 10–20 SLOC of
C++ each, and require an average of 30–40 person days effort for develop-
ment
With more than 20 methods per class, there is too much functionality in too
few classes
C++ systems produce 2–3 times more source lines of code as SmallTalk
systems
The system complexity evolves mainly from the number of different mes-
sage types that are sent or received
Class metrics (e.g., the number of methods) to measure the complexity of a
system
The average size of a method is 8 SLOC for SmallTalk and 24 SLOC for
C++
Methods with more than 12 SLOC in SmallTalk or 36 SLOC in C++ should
be redesigned
An average class consists of six object attributes or instance variables.
Attributes require about 2 person hours development time; methods require
about 10 person hours.

9.1.2 The Metrics Suite from Chidamber and Kemerer, 1994

A de facto standard is the often used Metrics Suite from Chidamber and Kemerer
consisting of six metrics (see Table 9.2). This catalogue is also called MOOSE
(Metrics Suite for Object-Oriented Software Engineering).

Table 9.2. The Metrics Suite (MOOSE) from Chidamber and Kemerer

Metric Explanation
WMC Number of methods of a certain class without

inherited methods (the weight is mostly 1)
Depth of Inheritance
Tree (DIT)

Maximal depth of a certain class in an inheritance
structure (root = 0)

NOC Number of direct subclasses of a certain class
Coupling Between
Object Classes (CBO)

Number of couplings between a certain class and all
other classes

Response Set for a Class
(RFC)

Number of methods that can be performed by a
certain class regarding a received message

Lack of Cohesion
Metric (LCOM)

Number of disjunctive method pairs (i.e., there exist
no shared instance variables) of a certain class

9 Object-Oriented Metrics 244

9.1.3 Capers Jones’ Object-Oriented Cost, Defect,
and Productivity Metrics

Jones measured a piece of PBX (Private Branch eXchange) Switching software
for telephone switching in large hotels and administrations, in eight pro-
gramming languages using his estimating tool KnowledgePlan™. He estimated
the effort based on 132 person hours per person month (22 person days per
person month × 6 productive hours per person day). The anticipated system has
an estimated size of 1,500 function points. KnowledgePlan™ results are
presented in Table 9.3.

It can easily be seen that the productivity in SLOC/PM decreases as the
productivity in FP/PM increases. This is not a surprising result; it represents
the paradox – increase in costs per SLOC toward the higher programming lan-
guages. For this reason and others, Capers Jones calls the use of SLOC met-
rics a management malpractice.

It can also be observed that use of object-oriented programming languages
reduces the number of detected defects.

Capers Jones summarizes: Object-oriented programming languages are
beneficial for improving software quality as well as the productivity of soft-
ware development. Neither one of these can be measured with SLOC-based
metrics.

Dr. Michael Xenos and his coauthors from Patras, Greece collected more than
80 object-oriented metrics (Xenos et al., 2000) from Object Pascal, C++, and
Java systematically. Their list comprises the following:

Twenty-eight traditional metrics, which can also be used in object-oriented
environments
Sixty-one dedicated object-oriented metrics in 5 categories:

– Twenty-five class metrics relating to complexity, size, methods, attri-
butes, and cohesion

– Four method metrics
– Three coupling metrics
– Sixteen inheritance metrics relating to reuse of methods, multiple

inheritance, DIT, NOC, and number of predecessors

All together, the team discovered more than 200 dedicated object-oriented
metrics, and more than 300 references showing the same or similar metrics. In

9.1 Examples of Object-Oriented Metrics 245

9.1.4 The survey of Xenos et al.

– Thirteen system metrics.

addition, they discovered with regret the existence of 16 metametrics that are
only published to date in the Greek language.

Table 9.3. Capers Jones’ object-oriented cost, defect, and productivity metrics

Structured Programming Object-
oriented

Language

 Assem
bler

C CHILL PASC
AL

Ada 93 Ada 9x C++ Small-
Talk

FP 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500
KSLOC 376 206 158 118 93 78 38 28

Size

SLOC/FP 250 137 105 79 62 52 25 19
Require-
ment

10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5

Design 61.5 61.5 61.5 61.5 61.5 61.5 44.5 36.5
Coding 317 117 67 51 35 21 9 5
Integration
and test

295 159 116 97 82 67 50 40

Documenta-
tion

40 40 40 40 40 40 40 40

Manage-
ment

108 57 44 39 35 30 23 19

Effort
in per-
son
months
(PM)

Sum 832 445 339 299 264 230 177 151
SLOC/PM 451 462 339 299 264 230 177 151
FP/PM 1.80 3.37 4.42 5.01 5.68 6.52 8.47 9.99
Hours/FP 73.21 39.16 29.93 26.31 23.23 20.24 15.58 13.29

Costs (C)
in million
US-$

8.32 4.45 3.39 2.99 2.64 2.30 1.77 1.51

C/SLOC
in US$

22.13 21.60 21.45 25.33 28.39 29.49 46.58 53.93

Costs

C/FP in
US$

5,547 2,966 2,260 1,993 1,760 1,533 1,180 1,007

Defect
potential

8,635 3,812 2,726 2,247 1,775 1,397 1,092 959

Defect
removal
rate

90.9 89.1 87.5 86.7 85.5 83.5 80.9 79.4

Delivered
defects
(DD)

786 415 342 295 258 230 208 198

DD/KSLOC 2.09 2.01 2.26 2.50 2.77 2.94 5.47 7.07

Defects

DD/FP 0.52 0.29 0.23 0.20 0.17 0.15 0.14 0.13

9 Object-Oriented Metrics 246

9.1.5 Metrics for Defects and Size by Cartwright and Shepperd

Cartwright and Shepperd (formerly of Bournemouth University, England)
(1997) researched the relationship between events and defects, and between
states and size, based on analysis of a large telecommunication system (133
KSLOC developed using C++ in an OOA environment). Using the Shlaer and
Mellor method, they developed following formulae (with very strong R2

regression coefficients):

C = 0.42 × E - 0.58; R2 = 0.872

S = 170.68St + 1,101.01; R2 = 0.966

where C = number of changes reported in the configuration management sys-
tem (= class defect counts), E = number of events per class, S = size of class in
SLOC, and St = states.

Because of the strength of R2 values, the equations successfully predicted de-
fects and the size of programs. Cartwright and Shepperd found it difficult to
use their data for the complete metrics suite of Chidamber and Kemerer, and
instead decided to count the events, states, changes, and SLOC from which
they could derive their formulae.

9.1.6 Methods for Size from Catherwood et al.

Bill Catherwood and Monica Sood (Catherwood et al., 1997) from AMS Man-
agement Systems, together with Frank Armour of George Mason University,
developed the following object-oriented metrics:

Based on use cases
o Number of objects (#O) per Function Point (FP):

 #O = 1.159FP; standard deviation = 0.045
o Number of methods (#M) per Function Point (FP):

 #M = 18.182FP; standard deviation = 8.444
Based on counts after implementation:
o Number of objects (#OF) per Function Point (FP):
 #OF = 0.380FP; standard deviation = 0.120
o Number of methods (#MF) per Function Point (FP):
 #MF = 4.955FP; standard deviation = 0.951

(Note that when a system developed with Powerbuilder was removed from
the sample, the standard deviation was lower)
Number of Methods based on use cases

9.1 Examples of Object-Oriented Metrics 247

o Number of methods after implementation

The authors reported that they could use these metrics successfully to esti-
mate the program sizes for other object-oriented developed applications.

9.1.7 Class Metrics from Silvia Regina Vergilio and Chaves

Silvia Regina Vergilio and Chaves (2000) from the Federal University of Parana,
Brazil, investigated software test metrics of C++ programs developed using the
IBM/Rational Rose tool. The team collected basic measures shown in Table 9.4
and found that the number of methods and attributes were of greater significance.

These measures can easily be used to derive additional object-oriented metrics
as is depicted in Table 9.5.

Table 9.4. Basic measures of C++ programs
System Number of

methods
Number of
attributes

Number of
classes

Number of
messages sent

or received
1 40 91 7 49
2 223 168 16 102
3 70 40 7 53
4 17 104 7 48
5 18 239 17 123

Table 9.5. Metrics derived from basic measures of C++ programs
System Number of attributes

per method
Number of methods per

class
1 2.275 5.7
2 0.75 13.9
3 0.57 10.0
4 6.12 2.4
5 13.28 1.1
Average 1.74 6.8

9.1.8 Use Case Points

Piotr Habela et al. (2005) present their experiences with Use Case Points (deve-
loped by G. Karner in 1993) as follows:

#MU per Function Point (FP):
 #MU = 23.692FP; standard deviation = 0.571

9 Object-Oriented Metrics 248

#MI = 5.287FP; standard deviation = 0.588.

are either the number of interaction steps in a use case scenario or the number
of (domain model) classes involved in its processing. Based on that classifi-
cation, each use case is assigned a number of 5, 10, or 15 Use Case Points.
Interestingly, the method suggests that the use cases connected through an
uses or an extends relationship (that is, not connected directly with the actor)
should not be counted.
The count of the number of actors contributes to the Use Case Points, though
their impact is smaller. Actors are assigned a value equal to 1, 2, or 3 points
each, depending on whether they access system through local API (1),
through textual interface or network (2), or through a graphical user interface
(3). Note that in effect at this stage, a rather nonfunctional characteristic
(actor complexity) was already introduced.
The Use Case Point methodology focuses attention on the nonfunctional
factors. It adopts (with minor changes) a set of factors similar to the Value
Adjustment Factors (VAF) that are available for the IFPUG-FPA method. In
addition, Use Case Points relies on a set of environmental factors (EF) that
can potentially influence a given organization’s productivity. The factors,
using method-prescribed weights, are applied to the counted number of Use
Case Points, transforming the unadjusted Use Case Points into the result
expressed in (adjusted) Use Case Points.
There are advantages and disadvantages to the Use Case Point approach.
There are two major advantages:

1. The method is directly applicable to the assumed form of requirements
document.

2. The way that functional size is counted does not enforce full refinement
of use case scenarios.

There are four major disadvantages of the Use Case Point approach:
1. The Use Case Points method lacks any official status as a standard.
2. The technical complexity factors are potentially inadequate.
3. The style of use case can impact the measured size.
4. The relationship between use case points and work effort relies on a

small number of constants of hours per use case point (i.e., 20) to cal-
culate the project hours from use case points. This(these) constants are
not supported with any statistically valid historical data.

The Use Case Points methodology assumes classification of use cases into
three groups, based on their roughly determined size or complexity. The criteria

In contrast to other measurement methods, Use Case Points directly refers to
the notions we assume to use for requirements modeling (that is the use case
model and class model).

9.1 Examples of Object-Oriented Metrics 249

The number of data variables
The class depth

Tree metrics
The depth of the inheritance tree as indicator of the inheritance com-
plexity (measured by the number of classes between the inheriting and
the parent class)
The number of siblings or subclasses for each class as an indicator for
the degree of reuse
The number of class hierarchies

Class measures and metrics:
The average size of a method is 5 SLOC for SmallTalk or 15 SLOC for
C++
A message should not have more than three parameters
The number of methods in a class
The number of external methods, which are used from a given method
The degree of coupling or interactions between classes as an indicator
of interface complexity. A coupling is the usage of a method from
another class by a method of a certain class
The response behavior of a class as a measure for the degree of poly-
morphism. This is measured by the number of different methods that
can react to a message (these are the potential goals of the message)
The deficit of cohesion between the methods, or the number of dis-
similar methods provide quantitative measure of the cohesion or diver-
sity of class.

9.2 Projects that were Developed Using Object-Oriented
Approaches in the ISBSG Benchmarking Database

In the Benchmark r10 (ISBSG, 2008), there are 33% of projects (1,345 of
4,106 projects) that indicated that specific techniques were used: there are 620
of 1,238 projects with specific development methods and 10% of it developed
with OOA and 13% developed with OOD (these are 64 or 81, respectively).
Together it is 23% with increasing trend over the last years (20% in release 6 –
OOA 9% and OOD 11%).

Table 9.6 shows the project delivery rate (PDR; higher PDR = lower produc-
tivity) in the Benchmark r10 (2008).

System level: (measures)
The number of classes, functions, and class interactions
The number of instance variables and methods
The number of files and inheritance trees

9.1.9 Further Examples of Object-Oriented Measures and Metrics

Examples of quantitative and qualitative object-oriented metrics proposed by
other authors include the following:

9 Object-Oriented Metrics 250

9.3 Function Points and Object-Oriented System
Development

A wide range of research has been done to apply functional size measurement
to object-oriented software development:

The IFPUG Case Study 3 used object models where the methods of the classes
are identical to the methods used in the requirements concept. Thus, the
methods can directly be counted as transactions.
Whitmire (1992) developed a proposal based on a class diagram showing
the message traffic between classes. He counted each class as an ILF and
counted the message crossing the boundary of the system as transactions.
There were no EIFs counted because there was no direct access to exter-
nally administered data.
The Australian Metrics Organization, ASMA (1994), developed an approach
similar to that of Whitmire. ASMA counted methods delivered from
objects to the user as elementary processes (EI, EO, or EQ). The complex-
ity of the methods was measured based on the attributes used and commu-
nicated. Objects were counted as ILFs, and their complexity was defined by
the attributes.
Antoniol et al. (1998) published an object-oriented Function Point Method
with counting regulations based on a static object model. The method
appears to be flexible and adaptable to organization-specific environments;
however, it does not discern between the functional components: EI, EO,
and EQ. Instead, the transactional function types are defined as generic method
requests between objects.
Pastor et al. (2001) published very detailed Function Point counting regula-
tions for the object model, functional model, and dynamic model of an
object-oriented system development with the OASIS tool, allowing automatic
counting.

9.3.1 IFPUG Function Points and OOA According
to the Jacobsen Approach

Fetcke et al. (1998) counted three projects using IFPUG function points per
“Function Points of an object-oriented analysis according to the Jacobsen
method.” The results of their experience are presented in Table 9.7.

Table 9.6. Project delivery rate (PDR) of object-oriented projects in the ISBSG bench-
marking database

PDR OOA Not OOA OOD Not OOD
Total Number of projects: 52 1,046 42 1,056
Median 12.1 10.0

 OOA object-oriented analysis, OOD object-oriented design

9.3 Function Points and Object-Oriented System Development 251

Table 9.7. Results of applying functional size measurement on OOA projects (Fetcke, 1998)

Functional Component Object-oriented artifact or concept
System boundaries Actors represent the user and other applications.

Use cases represent the functionality.
Actors representing systems or hardware are not
regarded as users.

Evaluation of logical
transactions

Different interaction flows in a use case represent
candidate elementary processes (EI, EO, and/or EQ).
Abstract use cases are not regarded.
Object attributes are DETs.
FTRs are counted per reference object (ILF or EIF)
of the counted files.

Evaluation of logical
files

Data entities of Domain objects represent ILFs or EIFs.
Entity objects are also candidates for ILFs or EIFs.
Object attributes are DETs.
RETs are counted according to the user view.

9.3.2 IFPUG Function Points and UML

Myerson (1999) of South Africa reported on experiences in an UML (Unified
Modeling Language) environment of a leading South African Bank. The UML
components of the Function Point components were deemed to be related as
shown in Table 9.8.

Table 9.8. Proposed approach for translating UML components into Function Point com-
ponents (Myerson, 1999)

UML component IFPUG Function Point component
Use cases EIs or EQs
Primary actors EIFs
Secondary actors EOs
Kernal Business Objects ILFs

To evaluate the relative complexity of each functional component, Meyerson
attempted to derive metrics from the following information to categorize the
complexity level: low, average, or high.

For use cases
Event inputs and outputs
The number of alternative flows
The number of steps in alternative flows
The number of actors involved in a process
The number of nonleaf processes

9 Object-Oriented Metrics 252

For Domain Objects
The number of attributes
The number of checks for input attributes or objects

Note: The American author does not endorse the approach posed by Myerson
in the immediately prior table, particularly in the rows where a use case equates
to an EI or EQ (it could also be related to multiple EIs, EOs, and/or EQs
depending on the granularity of use cases). In addition, there are other rows
where we do not agree; however, we do not endorse, but rather simply present
these ideas.

Uemura et al. (1999) published detailed Function Point counting rules to be
used with UML- based specifications. The team counted the design specifica-
tions of the Rational Rose development tool as EIs.

Iorio (2004) presented similar experience reports at the 2004 Software
Measurement European Forum in Rome.

9.3.3 COSMIC and UML

Azzouz and Abran (2004) published a comparison of COSMIC and UML
concepts with a mapping to the Rational Unified Process (RUP). Two COSMIC
concepts had no direct relationship to any UML equivalent. The research results
are presented in Table 9.9.

Table 9.9. COSMIC and UML equivalences in the Rational Unified Process – RUP (Azzouz
et al., 2004)

COSMIC concept UML equivalent Remark
Software boundary Use case diagram
Software layer No UML equivalent Must be elaborated manually
User UML actor
Functional process Use case
Data movement Operation (message)
Trigger (starting event) No UML equivalent A new UML icon for triggering

events was introduced in order
to distinguish it from messages

Data group UML class
Data attribute Class attribute

Habela et al. (2005) summarized their experiences with applying COSMIC
to object-oriented application development:

Significant differences in complexity were observed depending on the
required system’s architecture. The COSMIC tier concepts help to over-
come this issue.

9.3 Function Points and Object-Oriented System Development 253

The number of external keys (relations).

A second issue concerned the variation in the complexity of data groups (i.e.,
entities) processed in the systems we analyzed. This led us to base our
COSMIC counts on the observed data attributes rather than on data group
units. For future users of this approach, it is easier to point out the attributes
than name the data groups of which such attributes are a part.
To provide the information about data movements that we needed to meas-
ure using COSMIC, we need to take a rather system- or design-oriented
view of the use case model.
In order not to lose sight of the general picture, we kept in our use case
template some business-oriented specification elements.
Some variation was introduced because of the relationships between use cases.
This typically results in a number of use cases that are not self-contained
when considered separately from those use cases to which they are attached.
An intuitive rule of the method is that a functional process must at least
consist of two data movements to provide functionality to its user. Namely,
some triggering input (entry) and at least an output (exit) or registration
(write) of information should be present. When dealing with abstract use
cases, this assumption must be revised. Therefore, the aforementioned rule
should be applied to verify complete use case instances rather than to sepa-
rate use cases.
The only place where we diverged from the COSMIC rules was in our
treatment of the triggering events. Since we considered that there is a differ-
ence in the complexity between a flow that simply triggers a function, and an
initial flow that provides some input data attributes, we assume counting the
functionality only in the latter case.

9.4 Management Summary

Practitioners and developers who use object-oriented methods often purport
that functional size measurement is not appropriate to size the functional user
requirements in object-oriented environments. However, research by Fetcke
et al. delivered a concept for counting function points for object-oriented pro-
jects involving the Jacobsen method, and additionally provided concrete rules
to do so.

Additionally, the IFPUG has made available a detailed case study (case
study 3) illustrating how to count function point in an object-oriented envi-
ronment where both an OOA part and an OOD part are involved.

Classes are typically candidates for ILFs or EIFs, while subgroups are RETs
of such, and attributes are DETs.

Objects themselves may be candidates for EIs, EOs, and EQs. In OOD,
Function Points already counted in OOA are not counted again, but rather the

9 Object-Oriented Metrics 254

size at OOD only increases if there is new functionality identified at OOD (not
typically).

Use cases are an artifact of object-oriented development that identifies func-
tionality from the user viewpoint, and therefore it is easy to count FP from use
cases.

Object-oriented software metrics are often used to measure complexity,
maintenance, and clarity. As such, object-oriented metrics are mostly quality
metrics.

The results of factorial analyses concluded that the metrics suite could be
reduced to five relevant and quantifiable measures for evaluating the size and
complexity of object-oriented software.

A de facto standard is the often used Metrics Suite from Chidamber and
Kemerer, consisting of six metrics.

Capers Jones calls the use of SLOC metrics a management malpractice.
Capers Jones summarizes: Object-oriented programming languages are bene-

ficial for improving software quality as well as the productivity of software
development. Neither one of these can be measured with SLOC-based metrics.

There are two major advantages of the Use Case Point approach: the method
is directly applicable to the assumed form of requirements document; the way
that functional size is counted does not enforce full refinement of use case
scenarios.

There are three major disadvantages of the Use Case Point approach: the
Use Case Points method lacks any official status as a standard, the technical
complexity factors are potentially inadequate, and the style of use case can
impact the measured size.

9.4 Management Summary 255

10 Measurement Communities and Resources

Software measurement is not easy. The majority, over 80% of measurement
programs, fail to deliver actual performance improvements for numerous rea-
sons, as we outline in this book. This chapter is intended to familiarize you with
useful international standards, to guide you with benchmarking and consulting
resources, and to assist you to navigate the quagmire of software measurement
standards and communities throughout the world.

In general, there are three main types of measurement standards related to
software and systems:

Standards that define measures
Standards that present measurement methods (in particular Functional Size
Measurement Method standards)

Such standards in the area of functional size measurement have evolved and
have been available for a number of years from the Geneva-based International
Organization for Standardization (ISO) and the International Electrotechnical
Commission (IEC) joint technical committee 1, subcommittee 7: Software and
Systems Engineering (ISO/IEC JTC1 SC7), especially through the standard
suite of standards ISO/IEC 14143 Parts 1–6, and through a series of standards
for each of the major Functional Size Measurement Method standards as listed
later. The final standard in the suite is ISO/IEC 14143-6:2007 Guide to Func-
tional Size Measurement (FSM) Usage.

All standards are current as of this publication; however, since ISO/IEC
JTC1 standards are valid for a period of only 5 years at a time, the reader is
encouraged to contact your national standards body or ISO/IEC for the most
up-to-date standard available. Currently, there are five Functional Size Mea-
surement Method standards that are ISO/IEC recognized as conforming to the
Functional Size Measurement definitional standard:

ISO/IEC 14143-1: 2007 – Functional Size Measurement: Definition of con-
cepts. Each standard went through a rigorous process within ISO/IEC JTC1
to become an accepted standard, the first four using the ISO/IEC Publicly
Available Standard (PAS) transposition process, while the last one (COSMIC)
utilized the regular ISO/IEC JTC1 SC7 process because it was not, at the time
of standardization, supported by a stable international user or industry organi-
zation.

Standards that regulate how to perform measurements.

The most popular and in-use functional sizing methods have now been stan-
dardized by ISO/IEC as outlined in the next section, as well as regulation and
definitional standards pertaining to measurement frameworks.

Besides ISO, we also briefly examine three other important standards: the
Capability Maturity Model Integration (CMMI®), the Goal Question Metric
method (GQM), and the Balanced Scorecard.

As far as measurement organizations or communities, we have concentrated
on those communities that most actively cooperate and organize international
software measurement conferences. The list is far from complete but is inten-
ded to aid the reader to gain insight into the current and past international co-
operation. The selection of the metrics organizations is sorted alphabetically.

10.1 The ISO Standards

Within the ISO/IEC JTC1/SC7 Working Group 12 (WG12), a series of stan-
dards has been developed for the definition, design, and verification of soft-
ware Functional Size Measurement (FSM) methods: ISO/IEC 14143. Initiated
as a working group in 1994, WG12 developed a total of six standards in the
14143 suite, and was instrumental in standardizing all of the ISO-conformant
Functional Size Measurement Method standards. This series of standards was
developed because in the early 1990s, there were already over 30 variants of
FSM methods, but there was no recognized set of definitions or criteria on
which to assess them.

The benefits of the ISO suite of standards are as follows:

The basic principles for FSM are defined and stabilized.
Standards exist for checking if a metric conforms to the definition of a func-
tional size measurement metric.
It is the only forum where national experts from over 30 nations collaborate.

The pitfalls of the ISO suite of standards are as follows:

It is a metastandard (framework).
Because the standards are limited to Functional Size Measurement, they
do not address the problems with or the impact of technical- and quality-
requirements in estimating or their usage together with functional size.
The standardization process is slow (voluntary members, regulations, proto-
cols, etc.)

Figure 10.1 gives an overview of the ISO/IEC JTC1 SC7 framework for
measurement standards.

258 10 Measurement Communities and Resources

Fig. 10.1. The ISO/IEC JTC1 SC7 framework for software and systems measurement

The following list includes some of the most important software and sys-
tems related measurement standards:

ISO 9000 Quality Management and Quality Assurance.
ISO 9001 Quality Management.
ISO/IEC 9126 Quality Attributes (Parts 1–3 cover Internal, External, and
Quality in use measures). Note that ISO/IEC 9126 is being replaced with the
new ISO/IEC 25000 SQUARE series of standards currently under develop-
ment in SC7’s Working Group 6 (WG6).

software and systems).
ISO 14000 Environmental Management.

tional Size Measurement (six standards).
ISO 14756 Measurement and Rating of Performance of Computer-Based
Software Systems.
ISO/IEC 15504 Information Technology – Software Process Assessment.
ISO/IEC 15939 Software Measurement Process.
ISO/IEC 19761 COSMIC Full Function Points version 2.1.
ISO/IEC 20926 IFPUG Function Point Unadjusted Method version 4.1.
ISO/IEC 20968 Mark II Function Points.
ISO/IEC 24570 NESMA Function Points.
ISO/IEC 29881 FiSMA 1.1 Functional Size Measurement Method.

The standards and usage of Functional Size Measurement have increased
over recent years, as measurement has become a mandatory contract provision

25910.1 The ISO Standards

ISO
9001-
2000

ISO
14143

ISO
14598

ISO 9126

ISO
15288

ISO
12207

ISO
15504

ISO
15939

PSM CMMI
MODELS

STANDARDS
Scales Processes Entities and Attributes

ISO
9001-
2000

ISO
14143

ISO
14598

ISO 9126

ISO
15288

ISO
12207

ISO
15504

ISO
15939

PSM CMMI
MODELS

STANDARDS
Scales Processes Entities and Attributes

ISO/IEC 12207 Software and Systems Life Cycle Processes (harmonized for

ISO/IEC 14143 Information Technology – Software Measurement – Func-

especially on outsourcing contracts. Function Point Methods and case studies
now illustrate that functional size measurement effectively covers a large vari-
ety of software applications. Today they are almost as widely used as LOC;
however, the penetration of measurement in the software and systems industry
is still a meager 1%. FSM is applicable in many types of software environments
from hard real-time systems, as in satellite navigation or production control
systems, to softer systems, as in telecommunication, commercial IT, or batch
processing.

The ISO/IEC suite of standards 14143: “Information Technology – Software
and Systems Measurement – Functional Size Measurement” consists of the fol-
lowing six parts:

Part 1: Definition of Concepts
Part 2: Conformity Evaluation of Software Size Measurement Methods to
ISO/IEC 14143-1
Part 3: Verification of Functional Size Measurement Methods
Part 4: Reference Model
Part 5: Determination of Functional Domains for Use with Functional Size
Measurement
Part 6: Guide for Use of ISO/IEC 14143 Series and Related International
Standards.

Measurement of the functional size of software is an essential part of the
measurement of user requirements, but it only measures the size of the func-
tional user requirements (what the software must do in terms of business pro-
cesses and tasks). It is critical to remember that the functional user requirements
are a subset of the user requirements, and as such, estimates of cost and work
effort must take those requirements also into consideration. These other types
of user requirements (called nonfunctional and technical requirements) are not
measured by functional size. As such, other types of measures may be neces-
sary when estimating software effort in addition to functional size. Examples
of such metrics include, for example, response time behavior and transaction
rate, reliability (availability, error tolerance, integrity, etc.), portability, main-
tainability, and efficiency, just to mention a few. There is not a universally
accepted general set of measures or standards to cover these requirements;
however, ISO/IEC’s JTC1 SC7 Working Group 6 is developing a set of quality
measurement standards (called SQUARE) to replace the current ISO/IEC
9126 standard. Currently 9126 is published with three parts that set out meas-
ures for software quality (internal quality, external quality, and quality in use).
Note that product quality in the context of ISO/IEC 9126 falls into six distinct
categories:

Usability (how usable is the software)
Reliability (mean time to failure is one metric)

260 10 Measurement Communities and Resources

Functionality (how well does the software meet the functional requirements)
Portability (how well does the software meet the user needs for portability)
Efficiency (how well does it perform what it is supposed to do)

Benefits of the ISO/IEC standards are that they consolidate the knowledge
of best practices from metrics experts from all over the world. (Note that for
non-functional requirements there are also at least three additional models avail-
able including the COCOMO II productivity factors, the FiSMA ND21 (new
development) 21 situation analysis (productivity factors) and the General systems
characteristics (GSC) in the IFPUG FP method.

10.2 The Capability Maturity Model Integration

The CMMI® of the SEI (Software Engineering Institute) at Carnegie Mellon
University in Pittsburgh, PA, is a five level process maturity model (see Fig. 10.2)
for Software Process Improvement (SPI). CMM® and CMMI® are registered
trademarks of the SEI at Carnegie Mellon University, Pittsburgh, PA, USA.
The latest version of the CMMI® manual can be downloaded without charge
from the CMMI® homepage of the SEI (http://www.sei.cmu.edu). The SEI was
founded in 1994 by the American Congress, funded by the United States DoD
(Department of Defense), and hosted at the Carnegie Mellon University.

Fig. 10.2. The five levels of the CMMI® (source: www.sei.cmu.edu). (Note that level 1 is
initial and progress up an integer level at a time to the highest level 5 which is the optimi-
zing level)

26110.2 The Capability Maturity Model Integration

Initial

Managed

Defined

Quantitatively
Managed

Optimizing

Disciplined process

Standard and consistent

Predictable outcomes

Continuous improvement

Maintainability (how easy is the software to maintain and fix).

The CMMI® model superceded the earlier Capability Maturity Model
(CMM®) for software, and combined a number of variants of process maturity
models (e.g., CMM® for acquisition, CMM® for systems, etc.), with an eye to
integrating these models. The CMM® and later the CMMI® currently in use
were created by the SEI as a basis to improve the state of the defense software
engineering world. They provide an improvement framework for process matu-
rity, and as a consequence, quality and predictability.

Table 10.1 explains the five levels in more detail.
A weak point of the earlier versions was that they lacked a central discussion

of metrics. In the current CMMI®, measurement and quantitative methods are
mentioned throughout, and specifically as a process area (PA) to achieve matu-
rity level 2.

Software measurements is of such importance that the US Department of
Defense (DoD) demands explicit planning and tracking of metrics on every
project.

ISO/IEC 15939 was developed on the basis of the SEI-supported Practical
Software and Systems Measurement (PSM), which provides additional sup-
port for developing and creating sustainable goal-driven measurement. (See
www.psmsc.com to download the current version of PSM at no charge.) Besides
the CMMI®, we direct the reader to the Recommended Approach of the NASA
on measurement.

Table 10.1. CMMI® levels

CMMI® Level Focus Process Areas (PA)
5 Optimizing Continuous process

improvement on all
levels

Process change management, technol-
ogy change management, defect preven-
tion

4 Quantitatively
managed

Predictable product
and process quality

Quality management, quantitative proc-
ess management

3 Defined Standardized and
tailored engineering
and management
process

Organization process focus and defini-
tion, product engineering, integrated
product management, intergroup coordi-
nation, training program, peer reviews

2 Managed Project management
and commitment
process but still
highly people-driven

Requirements management, project
planning, project tracking and oversight,
subcontract management, quality
assurance, configuration management,
measurement

1 Initial Heroes and massive
efforts save projects
from failure – often
with chaotic results

262 10 Measurement Communities and Resources

The CMMI® has a strong relationship to the three ISO/IEC standards: 12207
(Software Life Cycle Processes), 15504 (Information Technology – Software
Process Assessment), and 15939 (Software Measurement Framework already
mentioned).

The current model of CMMI® is the CMMI® for Development (CMMI®-
DEV), V1.2 model, which was released on August 25, 2006. This model conti-
nues to support the five levels of process maturity and has combined the staged
and continuous representations of the CMMI® from the earlier release V1.1.

Level 2 of the CMMI® is in the author’s opinion, the most difficult to reach
with respect to cultural changes in organizations. It calls for documented plans
for software projects including size estimates and requirements change man-
agement. Estimates of effort, duration, and costs must be done in relation to
size, and critical resources must be planned and tracked. Requirements creep
must also be tracked and the resulting changes managed. Estimates are typi-
cally made by teams of developers.

Level 3 demands that the organization adopts a standardized process frame-
work, e.g., project estimates must be done on the basis of the organizational
project history.

Level 4 shows profound process knowledge that is visibly consistent across
all staffing levels, functions, and roles in the organization. The title of the level –
quantitatively managed – gives a clue to the fact that it demands measurement-
based quantitative management.

Level 5 finally asks for organizational continuous process improvement and
demands additional quantitative benchmarks.

Overall, the CMMI® provides both a guideline for identifying strengths and
weaknesses of the software development processes, and also a roadmap for
improvement actions. An extensive set of practical experiences with CMMI®
(and other related improvement initiatives) can be found in the book by Ebert
et al. (2004): Best Practices in Software Measurement – How to Use Metrics to
Improve Project and Process Performance. Figure 10.3 shows a possible road-
map for implementation of the CMMI®.

The CMMI® helps to define what to do to reach higher levels of organi-
zational process maturity, but does not say how to do it. The CMMI® maturity
level is becoming an increasingly important indicator or gauge for organiza-
tional software process quality.

Obviously many organizations fail to reach CMMI® level 2 since they are
not capable of measuring software size (including Functional Size Measure-
ment). Moreover, obviously all Key Performance Indicators (KPI) are based on

26310.2 The Capability Maturity Model Integration

Fig. 10.3. A roadmap for implementation of the CMMI

measurement, and the basic original measure is the size of the software. The fact
that organizations like the SEI assume the usage of such simple measures gives
an indication of the quality of actual application development in organizations,
as well as reflects the culture of the USA, which demands that organizations be
given a choice rather than a dictate of how to measure. For further information
about the current version of the CMMI® and other process maturity models
maintained by the SEI refer to their website at http://www.sei.cmu.edu/cmmi/.

10.3. The Goal Question Metric Method

To evaluate the software development process(es) according to the CMMI®, the
GQM method has gained widespread acceptance. It is widely used since its
goals are easy for beginners, and the structured process enables early successes
with measurements. The GQM approach is mostly suitable for a tailored im-
plementation of a measurement initiative. It was originally developed in 1994
by Victor Basili (now retired from the University of Maryland) and Dieter
Rombach (Fraunhofer Institute) for performing measurement effectively and
efficiently.

The GQM method defines in its first step (G-Goal) at least one measurement
goal. This goal then leads to a set of measurement questions whose answers
tell whether or not the goal is being achieved. Questions can center around
quality attributes, which are often a prerequisite for reaching the goals. In the
third step: metrics, measures are defined, which deliver information to answer
the questions and to evaluate the degree of goal fulfillment. GQM is a top–
down approach to measurement (G Q M) but it should also be interpreted
bottom–up to ensure that every measure or metric is traceable to at least one
goal. The questions should cover the main components of the goal.

264 10 Measurement Communities and Resources

Define Goals
for Metrics

Determine
Metrics

Define
Approach for

Data Collection

Determine
Approach for

Reporting

Planning

Measurement
Data

Processes,
Tools

Metrics
(indicators)

Data Collection Data Analysis and
Metrics Calculations

Communication
of Results

CMMI-Process

Define Goals
for Metrics

Determine
Metrics

Define
Approach for

Data Collection

Determine
Approach for

Reporting

Planning

Measurement
Data

Processes,
Tools

Metrics
(indicators)

Data Collection Data Analysis and
Metrics Calculations

Communication
of Results

CMMI-Process

GQM in practice is often used after the CMMI® evaluates the maturity
level of the organization. After selecting particular process areas (PAs) to be
improved, the GQM method is then employed to define the goals, questions,
and ultimately the measurement of the current (actual) state and its compari-
son with the plan (the goals).

The GQM is performed in four phases:

1. Planning: Selection of a project and development of a roadmap
2. Definition: Definition and documentation of goals, questions, metrics

(GQM), mostly done in form of assessments
3. Data collection

is unsuitable to evaluate the quality of people) in software development. As
far as tool support for GQM, there are several supporting models including
BOOTSTRAP, FAME, PROFES, Spearmint, SPICE (Software Process Improve-
ment and Capability dEtermination), etc.

Thomas Gantner and Kurt Schneider reported on their practical experiences
with GQM at DaimlerChrysler. They found that GQM implementation needs a
concentrated effort in the preparation phase. They also reported that the lack
of tool support hampered their implementation.

Bill Curtis, one of the original authors of the CMM® for software, relates the
story of a man who does not find his house key when he arrives at his home at
night. He searches around a lantern, and a passerby asks him if he had lost his
keys close to the lantern. “No,” answers the man, “but it is impossible to see
anything over there in the dark.” There is analogy here to GQM and common
software measurement initiatives: typically, there is lot of data collected –
especially so for that data which are easy to get. After several months of
measuring, it is still unclear as to what or how to use the data. Goals of mea-
surement cannot be found in this way; they must be articulated and explored in
quite an opposite way.

The correct approach is to work with GQM to document the goals for mea-
surement, then ask questions to find out whether corrective action brings you
closer or further away from those goals, and then (and only then) to identify
only those metrics that directly answer the questions about reaching the goals.
Most often, collection of data leads to the discovery of the interpretation and
corrective actions lead to achieve the goals.

The following overview from the American author (see Table 10.2) des-
cribes a practical example of how to formulate the goals and questions of an
organization, and then what metrics can support those questions.

26510.3 The Goal Question Metric Method

4. Interpretation.

GQM allows evaluation of the quality of products or processes (Note: this

Table 10.2. Goal/question/metric example

Basic measures (to build appropriate metrics)
Goals, questions
(below)

Project
attributes

Function
Points

Effort Defects Customer
contentment
measurement

Improve
estimating

X x x

Improve
productivity

X x x

Improve quality X x X X
Measure impact
of tool support

 x x X

Support make-
or-buy decisions

X x x

Improve testing x x X X

Rini van Solingen and Egon Berghout published a book titled The Goal
Question Metric Method in 2000 (McGraw Hill, Europe), complete with a CD
of templates for use when implementing goal-driven measurement. For further
information, refer to http://www.iteva.rug.nl/gqm/indexframe.html.

Goal-driven measurement is an SEI-specific adaptation of the GQM method.
It is used as the basis for the measurement process framework in both ISO/IEC
15939 and the PSM approach on which ISO/IEC 15939 was based.

10.4 The Balanced Scorecard

The Harvard Business School Professor Robert S. Kaplan and the consultant
David P. Norton developed in 1992 a concept for solving the problem of
managers to decide between financial and operative measurement scales. In
cooperation with several organizations which were, at the time, considered to
be the best at measuring efficiency, they elaborated a measurement system
called the Balanced Scorecard. It uses four different perspectives for measur-
ing and evaluating the efficiency of an organization:

1. The financial perspective (e.g., costs, budget)
2. The internal process-related perspective (e.g., productivity, effort, duration,

plan vs. actual, enhancement, quality, defects, maintenance, processes –
here is the area of IT metrics: costs per new or changed functionality,
maturity level)

3. The customer-related perspective (e.g., service levels, customer content-
ment, market share, customer relations)

4. The innovation- and learning-related perspective (e.g., staff training and

266 10 Measurement Communities and Resources

education).

These four aspects must be chosen and adapted to fit an organization’s speci-
fic requirements. The goal of the Balanced Scorecard is the optimization of
the financial metrics. Hence, the optimization of the other three aspects is only
desired in relation to and dependency on this main aspect. Figure 10.4 shows
the general model of the Balanced Scorecard.

It is possible to implement a Balanced Scorecard as a strategic metrics- and
management-system for the IT department of an organization. In this way, the
development of an IT strategy can be monitored on a long-term scale. Further-
more, the measurements support strategic learning and continual refinement
of the strategy. The use of the Balanced Scorecard can shift the focus from
one-sided financial or budget discussions in the direction of more qualitative
questions, such as the following:

1. Which benefits does IT elaborate?
2. What does IT deliver for our internal and external customers?
3. How innovative is IT?
4. Where do we have an advantage with IT compared with our competitors?

The Balanced Scorecard is primarily a strategic management concept ena-
bling one to coordinate the goals of various parts of an organization transpar-
ently, and on all levels from a holistic point of view. IT measurement fits well

Fig. 10.4. General model of the Balanced Scorecard as used from the German author in his
lectures

26710.4 The Balanced Scorecard

Wie sollen wir gegenüber
unseren Kapitalgebern
auftreten, um den
finanziellen Erfolg zu
erhöhen?

Which appearance shall we
present our customers to

realize our visionn?

Customer View

Wie sollen wir gegenüber
unseren Kapitalgebern
auftreten, um den
finanziellen Erfolg zu
erhöhen?

In which Business Processes
must we be the best to be

successful and to satisfy our
stakeholders and customers?

Process Related ViewWie sollen wir gegenüber
unseren Kapitalgebern
auftreten, um den
finanziellen Erfolg zu
erhöhen?

Which appearance shall we
present our stakeholders to

enlarge our financial success?

Financial View

Wie sollen wir gegenüber
unseren Kapitalgebern
auftreten, um den
finanziellen Erfolg zu
erhöhen?

Howmust we preserve our
abilities for continuous

adaptation and improvement
to realize our vision?

Innovation- &
Learning- related View

Vision
and

Strategy

within the model and supports the strategic goals of the organization. It is rec-
ommended that the following four steps be done prior to implementing a Bal-
anced Scorecard:

1. Define accepted and achievable strategic goals (i.e., they will not disap-
pear with a change in management).

2. Identify IT critical success factors.
3. Define the corresponding metrics.
4. Present the results in a Kiviat chart.

The metrics will be mostly derived from the organizational goals following
a method similar to the GQM. Balanced Scorecards are often used as part of
internal benchmarking in an organization.

10.5 Important Software and Systems Measurement
Organizations

There are varieties of software and systems measurement organizations around
the world. Famous are the truly international organizations such as IFPUG,
ISBSG, and ISO, together with scientific institutes tied to academic universities
that have established international cooperative initiatives. Several of these include
the Software Engineering Management Research Laboratory at the University
of Quebec (Montreal, Canada), which cooperates with the (German) GI Interest
Group on Software Metrics at the University of Magdeburg. There are also a
number of national metrics organizations, and in some cases, these organiza-
tions permit the fulfillment of government mandates for software measurement.
For example, in several countries software projects are managed in some way
related to functional size measurement. Such countries include the following:

South Korea (where government regulations dictate that publicly tendered
IT projects are sized in IFPUG Function Points conformant with ISO/IEC
20926:IFPUG 4.1 unadjusted)
Italy (where government regulations require the use of FP on public IT pro-
jects)
Brazil (which awards evaluation points based on numbers of Certified Func-
tion Point Specialists (CFPS) in the supplier company)
Australia (where the southernSCOPE method uses Function-Point-based mea-
surement to manage Victorian State Government projects. Note that there are
no other Australian government bodies where government directs that FP
based measurement be used)
Finland (where the northernSCOPE method based on functional size meas-
urement is creating IT project success and is gaining a foothold particularly

268 10 Measurement Communities and Resources

in the larger state government programs).

10.5.1 Computer Measurement Group (CMG)

The CMG is a nonprofit worldwide organization of data processing profes-
sionals committed to the measurement and management of computer systems
(hardware and software). CMG members are primarily concerned with per-
formance evaluation of existing systems to maximize performance (e.g., res-
ponse time, throughput, etc.). Another focus of CMG is capacity management,
where planned enhancements to existing systems or the design of new systems
are evaluated to estimate the necessary resources required that would provide
adequate performance at a reasonable cost. The CMG home page is http://
www.cmg.org/. National groups of the CMG are active in Australia, Austria,
Canada, Germany (as CECMG), Italy, South Africa, the United Kingdom (as
UKCMG), and the USA.

10.5.2 COSMIC Consortium

The Common Software Measurement International Consortium (COSMIC) was
founded in late 1998 by a group of experienced software metrics practitioners
from industry and academia with the aim of promoting a new functional size
measurement method known as COSMIC Full Function Points (COSMIC-FFP).
Since the earlier days, the resultant method has undergone dramatic change,
was standardized through the ISO/IEC working group on functional size mea-
surement as an ISO/IEC standard, and is now known as simply the COSMIC
Method.

Approximately 40 professionals from 8 countries combined their efforts vol-
untarily and proposed some principles for a software Functional Size Measure-
ment method. At the end of 1999, they published the COSMIC Full Function
Point Version 2.0 Measurement Practices Manual (COSMIC:MPM), and made
it available for download from http://www.cosmicon.com. A short overview of
the COSMIC Method is included in the chapter “Functional Size Measurement
Methods” (FSMM). In November 2007, the COSMIC Version 3 was released,
and all documents inclusive of ISO/IEC 19761 will be changed from COSMIC-
FFP to COSMIC.

According to proponents of the method, COSMIC is based on the strengths
of the IFPUG, Mark II, and the NESMA Function Point Methods. It uses four
base functional components: Entry, Exit, Read, and Write. In developing the
method, there was a 14-month field trial period starting in March 1999 in order
to verify in industry the practicability of this new measurement method. This
lead to the advantage of this method, namely the benefit that it started from
beginning on with a measured and approved database of case studies deliver-
ing profound metrics for estimation.

26910.5 Important Software and Systems Measurement Organizations

Following organizations participated in the field test:

An Australian and a European space and aircraft organization
A British bank with MIS applications
Two European telecommunication organizations
An Australian and a Canadian software provider operating in military defense
environment
An Australian real-time software consultancy
A Canadian software consultancy
Following field tests were made:
Test of the general repeatable interpretation of the Measurement Practices
Manual (MPM) Version 2.0
Development of detailed measurement procedures
Test for verification that the measurements represent functionality
Tests for verification that measured data correlate with effort
Tests for verification that the method was portable to different development

The tests were performed with 18 development projects from 5 organizations
(16 new development and 2 enhancement projects) on multiple platforms and
with 21 maintenance requests of small functional enhancements in a single
organization. There was consistent positive feedback about the test require-
ments, with the additional benefit of a database of historical data.

The COSMIC Method was developed as follows:
Designed by an international group of experts on an academic basis
Drawn on the practical experience of all the main existing FP methods
Designed specifically to conform to ISO/IEC 14143 Part 1
Designed to work across MIS and real-time domains, for software in any
layer or peer item

The Measurement Practices Manual (MPM) is available in English, French,
Japanese, and Spanish. At the time of this writing, translation into German,
Italian, and Turkish is also in progress. There are also three case studies avail-
able. Furthermore, the COSMIC Method was approved as an ISO standard in
March 2003: ISO/IEC 19761. The COSMIC consortium published the COSMIC
Guide to the Implementation of ISO/IEC 19761, which is also available for
download http://www.lrgl.uqam.ca/ cosmic-ffp.

The International Software Benchmarking Standards Group (ISBSG) has also
approved COSMIC as a data collection standard. The ISBSG Benchmarking
Database release 8 (January 2004) contained 66 COSMIC-FFP Version 2.0 pro-
jects, and 6 from Versions 1.1 and 1.0. Seventy-five percent were new develop-
ments, 25% enhancements, with 65% of projects on PC platforms, 15% in the

270 10 Measurement Communities and Resources

environments.

Tested in a variety of field trials before being finalized.

environment of embedded software, process control, message switching, network
management, etc. There are several worldwide research activities under way
for further improvement and dissemination of the COSMIC Method (ISO/IEC
19761).

The COSMIC home page is http://www.cosmicon.com, while the standard
and publications are hosted at http://www.lrgl.uqam.ca/cosmic-ffp.

The FiSMA is an independent registered association focusing on better man-
agement through improving the quality and measurability of software and sys-
tems engineering. FiSMA’s membership is intended for all companies, research
units, universities, and other institutes interested in software measurement. At
the moment, there are about 40 active member organizations and local software
process improvement networks (SPINs).

FiSMA was established in 1992 with the name LATURI user group. In 1998,
it changed its name to FiSMA and expanded its operation to the current level.
FiSMA is a member organization of the Metrics Associations International
Network (MAIN). It has also close cooperation with Australian ISBSG and
French Datamax. Also, FiSMA cooperates with similar associations and net-
works in EU (EuroSPI), Baltia (BaSMA), and Russia areas and maintains a
consolidated website (www.fisma.fi).

The first version of the FiSMA FSM method was published in 1991 under
the original name Laturi, and funded through a cooperative industry project of
the same name. Since then, there has been continuous use and maintenance of
the method through the companies of the FiSMA, which were incorporated in
1996. More than 2000 project managers and software practitioners have been
trained to use FiSMA FSM method through standardized 2- and 3-day training
courses, with several thousand more participating globally in shorter introduc-
tory events.

The rules and details about the FiSMA FSM method have been publicly
available since the early 1990s and today can be downloaded (in English and
Finnish) from www.fisma.fi. FiSMA 1.1 is the fifth functional size measure-
ment method to become an ISO/IEC standard: ISO/IEC 29881.

FiSMA formalized its scope management concept: northernSCOPE in early
2007, and 4SUM Partners (CEO: Pekka Forselius) worked with FiSMA to also
create and standardize a new certification for software and systems professionals:
Certified SCOPE Manager (CSM) with the European Certificates Association
(ECA). 4SUM Partners was incorporated through as a management buyout from
STTF, and it retains both the official training materials for the CSM curriculum
as well as the professional scope management software: Experience® Pro.

27110.5 Important Software and Systems Measurement Organizations

10.5.3 Finnish Software Measurement Association (FiSMA)

northernSCOPE is a 12-step approach to professional scope management
whereby an independent and knowledgeable Scope Manager works on behalf
of a systems acquisition customer (often contracting for software and systems
development services) as the customer’s advocate to facilitate and manage sup-
plier work bid by unit pricing (Euros or US$ or other currency per Function
Point) for systems development programs. (Note that a program is typically
composed of multiple software development projects – most of which can be
sized based on functional size measurement.) As such, rather than the ineffec-
tive practice of a customer demanding a fixed price estimate from a supplier
before requirements – which ultimately results in a lose/lose situation for both
the customer and supplier – the work is managed and progress is monitored
through unit pricing of the work to be done. This permits the customer and sup-
plier to achieve success – the customer can make changes that will be paid for
based on the unit pricing, and the supplier is paid for the work that the cus-
tomer directs the supplier to do.

For further information about northernSCOPE, visit www.fisma.fi/in-english,
and for training and certification worldwide in Scope Management based on
northernSCOPE, visit www.4sumpartners.com.

FiSMA’s Experience database, which is also at the core of the Experience®
Pro software, accumulates user project data in conjunction with the ISBSG
database (www.isbsg.org). Many internationally renowned researchers have
analyzed the FiSMA Experience repository and published their findings in books,
articles, or proceedings. The following is a partial list of such researchers:

Joseph Blackburn (Vanderbilt University, USA)
Soumitra Dutta (INSEAD, France)
Khaled El Emam (University of Ottawa, Canada)
Pekka Forselius (University of Jyväskylä, Finland)
Cigdem Gencel (Middle East Technical University, Turkey)
Ross Jeffery (University of New South Wales, Australia)
Barbara Kitchenham (Keele University, UK)
Carolyn Mair (Bournemouth University and Brunel University, UK)
Katrina D. Maxwell (INSEAD, France)
Risto Nevalainen (Helsinki University of Technology, Finland)
Rahul Premraj (Bournemouth University, UK and Saarland University,
Germany)
Martin Shepperd (Bournemouth University and Brunel University, UK)
Luk Van Wassenhove (INSEAD, France)

For further information about the high-quality Finnish Experience project
database, contact Pekka Forselius at pekka.forselius@4sumpartners.com.

272 10 Measurement Communities and Resources

Isabella Wieczorek (Fraunhofer Institute, Germany).

The nonprofit German software metrics organization: Deutschsprachige
Anwendergruppe für Softwaremetrik und Aufwandschätzung e.V. (DASMA)
fosters the development of software measurement standards. DASMA’s mission
is concerned with the validation of software in order to improve its usage in
economy and administration. DASMA was founded in Darmstadt, Germany in
1993 and as of this writing has in excess of 70 members throughout Austria,
Switzerland, and Germany. The DASMA describes itself as a network and
professional organization of the German-speaking users of software metrics
and estimation, and is in turn a member of the most important international IT
measurement organizations.

DASMA alternates hosting the International Workshop on Software Metrics
(IWSM) every other year at a location in Germany, and then supports the hosting
by Canada alternate years. IWSM in Germany features an English conference
track and is held jointly with DASMA’s annual MetriKon (Metrik Konferenz)
and the assembly of the German GI Interest Group on Software Metrics. Since
2003 (DASMA’s tenth anniversary) DASMA also presents annual awards at
MetriKon for up to three student theses in Software Measurement and Metrics.
The participating theses are all downloadable for DASMA members from the
DASMA homepage restricted member area at http://www.dasma.org, and
MetriKon proceedings may be ordered by contacting the DASMA secretary.

The German GI Fachgruppe 2.1.10 Software-Messung und -Bewertung is part
of the Institute for Distributed Systems of the Faculty of Informatics of the
Otto-von-Guericke-Universität in Magdeburg, Germany. The GI Interest Group
on Software Metrics was founded in 1992 and offers courses on software tech-
niques. Its president is Professor Reiner Dumke. The GI Interest Group on Soft-
ware Metrics is concerned with theoretical foundations of software measurement
and evaluation as well as with the practical implementation and the problems
arising with the integration in the software development process, as e.g., cer-
tifications, metrics databases, or experience factories.

The GI Interest Group on Software Metrics is active in research, especially
in the area of software metrics. There is international cooperation with organi-
zations in industry (e.g., the continuing International Workshops on Software
Measurement, IWSM) and with academia, in particular with the École de tech-
nologie supérieure at the Université du Québec (Montreal, Canada, Professor
Alain Abran) and the CIM (Center d’Interet sur les Metriques, a Canadian metrics
association). Furthermore, the GI Interest Group on Software Metrics cooperates
with the Fraunhofer IESE (Institute for Experimental Software Engineering) in

27310.5 Important Software and Systems Measurement Organizations

10.5.4 German Metrics Organization: DASMA

10.5.5 German GI Interest Group on Software Metrics

Karlsruhe, Germany (under the direction of Professor Dieter Rombach), and
also with the European MAIN network.

The GI Interest Group on Software Metrics maintains the Software Mea-
surement Laboratory (SMLab), which is an internet prototype of a software
measurement database. It allows Java-based entry of measurement data from the
CAME tools: Logiscope, Datrix, and OOM, and delivers reports.

Since 1993, this group has published the biannual Metrics News featuring
information and papers pertaining to software metrics. The Metrics News
changed its name in 2008 to Software Measurement News. Historical editions
are available for free download by visiting the GI Interest Group homepage
at http://ivs.cs.uni-magdeburg.de/sw-eng/us/, where you will also find plenty
information about software metrics, experiments and literature.

10.5.6 International Function Point Users Group (IFPUG)

The IFPUG, headquartered in the USA and founded in Toronto in 1986 has
developed the standardized IFPUG Function Point Method to count the func-
tional size of a piece of software. The functional size measurement of software
using the IFPUG standard should be done in accordance with the current ver-
sion as outlined on the IFPUG website at www.ifpug.org. This recommenda-
tion facilitates comparability of FP counts between different organizations.

The IFPUG Function Point counting method was published by ISO/IEC as
standard 20926 for Functional Size Measurement. Note that in order for the
IFPUG functional size measurement method to be conformant with the ISO/IEC
14143-1 Functional Size Measurement – Definition of Concepts, it, as well as
the Mark II and NESMA methods, had to be published without mandating any
adjustment factor for software complexity (i.e., the General Systems Charac-
teristics – GSCs – present in the IFPUG and other methods had to be made to
be an optional step to conform with the ISO/IEC definitional standard).

IFPUG offers four types of certifications:

Certified Function Point Specialist, CFPS, for Function Point practitioners/
counters
Certified Software Measurement Specialist, CSMS, for software measure-
ment practitioners
Certification of software for counting Function Points, and

IFPUG boasts a membership of corporations and individuals residing in more
than 40 countries with the number increasing every year. IFPUG’s home page
http://www.ifpug.org, delivers plenty of information about software metrics
and estimation as well as links to other IT metrics organizations and IFPUG
member services.

274 10 Measurement Communities and Resources

Certification of training materials.

In 2001, more than 350 people were CFPS and today the number continues
to increase – especially in emerging areas of the world where software mea-
surement outsourcing is prevalent such as Korea, China, Brazil, and India.
The CFPS certification is valid for a period of 3 years, at which time the CFPS
holder has the choice to either rewrite the CFPS examination or compile a docu-
mentation set for recertification (see recertification requirements on the web-
site). Certification examinations are offered in many countries, typically in
connection with national conferences. As of this writing, the CFPS exam is
being automated for delivery through ProMetric centers worldwide in a num-
ber of languages. Further information about IFPUG certifications can be found
at the IFPUG home page, http://www.ifpug.org.

Several resources are available to assist candidates to prepare for the CFPS
exam:

The book Measuring the Software Process (Garmus and Herron, 1995) con-
tains a simulated CFPS examination featuring two sets of multiple-choice
questions, and a case study that is a little bit smaller than in the official exami-
nation. The answer solutions are also documented. Preparation for the CFPS
examination by practicing this prototype examination at least five to six times
has proven to be sufficient for some candidates to pass the actual exam, since
there are typical questions in this example. Candidates who have counted
more than 15,000–20,000 Function Points in practice have a good chance to
pass the examination – as long as they have also memorized where to locate
the fundamental rules and how to apply them from the IFPUG Counting
Practices Manual.
Quality Plus Technologies, Inc., sells a set of CFPS study guides and Func-
tion Point workbooks (volumes 1–3) to assist practitioners to prepare for
the CFPS exam. The study guides/workbooks each feature abundant sample
test questions and a variety of case studies (together with the solutions), in
a manner that simulates the style and questions on the CFPS exam. Visit
www.qualityplustech.com to order these CFPS certification support tools.

The actual examination fees, procedures to register, and the locations of
regional exams worldwide can be found at the IFPUG website http://www.
ifpug.org under the topic “Certifications.”

IFPUG also organizes annual conferences to facilitate knowledge transfer,
and has approximately ten volunteer committees who work to promote the fur-
ther development of the IFPUG method.

IFPUG publishes several detailed case studies to illustrate how to apply
FP counting to a variety of user requirements for software developed using
several approaches (e.g., object-oriented). Additionally, white papers are pub-
lished by and for members including FP counting of data warehouse applica-
tions, client/server software, etc. These and the case studies are available from

27510.5 Important Software and Systems Measurement Organizations

the IFPUG website (www.ifpug.org) and are updated whenever a new counting
practices manual (i.e., a new method release) is published so that all IFPUG
publications reflect the current IFPUG standard.

Immediately before the CFPS examination the official registration must be
signed as well as the code of ethics of the IFPUG. The examination lasts 3 h
and is currently available in English, Italian, Portuguese (Brazilian), Spanish,
Korean, and could soon be available in other languages as well. It must be
noted that the time pressure during the examination is often considered by
examines to be tremendous and is typically underestimated by first-time can-
didates. The results of the examination are sent to the candidates by post
about 4–6 weeks after the examination.

Hints for passing the exam are available at the Yahoo! Group:
www.groups.yahoo.com/group/quality_plus_measurement_forum.
Where group members can look in the message archives and files section of

the site.

One copy of the IFPUG Counting Practices Manual (CPM) must be brought
with each candidate to the CFPS exam, as well as up to two separate quick ref-
erence cards (from any organization). The questions refer to many details from
the CPM, but time is not sufficient to look up everything so it is essential that
exam candidates be familiar with the content and structure of the CPM. The
“Hints” of the CPM are also valid for reference; however, the core rules of
the CPM take precedence over any hints provided by other documentation.
Candidates can bring their own notes with them as long as they are annotated
in their copy of the CPM. Our recommendation is the use of a CPM with the
important rules and sections marked and the pages tagged with Post-it® notes,

if one does not know where to find a topic or specific rule wording in the CPM,
there is hardly a chance to pass the examination in the time allotted.)

Electronic tools are not allowed in the examination, except for simple pocket
calculators. (Note: Until recently, the examination was held only in conjunction
with IFPUG events or as regional exams; however, automated exams are in
the works for this year.) The CFPS examination itself is 3-h long (with some
extra time granted on request for nonnative English speakers who take the
exam in English) and consists of three parts with a total score of 150:

Part 1: 50 multiple-choice questions related to IFPUG rules (definitions and
concepts from the main Counting Practices Manual and the Glossary).
Part 2: 50 multiple-choice questions concerning the use and application of
IFPUG rules (applying the formulas and interpreting the complexity matri-
ces), but more involved than Part 1.

276 10 Measurement Communities and Resources

so that the relevant sections can be easily located during the exam. (Note: that

Part 3: One or two case studies for which the examinee must demonstrate a
complete Function Point count. Usually the case study on the examination
features 15 functions and their associated data entities. The case study sec-
tion is formulated with text and sometimes screen and report layouts.
For Parts 1 and 2 of the examination, it is advisable to allocate no more than
the first 2 h (about 1 min per question) in order to have enough time to under-
stand and finish counting the Function Points of the case study section.

At least 90% of the answers must be correct in each of the three parts in order
to pass the examination. Approximately 65% of the candidates normally pass
the examination. In the case of failure, the examination can be repeated within
6 months for a nominal fee. Subsequent examinations currently incur the same
fee as the initial examination.

The questions in Parts 1 and 2 are strongly correlated to exact wording in
the CPM; in some cases they are actually cited word by word. Subtle changes
in question wording can be very superficial (missing, changed, or inserted
words!), so candidates must be careful to read questions accurately before ans-
wering them. In the case of contradictions between rules and examples in the
CPM, the rules take precedence! It is recommended to document the rule with
the page number, together with the answer, in case the answer was looked up
in the manual (there is not enough time to do this for every question).

All 100 questions of Parts 1 and 2 are of multiple-choice type. There is
always only one best or most correct answer! There are typical combinations of
answers such as (a) abc, (b) xyz, (c) a and b, (d) neither a nor b, etc. It is recom-
mended to document any uncertainties in your answers by annotating them with
commentary on the answer sheet itself. (Note that nonnative English speakers
are granted an additional 30 min to complete the examination.)

10.5.7 International Software Benchmarking Standards Group
(ISBSG)

The ISBSG started in 1994 as an informal consortium of national and inter-
national measurement organizations, and has since grown into the most signi-
ficant not-for-profit benchmarking organization in the world. Members are
metrics organizations, with participation from technical advisors (individual
functional size measurement experts) and industry.

From http://www.isbsg.org, the ISBSG is a not-for-profit organization that
has established, grows, maintains, and exploits three repositories of IT history
data to help improve the management of IT globally.

While there are several ISBSG data repositories, the largest is the application
development and enhancement repository boasting close to 5,000 projects

27710.5 Important Software and Systems Measurement Organizations

with its release 10 of the database. In addition, there is a maintenance and
support repository, and a package implementation and acquisition repository,
with others being planned (including a testing repository).

The ISBSG-preferred unit of size in its repositories is Function Points, and
the five ISO/IEC-conformant FSMM are all represented to various degrees.
In particular, IFPUG Function Points and FiSMA Function Points dominate
the data, followed by NESMA FP, Mark II FP, and COSMIC FP.

ISBSG collects data about software development, enhancement, and main-
tenance projects with the goal to achieve improvements in software develop-
ment. Today representatives from Australia, China, Germany, Finland, India,
Italy, Japan, the Netherlands, South Korea, Switzerland, the UK, USA, and
several other countries actively participate in the ISBSG consortium and meet
annually during September or October to formulate the work for the coming
year.

The current release 10 of the ISBSG database contains project history on
more than 4,000 completed software development projects. The ISBSG also
regularly publishes books and special reports based on analysis of its data.
Two of the most notable publications include the following:

The Software Metrics Compendium (June 2002), which summarized the
analysis of close to 1,300 projects
Practical Project Estimation, 2nd edition (2005) – an essential estimating
book presenting ISBSG compatible approaches to software estimating,
functional size measurement shortcuts, and a variety of practical project
estimating techniques gleaned from analysis of the ISBSG repository.

ISBSG believes that its databases represent data collected from the top
25% of software organizations, because it is the higher level maturity companies
(companies at least at level 2 of the CMMI® or SPICE models) that capture and
consistently report project completion data.

At the time of this printing, the CD release 10 is available featuring an excel
spreadsheet database complete with data on more than 4,000 actual completed
software projects. The CD for release 1 of the Maintenance and Support data-
base is also available featuring 150 projects. Planning is underway for a Project
Manager Handbook and an updated release of The Benchmark book complete
with analysis of the most recent ISBSG database. (See www.isbsg.org for the
current product offerings available from ISBSG including the quarterly special
reports.)

ISBSG is registered as a not-for-profit organization headquartered in
Melbourne, Australia and managed by a member-run volunteer board of
directors.

278 10 Measurement Communities and Resources

The mission of the ISBSG is to help improve the management of IT resour-
ces by both business and government through the provision and exploitation of
public repositories of software engineering knowledge, which is standardized,
verified, recent, and representative of current technologies.

ISBSG goals include the following:

Enable the comparison of software development on an international basis
Find the world-best processes for the improvement and simplification of
software development
Master and improve the global understanding of software engineering tech-
niques
Enable translation and dissemination of actual techniques for software deve-
lopment
Extension of available data
Enhancement of software measurement through the development of a common
vocabulary and a unique understanding of technical terminology
Deliver better information for international business decisions

The current members of the ISBSG include the following:

ASMA/SQA (Australian Software Metrics Association)
IFPUG (International Function Point Users Group)
NASSCOM (National Association of Software and Service Companies,
which serves as the Indian National Metrics Association)
AEMES (Association Espanola de Metricas del Software)
DASMA (Deutschsprachige Anwendergruppe for Softwaremetrik and
Aufwandschätzung e.V.)

The FiSMA 1.1 FSM Method developed and maintained by the Finnish Soft-
ware Measurement Association is the fifth FSM Method to be standardized by
ISO/IEC.

GUFPI-ISMA (Italian Software Metrics Association – Gruppo Utenti Func-
tion Point Italia)
JFPUG (Japanese Function Point Users Group)
NESMA (Netherlands Software Metrieken Gebruikers Associatie)
SwiSMA (Swiss Software & Service Metrics Association)
UKSMA (United Kingdom Software Metrics Association)
CSPIU (China Software Process Improvement Union)

27910.5 Important Software and Systems Measurement Organizations

Support an international network of practitioners.

FiSMA (Finnish Software Measurement Association).

KOSMA (Korean Software Measurement Association).

The ISBSG offers the following services:

IT project benchmarking service to allow the members of a national metrics
organization or ISBSG to deliver their project data free of charge and with
a minimal effort to the ISBSG database. The projects are quality-approved
and compared with similar projects in the database. A report with graphical
results is provided free of charge to any person or group who submits com-
pleted project data to ISBSG.
Best practice network: everyone who contributes to the database and who is
registered in the ISBSG can participate in the network.
The Benchmark: a general benchmarking report. The report has a high benefit
for software developers, project leaders, consultants, and organizations as
well as academics. ISBSG members and organizations that contribute to the
ISBSG database can order the report at a reduced charge.
Customer-specific analysis and reports: on special demand of a participating
organization, the standardized report as well as a customized report according
to the organization’s data can be delivered. The repository data can also be
purchased (CD) for private comparison and analysis.
Research requests: interested parties (e.g., academic institutes) can get the
repository data for research projects by special arrangement free of charge.
The ISBSG data repository: the number of projects in the ISBSG database
increases monthly, and a new release (on CD) is produced on a biannual
basis. The following list shows how the ISBSG application development (and
enhancement) project database has grown:

Release 10 (2007) contains data on over 4,000 projects
Release 9 (2005) contained data on 3,034 projects
Release 8 (2003) contained 2,048 projects
Prior releases were as follows: 2002 with 1,238 projects, 1999 with
789, 1998 with 451, and 1997 with 397.

The data is submitted from over 20 countries with new countries joining

Benchmark and is available on the website.
The process of benchmarking of a project with the ISBSG benchmarking data-

provides information about its services.

10.5.8 International Organization for Standardization

The ISO was founded in 1947 and has developed and published more than

led to the choice of the name ISO. The ISO is independent of any government

280 10 Measurement Communities and Resources

annually. A detailed demographic report of project origins is published in The

chosen from the Greek and means equal. The connection of equal and standard

base is shown in Fig. 10.5. The home page of the ISBSG, http://www. isbsg.org,

11,000 international standards in all economic domains. The Name ISO was

and does not belong to the United Nations Organization (UNO), although it
cooperates closely with many commissions of the UNO. The work of the nearly
30,000 experts from more than 120 countries in the nearly 2,850 working groups
of the ISO is voluntary. The groups are managed from the Secretary General in
Geneva (Switzerland), which also publishes the standards.

All ISO standards are used voluntarily. The ISO has no legal jurisdiction to
prescribe edicts. Since the ISO standards are developed on demand and by the
consensus of the teamwork of the international experts involved, its usage is
widespread. In the domain of quality management (including software man-
agement), the key standards are ISO 9000 for quality management and quality
assurance and ISO 14000 on environmental management.

“ISO (the International Organization for Standardization) and IEC (the Inter-
national Electrotechnical Commission) form the specialized system for world-
wide standardization. National bodies that are members of ISO or IEC participate
in the development of International Standards through technical committees
technical activity. ISO and IEC technical committees collaborate in fields of
mutual interest. Other international organizations, governmental and nongovern-
mental, in liaison with ISO and IEC, also take part in the work.

Fig. 10.5. Process of data submission to the ISBSG application development and enhance-
ment (AD&E) benchmarking repository

28110.5 Important Software and Systems Measurement Organizations

Implement Project

Project Post Mortem and Data Collection

Submit Project Data to ISBSG

Receive and Analyze Project Positioning
Report

ISBSG
AD&E Repository

http://www.isbsg.org

NOTE: Organization project identification data are removed and project data is evaluated
for quality by ISBSG database manager (University of NSW Australia) prior to inclusion in

the ISBSG repository

In the field of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1 Information Engineering. Draft Inter-
national Standards adopted by the Joint Technical Committee are circulated
to national bodies for voting. Publication as an International Standard requires
approval by at least 75% of the national bodies casting a vote.” (Taken from
the Foreword in ISO/IEC 14143-1:2007).

Subcommittee 7 (SC7) administers and directs the standardization work for
Software and Systems Engineering, under which there are a number of Work-
ing Groups (WG).

The ISO/IEC JTC SC7 Working Group 12 developed the suite of standards
for Functional Size Measurement, ISO/IEC 14143 Parts 1–6 in order to stan-
dardize the definitions and concepts for Functional Size Measurements pub-
licly available.

Information about the ISO/IEC software engineering can be found at its home
page http://www.iso.org/iso/search.htm. Look for ISO/IEC JTC1 SC7 Systems
and Software Engineering standards.

10.5.9 Metrics Association’s International Network (MAIN)

The Metrics Association’s International Network (MAIN) was founded in 2002
in Brussels, Belgium with the goal to promote, coordinate, and exchange experi-
ences among software metrics user groups worldwide.

MAIN organizers aimed to exchange information about the activities and
results of the national IT metrics organizations and to cooperate with the ISO,
ISBSG, and other international software and systems measurement organi-
zations.

MAIN is an international network of autonomous software metrics associa-
tions. The objectives of MAIN are as follows:

Exchange of experience among associated organizations
Influence in international standard definition processes
Support for the foundation of new national metrics associations
The aims of MAIN are to do the following:

Contribute to the organization of software metrics conferences in co-
operation with any other entity
Initiate and control common projects and working groups
Develop a common knowledge base of documents such as metrics
papers, case studies, training materials, measurement guidelines, research
initiatives database, benchmark database

282 10 Measurement Communities and Resources

Furthermore, the MAIN network supports and fosters the development of
IT metrics organizations in countries that do not have national metrics organi-
zations. The MAIN URL is http://www.mai-net.org.

The MAIN network cooperates with other IT metrics organizations such
as IFPUG and ASMA (Australia). The JFPUG (Japan) is an associate member,
as is the COSMIC consortium. The MAIN Network cooperates with the ISO
standardization process. The following national metrics organizations are (as
of 2003) MAIN members:

AEMES (Association Espanola de Metricas del Software)
DANMET (Danish Software Metrics Association)
DASMA (Deutschsprachige Anwendergruppe für Softwaremetrik und
Aufwandschätzung)
FiSMA (Finnish Software Measurement Association)
FPUGA (Function Point User Group Austria)
GUFPI-ISMA (Gruppo Utenti Funzioni Punti Italiana)
IT/KVIV (Genootschap Software Metrics Belgium)
NESMA (Netherlands Software Metrieken Gebruikers Associatie)
SwiSMA (Swiss Software & Service Metrics Association)
UKSMA (United Kingdom Software Metrics Association)
JFPUG (Japanese Function Point User Group).

10.5.10 Software Engineering Institute at Carnegie Mellon
University in Pittsburgh, PA, USA

“The SEI is a federally funded research and development center conducting
software engineering research in acquisition, architecture and product lines, pro-
cess improvement and performance measurement, security, and system inter-
operability and dependability.” (from www.sei.cmu.edu)

The SEI manages, coordinates, and develops the CMMI® models used world-
wide, as well as many other software acquisition papers, books, and initiatives,
including the following:

The latest CMMI®, Team Software Process (TSP), Personal Software Pro-
cess (PSP), Six Sigma, and many other models (www.sei.cmu.edu).
The software engineering information repository: SEIR, a free database, but
you must be a registered member of the extranet site in order to access the
information (https://seir.sei.cmu.edu/seir/). Of particular interest to reader
is the content on Software and systems Measurement where one can down-
load papers, articles, analysis, presentations, tutorials, etc. about measure-
ment.

28310.5 Important Software and Systems Measurement Organizations

Software Engineering Measurement and Analysis (SEMA) website. “The
Software Engineering Measurement and Analysis (SEMA) Website presents
the latest publications, presentations, and training offered by the SEMA ini-
tiative. Several online resources for exchanging best practices in software
engineering are also available through this site. SEMA helps organizations
develop and evolve useful measurement and analysis practices. Organizations
that have developed measurement capabilities can leverage that investment
by learning to better analyze the data they collect and make more informed
business decisions.” (from the SEMA website: http://www.sei.cmu.edu/sema/).

10.5.11 Standard Performance Evaluation Corporation (SPEC)

The SPEC is a nonprofit corporation formed to establish, maintain, and endorse
a standardized set of relevant benchmarks that can be applied to the newest
generation of high-performance computers. SPEC develops suites of bench-
marks and also reviews and publishes submitted results from our member
organizations and other benchmark licensees. The SPEC organization is well
known for processor benchmarks, but nowadays provides benchmarks for
graphical systems, application servers, Web servers, mail servers, or different
Java implementations. Information about the SPEC can be found at its home
page http: // www.spec.org/.

10.5.12 Transaction Processing Performance Council (TPC)

The TPC is a nonprofit corporation founded to define transaction processing
and database benchmarks and to disseminate objective, verifiable TPC perfor-
mance data to the industry. Currently it provides the following benchmarks:

TPC-C simulates a complete computing environment where a population of
users executes transactions against a database
The TPC Benchmark H (TPC-H) is a decision-support benchmark. It consists
of a suite of business-oriented ad hoc queries and concurrent data modifi-
cations
The TPC Benchmark R (TPC-R) is a decision-support benchmark similar to
TPC-H, but that allows additional optimizations based on advanced know-
ledge of the queries
TPC Benchmark W (TPC-W) is a transactional Web benchmark. The work-
load is performed in a controlled Internet commerce environment that simu-
lates the activities of a business-oriented transactional Web server.
Information about the TPC can be found at its home page http://www.tpc.org/.

284 10 Measurement Communities and Resources

10.6 Internet Links to Measurement Communities

Many other organizations may be available using links from the websites listed
here. Typically, IT metrics organizations (Table 10.3) provide information and
links to further metrics-relevant URLs. Note: As of this printing, all links were
active and valid.

Table 10.3. Internet links to measurement communities

Organization URL
4SUM Partners http://www.4sumpartners.com
AEMES, Spanish metrics organization http://www.aemes.fi.upm.es
ASMA/SQA (Australian Software Metrics
Association and Software Quality Associa-
tion of New South Wales) – a SIG of the
Australian Computer Society

http://www.asma-sqa-nsw.
org.au/index.htm

ASQF (Arbeitskreis Software-Qualität
Franken/ISQI), Germany

http:www.isqi.org

BFPUG (Brazilian Function Point Users
Group)

http://www.bfpug.com.br

CMG (Computer Measurement Group) http://www.cmg.org
Center for Systems and Software Engineer-
ing (COCOMO II and Barry Boehm at the
University of Southern California)

http://csse.usc.edu/csse/

COSMIC – The Common Software Metrics
International Consortium (Full Function
Points)

www.cosmicon.com

DACS (Data and Analysis Center for Soft-
ware)

https://www.dacs.dtic.mil/

DASMA (Deutschsprachiger
Anwenderverband für Softwaremetriken
und Aufwandschätzung e.V.), Germany

http://www.dasma.org

ESI (The European Software Institute),
Spain

http://www.esi.es

FiSMA (Finnish Software Measurement
Association)

http://www.fisma.fi

GI Fachgruppe 2.1.10 Software-
Measurement und -Bewertung, University
Magdeburg

http://ivs.cs.uni-magdeburg.de/sw-eng/
us/

GUFPI-ISMA, Italian metrics organization http://www.gufpi.org
Fraunhofer Institut (IESE) in Kaiserslautern http://www.iese.fhg.de
IFPUG (International Function Point Users
Group)

http://www.ifpug.org

ISBSG (International Software Bench-
marking Standards Group)

http://www.isbsg.org

ISO/IEC JTC1 SC7 home page http://www.jtc1-sc7.org/

28510.6 Internet Links to Measurement Communities

IT/KVIV, Genootschap Software Metrics
Belgium, Belgian metrics organization

http://www.ti.kviv.be

Longstreet Consulting (President: David
Longstreet,)

http://www.softwaremetrics.com

MAIN (Metrics Associations International
Network), European metrics organization

http://www.mai-net.org

NESMA (Netherlands Software Metrics
Users Association)

http://www.nesma.nl;
http://www.nesma.org

PSM (The Practical Software and Systems
Measurement Support Center), DoD –
Goal-driven measurement framework

http://www.psmsc.com

Quality Plus Technologies, Inc. (President:
Carol Dekkers)

http://www.qualityplustech.com who
also host a Yahoo!Group on software
metrics:
www.groups.yahoo.com/Quality_Plus_
Measurement_Forum

QSM (Quantitative Software Management) http://www.qsm.com
SEI (Software Engineering Institute),
CMM® and CMMI®

http://www.sei.cmu.edu

SPEC (Standard Performance Evaluation
Corporation)

http://www.spec.org/

SwiSMA (Swiss Software & Service Met-
rics Association)

http://www.swisma.ch

TPC (Transaction Processing Performance
Council)

http://www.tpc.org

Technical University of Berlin (Thomas
Fetcke)

http://user.cs.tu-berlin.
de/~fetcke/metrics-sites.html

The IT Metrics and Productivity Institute http://www.itmpi.org/
UKSMA, British metrics organization http://uksma.co.uk
UQAM/GELOG: Software Engineering
Research Laboratory of the Université du
Québec at Montreal, Canada

http://www.lrgl.uqam.ca

Dr. Horst Zuse http://www.cs.tu-berlin.de/~zuse

10.7 Management Summary

Measurement of the functional size of software is an essential part of the mea-
surement of user requirements, but it only measures the size of the functional
user requirements (what the software must do in terms of business processes
and tasks).

Software measurements are of such importance that the US Department of
Defense (DoD) demands explicit planning and tracking of metrics on every
project.

286 10 Measurement Communities and Resources

(Cont.)Table 10.3.

Besides the CMMI®, we direct the reader to the Recommended Approach
of the NASA on measurement.

The CMMI® helps to define what to do to reach higher levels of organi-
zational process maturity, but does not say how to do it.

The CMMI® maturity level is becoming an increasingly important indi-
cator or gauge for organizational software process quality.

GQM allows evaluation of the quality of products or processes (note: this is
unsuitable to evaluate the quality of people) in software development.

The Balanced Scorecard is primarily a strategic management concept enab-
ling one to coordinate the goals of various parts of an organization trans-
parently, and on all levels from a holistic point of view. IT measurement fits
well within the model and supports the strategic goals of the organization.

28710.7 Management Summary

11 Benchmarking of IT Projects

Metrics are ideally suited for comparing IT projects and learning by compari-
son. This should be the goal of benchmarking: locating one’s organizational
situation and defining purposeful measures for its optimization on IT projects
and finding opportunities for the organization to learn and move ahead in its
project management capability. The connections between benchmarking, estima-
tion, planning, and controlling are shown in Fig. 11.1.

Fig. 11.1. Benchmarking of IT projects

The main question of benchmarking is how we can learn from other orga-
nizations in order to improve our own organization. In this chapter, we present
concepts for benchmarking and introduce some of the publications available
from the International Software Benchmarking Standards Group, ISBSG,
(www.isbsg.org) and other IT benchmarking resources. Note: The ISO/IEC JTC1
SC7 standards group (see chapter on measurement organizations) approved
at their Berlin plenary meeting in May 2008 a new work item (NWI) to stan-
dardize IT Project Performance Benchmarking: ISO/IEC 29155, to create an
IT project benchmarking framework. This project will likely include several
sub-projects and will include some form of the draft standard for a bench-
marking process developed by ISBSG in 2007. Pekka Forselius of Finland is
the editor of this project, with Carol Dekkers of the USA and Jacky Takahashi
of Japan as project co-editors. ISBSG will participate as an active category C

Measurement

Benchmarking
Data Base

Estimation

Planning

Learning

Controlling

Measures

Estimates

Plans

Experiences

Improvements

290

liaison to ISO/IEC JTC1 SC7 and the working group responsible for the pro-
ject as it moves forward.

Besides ISBSG, there are a number of organizations with information and
resources about performance benchmarking including, but not limited to. At
the end of this chapter the reader can find a list with valuable links to bench-
marking organizations.

According to ISBSG, the projects registered in its application development
and enhancement project database represent the top 25% of the software deve-
lopment industry. This is not surprising to note because when one considers that
according to Professor Alain Abran at the University of Quebec at Montreal
(speaking at the 2005 Software Measurement European Forum): “only about
1% of the world’s software developers do any form of measurement at all.”
And it is our experience that those who do measure, typically only have project
completion data as required by the ISBSG input questionnaire if they are at a
repeatable and consistent process level where data is collected at least at the
end of the project.

This should be carefully considered when using benchmarking results from
other organizations. It is our recommendation that each organization should
perform its own benchmarks in order to get realistic figures for one’s own deve-
lopment environment.

11.1 Benchmarking Fundamentals

The first widespread industrial usage of benchmarking started with the efforts of
Robert C. Camp of Xerox Corporation in the 1980s, who used benchmarking
to discover best practices (as they are now called) to stay ahead of corporate
competitors. The processes developed by Camp have been adapted by U.S.
companies, and later worldwide in order to survive the strong competition in
global markets. Xerox former CEO, David T. Kearns, stated (as quoted by
Beth Enslow, American Programmer, 1992), “Benchmarking is the continuous
process of measuring products, services, and practices against the toughest
competitors or those companies recognized as industry leaders.”

Camp recommended the following steps in the benchmarking process:

Identify what should be benchmarked
Identify candidate comparable organizations
Define the method(s) of data collection
Collect data
Search for a deficit in performance
Define the future performance goal(s)

11 Benchmarking of IT Projects

Communication of the results, marketing to gain acceptance

291

Posting of goals for the benchmarking processes
Development of action plans
Target-oriented actions and control of progress
Perform necessary adjustments.

There are a variety of definitions for benchmarking in general practice and
in theory. The American Productivity and Quality Center (APQC) define bench-
marking as follows:

Benchmarking is the process of identifying, sharing, and using know-
ledge and best practices. It focuses on how to improve any given business
process by utilizing top-notch approaches rather than merely measuring the
best performance. Finding, studying, and implementing best practices pro-
vide the greatest opportunity for gaining a strategic, operational, and finan-
cial advantage.

Benchmarking is always differentiated into internal and external bench-
marking (see Fig. 11.2). Internal benchmarking deals with comparing orga-
nizations or projects belonging to one’s own enterprise. External benchmarking
deals with market-related comparisons to competitors in order to identify best
practice processes.

Fig. 11.2. Internal and external benchmarking

The most important consideration is that benchmarking can be seen as a
continuous process (see Fig. 11.3) and not as a standalone, one-time only one
action. When benchmarking is initiated for an organization, it should be per-
formed on a continual basis so that organizational learning can be achieved
through incremental successes.

Benchmarking is used by leading organizations to improve their corporate
knowledge through systematic data analysis and an open discussion of project
experiences.

11.1 Benchmarking Fundamentals

BENCHMARKING

INTERNAL
Benchmarking

EXTERNAL
Benchmarking

Related to the whole
Enterprise

Related to the
Organization

Related to the Market
(Competitors)

Related to the Branch
(Trend Analysis)

Independent of the
Branch (Best Practice)

292

Fig. 11.3. Benchmarking model development

was only one runaway project where the quota reached a full 16.9%. These are
critical dashboard metrics for those organizations participating in these bench-
marking surveys.

A prerequisite for effective benchmarking is that the participants (in par-
ticular, management) are eager to change and improve; in other words, to
truthfully compare themselves with others and take the necessary actions to
improve how they do business. As with all initiatives that cause change in the
organization, the implementation of benchmarking needs support from senior
management. To succeed, benchmarking relies on the honest and fair play of
all concerned, and this simply is not possible in all organizations.

Benchmarking can provide the backdrop for setting ambitious, but realistic,
improvement goals. And as our experience and that of others bears, when the
staff involved in benchmarking actually participates in the goal definition,
their overall motivation and efficiency increases. On this basis, the organiza-
tion must focus on developing a learning organization whereby the ability to

Quantitative
Data
Size

Effort
Duration

Documentation
Errors

Qualitative
Data

Persons
Processes

Technology
Environment

Productivity rates
Quality levels

Project-Profile
Department

models
Causes

MEASUREMENT

ASSESSMENT
(Starting Point)

ACTION PLANS
(Improvement
Goal) BEST-CASE-

MODELS

11 Benchmarking of IT Projects

Annual benchmarking surveys of the Boston Consulting Group for specific
industry segments, such as insurance, show that IT spending increases num-
bered 8–10% annually between 1996 and 2001 when spending dropped to

“surveys” include the IT costs per insurance contract and the IT cost quota (IT
costs divided by gross cash income). Boston Group surveys of the IT cost quo-
tas showed increases between 1.6% and 3.4% every year from 1996 until
2001. On the other hand, the quota of IT personnel as a percentage of the total
workforce remained relatively constant ranging from 6.3% to 10.8%. There

an increase of only 3.2%. Other important indicators in these benchmarking

293

assimilate new ideas becomes an important concept. Naturally this precludes
that the organization is open and receptive to change how it does business
based on benchmarking data analysis.

The entire premise of benchmarking for organizational learning is under-
mined if there are hidden agendas that prevent the real data (i.e., truthful infor-
mation) from coming forward. Data that are obscured for political or other
reasons willderail even the best planned internal benchmarking initiatives and
result in an exercise in futility and corporate “espionage” so to speak. Recall the
saying “don’t shoot the messenger”; this is especially true in measurement and
bench-marking. It is critical to impress upon management that data simply
reflects the status quo of the organization at a past point in time. It is like “cry-
ing over spilt milk”; the only suitable response to data that are not as good as
anticipated is simply to ask “what does this mean?” and “what can we do about
this to improve our performance in the future?”

Note: Carol Dekkers wrote a light-hearted back page article called “Tack-
ling Software Measurement? Try Proverbs,” in May 2005 issue of CrossTalk –
the U.S. Department of Defense’s Journal of Software Engineering. Visit http://
www.stsc.hill.af.mil/crosstalk/2005/05/0505backtalk.html to read the article.

The process of internal benchmarking can assist organizations to the
following:

Define more concrete goals
Identify improvement opportunities
Measure the efficiency of improvements
Foster the continual improvement process (by tracking progress)
Answer questions such as the following:
1. How productive were our last (critical) projects?
2. Which differences exist between measured departments or projects?
3. What effect (if any) did a particular tool/action/strategy have on the pro-

ductivity of our IT development, and quantitatively what was the impact
(percent improvement or decrease)?

4. Is our time to market getting shorter?
5. Are effort and costs decreasing?
6. How do we compare to other organizations? (this presents a glance to-

wards external bench-marking).

11.2 Practical Benchmarking Experiences

Be cautious of two “trip-wires” (hidden hazards) when benchmarking:

1. Presentation of data: When drawing conclusions from the data analysis, be
sensitive to the damage hasty comparisons or evaluations can bring to an

11.2 Practical Benchmarking Experiences

294

organization just learning to digest criticism or highlighting its problems.
As such, have someone else review your planned speeches or articles
before you communicate your findings.

2. Do not lie with statistics – even if two numbers appear to be correlated,
make sure that someone with statistical knowledge does the data analysis:
Forget the game of trying to conjure up some brilliant presentation by
fiddling with figures and metrics that are simply not related. From experi-
ence and Fred Brooks’ Mythical Man Month, we know that 20 persons
cannot finish in 5 months what 10 persons finished in 10 months. Perhaps
the 20 person team can finish the work in 8 months (thus shortening the
time to market by 20%), 60% more effort (20 persons 8 months= 160
person months vs. 10 persons 10 months = 100 person months). This is a
simplified view; however, it is important to note that doubling the number
of people (from 10 to 20) increases the error rate by sixfold. Other trip-
wires regarding benchmarking are shown in Fig. 11.4.

Fig. 11.4. “Trip-wires” when analyzing with benchmarking data

Experience gained from comparisons of benchmarking surveys from dif-
ferent providers shows that the quality of the metrics data used in the studies
varied markedly. Before one can compare the results provided by different
benchmarking providers, you must consider, for example, whether ERP (enter-
prise resource planning) systems (normally standard packaged software) are
included in the comparison. If an ERP system is included by one provider and
not another, your results will be different. In addition, the size of ERP systems
is often estimated rather than measured.

Be Cautious with Benchmarking Data

Quality of the Metrics data?
e. g. size of ERP-Systems like SAP
often only estimated roughly?
Function Point counts and units comparable?
e.g., IFPUG 3.0...4.2, COSMIC, Mark II,
FiSMA, NESMA?
Time Accounting? Calculation of Effort:
-hours, -days, -(person)months and -years comparable?
Effort? including overtime? End user effort?
Duration? Including stabilization (30 days post-
implementation) phase?
Costs? How are internal resource costs calculated? Does this
include all external staff? Consultants?

!!

11 Benchmarking of IT Projects

295

There can also be questions about the units of measure or method(s) used
by the various providers to arrive at the size of the software. In one situation,
the benchmarking provider could not answer the question with which Func-
tion Point standard the size of the software was measured. They knew only
that Function Points had been measured for the sample. Some benchmarking
providers estimate only the size of software in principle or calculate it with
backfiring. In a practical case, this lead to an application that was hand counted
as 800 IFPUG 4.0 Function Points, being taken into the benchmarking survey
with 90 Function Points since the provider principally calculated the function
points with their own formula backfired from KSLOC (kilo (thousand) source
lines of code).

Benchmarking with the Japanese organization of an international enterprise
led to the recognition that the effort hours recorded in the benchmarking data-
base had been entered based on the assumption of 8-person hour days, regard-
less of the common practice of entering more than 10 working hours per day.
This difference in the core effort data made comparisons not possible in an
exacting manner, but rather only by rough calculation with additional assump-
tions.

A common error in effort collection and recording (as mentioned in prior
chapters) is when overtime is not measured or included in the project effort.
While overtime may not be paid, those hours are still expended to produce the
product and will skew estimates (which would not take into account neces-
sary overtime) in the future. An opposite situation occurs when end user effort
is included in the project postmortem analysis (which will skew future esti-
mates when you want to estimate only the IT project team effort!).

An important question should always emerge when discussing work effort
collection and recording: Was the staff encouraged to measure and report all
actually worked hours? Some companies unconsciously “coerce” project teams
to “hide” extra hours because they want all reported projects to appear on time
and on budget, even if they were not. This is pure organizational schizophrenia:
encouraging process improvement by way of measurement, then punishing
the messenger when true hours are reported. This is the problem of honesty of
person hours.

Also important is the point at which hours and costs are taken. It is critical
to be consistent: is, for example, the stabilization phase after installation and
release (e.g., a 30 day warranty period) included in the calculations or not?

Costs are often calculated based on internal charges per (development) per-
son hour. They often vary widely in different organizations, besides which
there are different cost structures for consultants. Sometimes we can only
capture the effort of one’s own personnel in support of the consultants in the

11.2 Practical Benchmarking Experiences

296

calculations, and the costs for the consultancy itself are left out. Such exclusions
are critical to be noted alongside any cost or effort figures for the project.

In one benchmarking survey, the provider had only a comparison sample
size containing data of some organizations whose projects were all only one
tenth of the size of the projects of the organization to be compared. Hence it
was clear from the beginning that the benchmarking provider’s data was of
higher productivity (based on so much smaller projects). The downside in this
whole situation was that the benchmarking provider did not tell the buyer of
the benchmarking study the results about that difference.

Since such differences in data lead to comparison of apples to oranges, the
used data must be questioned painstakingly. These examples also show that
the choice of the benchmarking provider should also be performed with the
same level of conscientiousness. Some benchmarking providers do not even
tell the buyers which organizations belong to the comparison group for the
benchmark. Remember the famous saying that has saved a thousand lawsuits:
“Trust, but verify!”

For effective external benchmarking, only those organizations with similar
processes can be used: the so called peer organizations. Regrettably, it is not
easy to find peer organizations because either organizations are bound by
legalities related to data distribution outside the corporation, or they are too
scared to release data that could fall into the hands of competitors. Additionally,
especially in the case of insurance companies, there is a culture of not wanting
to admit that they even have data or that they would participate in benchmark-
ing activities. In fact, some organizations are so paranoid about the marketplace
judgment that they disallow their consultants from disclosing that they were
ever contracted to provide expertise to the organization.

One of the tasks of an estimation competence center is to support the pro-
ject leaders for efficient development of their IT projects. This includes deliv-
ery of knowledge about a variety of project metrics such as those found in the
ISBSG research reports and products.

An international insurance company in Germany received the following
results from an international request for information (RFI) about productivity
measurement and benchmarking from 17 organizations:

Two organizations used internal benchmarking, five used external bench-
marking, and three used a combination of internal and external benchmarking. Of
the five organizations using external benchmarking, two relied on the ISBSG
database and the resources of Compass Analysis, and one organization self-
assessed themselves using the PEP method (performance enhancement program
by Quantimetrics). Seven organizations did not use benchmarking at all.

11 Benchmarking of IT Projects

297

11.3 Benchmarking Databases

A prerequisite for benchmarking is the availability of historic data. This need
was recognized early in governmental and military companies in the USA.
Valuable data collections were initiated by the US Space System Analysis
Group (SSCAG) of the NASA (NASA Ames, end of 1970s; NASA/ SEL Data-
set, 1997) and Department of Defense in the U.S. (Architecture Research
Facility Dataset, 1979) as well as the Data and Analysis Center for Software
(DACS, the Department of Defense (DoD) Software Information Clearing-
house, 1989).

11.3.1 Academic Comparison of Measurement Databases

At the 15th IWSM in Montreal, 2005, René Braungarten (a DASMA students’
thesis award winner from 2004) et al. presented a study of a number of soft-
ware metrics databases, including ISBSG and other important sources of data.
His presentation summarizes the relevant literature and delivers a compari-
son of these databases, including the following:

ESA/INSEAD Software Development Database
FiSMA Experience Database (also called Laturi)
NASA MDP Data Repository
QSM Project Database
T-Systems Nova MetricsDB System
SPR Knowledge Database
PSM Insight Database
Ericsson Research Canada MMR.

Some of these databases are not available for public use. For the ESA/
INSEAD, a European industrial database, some information could be gathered
and presented with the following data as an example. Additionally we present
some of the ISBSG published results.

11.3.2 The ESA/INSEAD Database

In 1988, the cost engineering department of the ESA (European Space
Agency) started a software metric database to collect and measure effort and
productivity data with the support of European military and industrial organi-
zations. By the end of 1993, it was decided that INSEAD (Institut Européen
d’Administration des Affaires in Fontainebleau, France, a renowned European
Institute for Business Management) should take over the administration of

11.3 Benchmarking Databases

298

the European database because of their status as a neutral third party. Since
1996, the data collection and dissemination of the results of this military and
industrial projects has been performed by INSEAD. Both databases (ESA/
INSEAD and SSCAG) were compared on a regular basis.

Up until the survey ceased in 2004, the data were collected by INSEAD with
a three part, web-based questionnaire that solicited mandatory information
about the deliverer, the project, and the values of the COCOMO cost drivers.
For information about the final results of the research, contact Professor Kishore
Sengupta (kishore.sengupta@insead.edu).

From 1995 to 2004, the ESA/INSEAD database collected project data from
over 100 projects spanning more than 35 organizations across eight European
countries. In 2003, there were 108 projects comprising 5.51 Million SLOCs
(in the range from two until 413 KSLOCs with an average of 51,010 SLOCs) as
well as 22 programming languages and 30,125 person months’ effort (in the
range of 7.8 until 4,361 with an average of 284).

Each 39%, 30%, and 23% of the projects are from military environment,
space administrations, or industry, respectively.
35% of the projects were developed with Ada, 11% in C, 8% in Fortran, 7%
in Pascal, 7% in COBOL, and 5% in Assembler.
35% are from the UK, 28% from France, 15% from Italy, 7% from
Germany, 6% from The Netherlands.

Person months are defined as 144 person hours, the effort is measured with
person months, and the productivity is reported as SLOCs per person month.

The most interesting and reasonable approach to using the INSEAD data is to
calculate and verify one’s own productivity levels on several historical projects
before comparing with the average of similar projects in the database. It is
critical to know the basic assumptions used in whatever database where you
may want to compare your own projects: for example, if you do not currently
size your projects, it is folly to think that your data can be compared with the
database at all.

Results of an investigation of the ESA/INSEAD database reveals that the
dominant reasons for differences and deviations in productivity across data-
base projects are due to organizational variants. The most reliable and consis-
tent comparisons are based on the application system, the category (on board,
message switching, real-time, ground support equipment, simulators, ground
control, tool, other), and the programming language.

When using the data to do estimating, it was recognized that accurate esti-
mates depend on the quality of the collected data and how similar they are to
the project in question. Estimating in this way can be made with a modest
number of historic data but only internally in an organization. When using

11 Benchmarking of IT Projects

299

external databases, ensure that the data are comparable and applicable to your
type of development before publishing your estimates.

11.4 ISBSG and Its Products

While the International Software Benchmarking Standards Group (ISBSG) was
already introduced as one of the important measurement organizations in the
chapter about the Measurement Communities and Resources, its relevance in
software benchmarking and estimating justifies further exposure here. As men-
tioned in this chapter, ISBSG started in 1994 as an informal consortium of
national and international measurement organizations, and has since grown into
the most significant not-for-profit benchmarking organizations in the world. The
ISBSG is a not-for-profit organization that has established, grows, maintains,
and exploits three repositories of IT history data to help improve the manage-
ment of IT globally. Note: unless otherwise stated, when we refer generically to
the ISBSG database or “ISBSG CD R(number)” we mean the ISBSG Applica-
tion Development and Enhancement repository; the largest and most mature
of the ISBSG data repositories.

11.4.1 Demographics of ISBSG Repositories

ISBSG supports and delivers a series of products, including guidance docu-
ments about benchmarking and project estimating, special analysis reports,
benchmarking data, training materials, individual analysis of corporate pro-
jects, and, of course, the three project databases: application development
and enhancement repository (at the time of this printing is in release 10 or
r10), maintenance and support repository, and the package implementation
and acquisition repository. There are also additional data repositories being
planned, including a testing database.

The following figures from ISBSG demonstrate the worldwide demo-
graphic breakdown of the projects included in the r10 of the application deve-
lopment and enhancement database (ISBSG 2007). The other two current data
repositories are still in their growth period; in the coming years products
based on those repositories will likely be produced. Figure 11.5 displays a
breakdown by the country of origin.

Figure 11.6 depicts the breakdown by business type included in the r10 of
the application development and enhancement database (ISBSG 2007).

Figure 11.7 shows the type of projects included in the r10 of the application
development and enhancement database (ISBSG 2007).

11.4 ISBSG and Its Products

300

Fig. 11.5. ISBSG CD r10 demographics: projects by country of origin

If benchmarking or estimating are among the reasons for which you want to
use ISBSG data, it is important to remember that the ISBSG believes that its
projects represent higher productivity levels than the industry norms (ISBSG
2007).

Fig. 11.6. ISBSG CD r10 projects by business type

11 Benchmarking of IT Projects

0

200

400

600

800

1000

1200

U.S.

Ja
pa

n

Aus
tra

lia

Finl
an

d

Can
ad

a
Ind

ia

Neth
erl

an
ds

Braz
il

U.K.

Den
mark

Othe
r

Country of origin

Nu
m

be
r o

f p
ro

je
ct

s

0

100

200

300

400

500

600

700

800

C
om

m
un

ic
at

io
n

In
su

ra
nc

e

Fi
na

nc
ia

l,
P

ro
pe

rty
 &

B
us

.S
rv

.

G
ov

t,
P

ub
lic

A
dm

in

B
an

ki
ng

M
an

uf
ac

tu
rin

g

O
th

er

Business type

N
um

be
r o

f p
ro

je
ct

s

301

Fig. 11.7. ISBSG CD r10 projects by project type

The reasons for this include the following: ISBSG data comes from the
domains where FP are used fairly widely, but other industry sectors are severely
under-represented; the data are a “convenience sample,” (i.e., they are not a
sample deliberately chosen to represent the IT industry); the projects are self-
selected by their contributors, there is no knowledge of even how representative
they are of the organizations that contributed them. ISBSG stresses that these
considerations do not lessen the value of the data in the application development
and enhancement repository. Research conducted on the ISBSG sample con-
firms that the data are self-contained, internally consistent, and contain no
apparent anomalies.

Because of the diversity of the ISBSG projects, the following guidance is
useful:

Functional sizing methods: Do not mix pre-IFPUG V4 Function Point pro-
jects with V4 and post V4 (the sizing method changed with Version 4.0).
New development projects sized using the NESMA standard can be included
with IFPUG V4+ projects.
Normalized work effort figures: Consideration should be given to the risks
and gains involved in using normalized effort.
Work effort breakdown: Projects with different effort levels should not be
analyzed together. Effort level 1 means effort for the development team
only; other effort levels include effort from other groups of people (such as
support staff, customers, etc).
Project Rating: The ISBSG considers that its projects with a data quality
rating of “A” or “B” are suitable for statistical analysis. “C” and “D” rated

Type of project

New
development

39.3%

Re-development
2.0%

Enhancement
58.5%

Other
0.2%

11.4 ISBSG and Its Products

302

projects may still provide valuable data, but uncertainty about some of their
size or effort values means that it is best not to include them in statistical
analysis.
Source Lines of Code (SLOC): Although the ISBSG Repository does include
projects that are sized using SLOC, these are not validated and should not be
used for benchmarking.

The ISBSG preferred unit of size in its repositories is Function Points, and
the five ISO/IEC conformant functional size measurement methods (FSMM) are
all represented to various degrees. In particular, IFPUG Function Points and
FiSMA Function Points dominate the data, followed by NESMA FP, Mark II
FP, and COSMIC cfp.

The ISBSG suggests that the most important criteria for selecting projects
are the following:

Size (if yours is a really large project, there is not much value to you in
studying small ones and vice versa)
Primary programming language or Language type (e.g., 3GL, 4GL)
Development platform (mainframe, midrange, or PC)
Development type (new development, enhancement or redevelopment)
Organization type (e.g., Aerospace, Banking, Communications, Construction,
Energy, Insurance, Manufacturing, Public Administration, etc.)
Other criteria that may be important are Business area type, Application
type, User base, and Development techniques.

11.4.2 ISBSG Products

The following products are currently available from the ISBSG (www.isbsg.org)
or any ISBSG member:

Corporate and individual subscriptions
Special analysis reports (see www.isbsg.org for up-to-date listing)
Project benchmarking service
Organizational benchmarking service
“The benchmark” publications: current release, The Benchmark r10 (2008)
The Data CD for the application development and enhancement repository
(currently in release 10 with a new release approximately every 18 months).
The CD also contains an additional tool: the early estimate checker (version
5.0).
Practical Project Estimation, 2nd edition, 2005 (book)
The Software Metrics Compendium, 2002 (book)
Estimation course material (available to members)
Data available for research.

11 Benchmarking of IT Projects

303

The actual data disc with the repository data with 4,106 projects (release 10
issued in 2007) together with publications and membership can be ordered from
the ISBSG homepage at www.isbsg.org. The ISBSG Maintenance and Sup-
port database comprises 110 projects (2006).

Table 11.1. The growth of the ISBSG application development and enhancement repo-
sitory

Data CD release number Date available Number of projects
Release 4 April 1997 396
Release 5 March 1998 451
Release 6 April 2000 789
The Software Metrics
Compendium (there was
no release 7)

June 2002 1,238

Release 8 February 2003 2,040
Release 9 November 2004 3,082
Release 10 2007 4,106

2,000 projects from 16 countries increased by more than 50%; as of release
10, there are 4,106 projects in the ISBSG database.

Organizations that want to participate in the benchmarks can submit com-
pleted projects using the data collection form from Useful Documentation on
the homepage of the ISBSG (http://www.isbsg.org). In exchange for submitting
a project to the ISBSG, the participating organization receives a report with
the comparison of their project(s) to equal projects from the database, as well as
a note regarding the quality of their data submission.

The following results from The Benchmark are presented in order to show
the benefits of the participation in such an international benchmarking. Some
further results are presented in the chapter Software Metrics –Process Metrics.

The aim of the benchmarking research (see Fig. 11.7) is to aid organizations
to adopt more efficient software development practices. Thus, the data collec-
tion is organized in sections, showing the IT projects from different points of
view. These include, for example, the following:

Research about project size and effort
Research about development productivity
Research about productivity on different development platforms (mainframe,
midrange and PC)
Comparison of development platforms
Others.
In the following sections, the results of the ISBSG analyses are presented.

11.4 ISBSG and Its Products

Table 11.1 shows the development of the ISBSG database since release 4 in
1997. It also shows the growth of repository since the volume of more than

304

11.4.3 Project Characteristics

The ISBSG application development and enhancement repository has changed
over the years based on the composition of included projects. This subsec-
tion provides tables to show how the database composition has changed to the
current release.

Programming Language

COBOL remains the most common of the programming languages (see
Table 11.2).

Table 11.2. Programming language

Programming
language

Release
4 (%)

Release
5 (%)

Release
6 (%)

The SW metrics
compendium (%)

Release
8 (%)

Release
10 (%)

COBOL or
COBOL II

44 29 27 24 27 17

Visual basic 5 2 6 7 7 9
JAVA 8
PL/I 14 9 6 5 5 6
C++ 1 4 5 17 6

SQL 8 6 6 7 6 3
Natural 15 15 9 7 5 2
Oracle 3 2 5 6 7 4

Programming Language Generations

The large number of programming languages made it more difficult to com-
pare the different projects. Hence, Table 11.3 tries to categorize the program-
ming languages into third and fourth generation as well as generators.

Table 11.3. Programming language generations

Generation Release
4 (%)

Release
5 (%)

Release
6 (%)

The SW metrics
compendium

(%)

Release 8
(%)

Release
10 (%)

3GL 46 44 45 51 64 61
4GL 38 47 46 33 30 35
Generator 16 9 9 5 5 4

Development Platform

Most of the projects were developed on mainframes according to the follow-
ing Table 11.4, with decrease, whereas the percentage of development on PCs
increased.

11 Benchmarking of IT Projects

305

Table 11.4. Development platforms

Platform Release
4 (%)

Release
5 (%)

Release
6 (%)

The SW metrics
compendium

(%)

Release 8
(%)

Release
10 (%)

Mainframe 68 69 62 43 60 43
Midrange 19 16 22 19 17 13
PC 7 15 16 17 23 20
Multi 24

Methods

More than half of the projects were developed with in-house methods. In The
Software Metrics Compendium report, 21% used a bought (and maybe adapted)
method for system development. Release 10 reports that 30% of projects that
say anything about techniques report using a waterfall model, but give no
further details of techniques used. Of those projects that do describe particular
techniques being used, traditional system modeling techniques are used in 57%
of them. They are the only techniques listed in 30% of projects; 27% use a
combination of traditional modeling and other techniques. The most frequently
used development techniques are displayed in Table 11.5.

Table 11.5. Development techniques

Development technique Release 6
(%)

The SW metrics
compendium

(%)

Release 8
(%)

Release 10
(%)

Data modeling 64 59 42 36
Event modeling 11 12 8 6
Process modeling 40 38 28 28
Joint application develop-
ment (JAD)

20 18 12 13

Business area modeling 16 17 10 8
Prototyping 30 29 17 18
Joint application develop-
ment (JAD)

20 18 12 13

Rapid application develop-
ment (RAD)

11 14 9 8

Regression tests 20 21 16 22
Multifunctional teams 23 19 12 9
Time boxing 5 3 4 5
OOA 8 10 10 15
OOD 11 13 8 11

Project Size

Project size in the ISBSG databases is predominantly measured in units of
functional size, with a negligible number recorded using SLOC. As of the latest

11.4 ISBSG and Its Products

306

release of the repository, the four main Function Point counting approaches
represented are IFPUG, COSMIC, FiSMA, and NESMA. Mark II and Feature
Points are also featured; however, there are so few such projects (with no new
ones contributed for a number of years).

IFPUG projects dominate; however, the numbers of COSMIC, FiSMA, and
NESMA projects are steadily increasing.

Conversion factors based on comparisons of the United Kingdom Software
Measurement Association (UKSMA) for their projects delivered to the ISBSG
database are (no R2 given) as follows:

IFPUG3.0 FP = 41.4 + 0.77 Mark II FP,

Mark II FP = 20.3 + 1.25 IFPUG3.0 FP.
Since comparable figures must be adequate (remember to ensure that you

are comparing apples to apples), be careful not to use IFPUG 3.0 conversion
rates when you are using IFPUG FP 4 or higher standard.

Most of the projects in the ISBSG database have a size of less than 2,000
Function Points. The project size varies and ranges up to 5,000 Function Points
for new developments. Some of the projects appear to be very small indeed but
there is no common opinion in the IT industry telling at which size a project is
too small to be measured in Function Points. It is our experience that projects
that are less than 100 FP in size can be unreliable due to the following:

1. Lack of data rigor: projects that are smaller than 100 FP are generally less
than 6 person months of effort, and may over represent the amount of
project management, learning, and hybrid mixtures of work effort

2. When one views the scatter plots of speed of delivery (FP per person
month) and project size (in FP), projects under 100 FP are more volatile
and less within the statistical process control of other projects (i.e., those
less than 100 FP appear to be very over- or under-productive regardless
of the technology used).

John Moses and Malcolm Farrow report from a statistical analysis that
Function Points do influence the development effort, together with maximum
team size, up to 60% and adding programming language up to 62%. But oppo-
site to other investigations they cannot find any relevant influence of the deve-
lopment platform that they can definitively quantify.

Functional Mix for New Development Projects

Practical Project Estimation, 2nd edition, one of the major contributors of which
was the American author of this book, was published in 2005 based on the
ISBSG application development and enhancement CD release 9. For IFPUG 4.0
projects that were new development in the database, the following functional

11 Benchmarking of IT Projects

307

Fig. 11.8. Functional mix for new development projects

mix diagram was presented (see Fig. 11.8, Source: Estimating, Benchmarking
& Research Suite release 9 [209 projects – FPA METHOD: IFPUG 4])

If one has to estimate the functional size of a software development project,
the relationships of Fig. 11.8 can be used as a rough guideline.

The following examples are taken from Practical Project Estimation, 2nd
edition (page 33):
Example 1: If the customer has identified a need and, on developing a logical
data model to reflect that need, there are found to be 40 “logical entities,” it
may be reasonably assumed that these relate to approximately 40 Internal
Logical Files (ILFs).

Analysis of the ISBSG Repository also shows that most ILFs in applica-
tions are rated as being “low” to “medium” in complexity. The mean score
attributed to them across all projects is 8.6 Function Points.

Based upon the above, it can be assumed that the total score for the ILFs
component of the Function Point count will be

40 (ILFs) 8.6 (mean score for ILFs) = 344 FPs.
From the above pie chart (Fig. 11.8) it can be seen that the ILFs component

of the Function Point count is typically around 21.7%. On this basis the total
functional size of the required application is predicted to be around

FP size = 296 FPs 100/21.7 = 1,585 FPs.

If the development project is to replace an existing application or deliver
similar user functionality to another application, then you may use some of the
measures of components from these other applications as a guide.

Function Point Mix
New Developments

Input FP s
28.9%

Output FP s
25.0%

E nquiry FP s
15.9%

File FP s
21.7%

Interface FP s
8.5%

Source: Estimating, Benchmarking & Research Suite Release 9
[209 projects - FPA METHOD: IFPUG 4]

11.4 ISBSG and Its Products

308

Example 2: The number of unique reports and extract files output from the
existing application which the project is to replace can be assumed to be
equivalent to the external output components in the new project. Analysis of
the ISBSG Repository shows that most external outputs are rated as being “me-
dium” in complexity. The mean score attributed to them across all projects in
the repository is 5.4 Function Points. If the existing application has 47 differ-
ent reports and three different extract files then the total number of external
outputs can be assumed to be 50. (Note: ensure that you exclude any obsolete,
unused reports from your calculations).

Based upon the above, it can be assumed that the total score for the external
outputs component of the functional size measure will be

50 (EOs) 5.4 (mean score for external outputs) = 270 FPs.

From Fig. 11.8, it can be seen that the external output component of the
functional size measure is typically around 25%. On this basis, the total func-
tional size for the required application is predicted to be around

FP size = 270 FPs 100/25 = 1,080 FPs.

Warning: Whether the above quick predictive technique is used or a
detailed Function Point count is performed to establish size to be used for an
early cost indicator for the project, a contingency of 20–30% should be added
to allow for functionality not apparent early in the life cycle. Historical data
indicates that this scope creep typically occurs as a result of additional func-
tionality being identified as user requirements evolve in subsequent develop-
ment phases.

Note: The techniques discussed above are valid only if your application or
development project is loosely coupled from other applications and fits the
profile of projects currently in the ISBSG Repository. Early research indicates
that the above relationships may not hold for the domains of real-time, control,
scientific, or embedded software.

The technique above can be used ONLY for very rough estimation or
extremely quick benchmarking. However, when one has enough similar func-
tional mix data from own, different types of projects, the accuracy improves
radically. The next chapters will introduce results from two older researches
discussing about geographical differences in functional mix.

Regional Distribution

Table 11.6 shows the regional distribution as of release 5 for average Func-
tion Point components of new developments. The software metrics com-
pendium and all further releases of the Benchmark do not contain this analysis,
although it could be done using the raw data. The analysis of release 5 (for

11 Benchmarking of IT Projects

309

Table 11.6. Regional distribution of average Function Point components of new develop-
ments

Function Point component ASEAN Europe North
America

Total

External inputs (EI) 4.0 4.2 4.9 4.3
External outputs (EO) 5.6 4.9 5.2 5.4
External inquiries (EQ) 3.9 3.8 3.8 3.8
Internal logical files (ILF) 7.4 7.2 7.6 7.4
External logical files (EIF) 5.6 5.3 5.5 5.5
Number of projects 116 32 90 238

which results are shown in Table 11.6) proved that geographic region was not a
differentiator for software composition (by function point component) and
thus, the analysis was discontinued.

The most important concept to remember from Table 11.6 is that the dis-
tribution of functional components has no significant difference regardless of
the geographic locale. This reinforces that functional size measurement can
work equally well and provide necessary support for software and systems
development worldwide, regardless of where the development or measure-
ment takes place!

In the IT department of an international insurance company in Germany,
the same research was conducted based on internal Function Point project
counts in order to improve the precision of functional size estimates for IT
projects. The results of these investigations resemble the ISBSG breakdown as
shown in Fig. 11.8.

The second topic for analysis is the ratio of the FP attributed to transactions
compared to the FP attributed to ILFs. Normally one would expect the “one
file model” profile. The one file model presumes that for each ILF of average
complexity (10 uFP), there will be an AUDIO set of transactional functions
associated with maintenance of the entity:

A = add (assume an average EI = 4 uFP)_
U = update (assume an average EI = 4 uFP)
D = delete (assume an average EI = 4 uFP)
I = inquiry (assume an average EQ = 4 uFP)
O = output (assume an average EO = 5 uFP).

This one file model assumes that for each ILF (persistent maintained
entity), there would typically be three EI (add, change, delete), one report EO,
and 1 browsing EQ.

While this model is a much simplified shortcut, it allows a plausibility
check of the Function Point counts. Based on the analysis of the prior version of

11.4 ISBSG and Its Products

310

the ISBSG database (release 5; see Table 11.7), we see a rough analysis of the
geographic breakdown of projects. (This was the most recent geographic break-
down of this type).

Table 11.7. Ratios of Function Point components by geographic location

Ratio ASEAN Europe North
America

Total

EI/file 2.6 3.8 0.9 2.9
EO/file 1.1 2.6 1.9 1.5
EQ/file 0.9 1.9 1.3 1.1
Number of projects 116 32 90 238

Furthermore, this research assists the practical application of Function
Points. It is sometimes difficult to determine all of the functional transactions,
especially where there is an absence of up-to-date user documentation or a leg-
acy application involved. It is much easier to find the logical files (persistent
data stores), which are used by an application. Once found, the number of FP
in the application can be estimated using the functional mix profiles (percent-
ages of each type) or from one file models. An estimate of application software
size is thus possible at an early phase of the project, with less effort (and also
less precision) long before a proper Function Point count can be performed.

Effort by Level

Work effort hours are reported in ISBSG in units of person hours (PH). Effort
figures are categorized into four levels as presented in Table 11.8.

Note that projects recorded in the ISBSG database are predominantly con-
taining data from Level 1: IT project development team work effort.

Table 11.8. ISBSG levels for measured effort

Level Who is included in Effort
Level 1: IT development
team (core team)

Project team + project management + project
administration

Level 2: Core team and
supporting team

Level 1 + database administration + data
administration + quality assurance + data security

Level 3: Stage 2 and com-
puting center support

Level 2 + software support + hardware
support + helpdesk support

Level 4: Stage 3 and end
user support

Level 3 + end user support

Number of projects and effort for each of the levels of Table 11.8 are given in
Table 11.9.

11 Benchmarking of IT Projects

311

Table 11.9. Number and proportion of projects by level of measured effort

ISBSG database The SW metrics compendium
Projects Number of projects Proportion (%)
Level 1 688 56
Level 2 240 19
Level 3 19 1
Level 4 291 24
Summary (total) 1,238 100

How do you use these tables in benchmarking? It is probably important to
decide the level of effort data that your organization collects before com-
mencing data collection. Also, it is recommended that your organization collect
work effort data at a detailed enough level that you can split it to any lower
level at a future point in time. That is, if you have the data collected separately
for each level, it is advisable to store the data in that form rather than simply
recording it at the summary or total level.

Alain Abran et al. (Estimation Models based on Functional Profiles) pre-
sented on the IWSM/MetriKon 2004 a study of size/effort relations by pro-
gramming languages from 236 projects from the ISBSG database (release 8)
having high quality data. Their regression analyses results are presented in
Table 11.10.

Table 11.10. Effort and size relationships for COBOL, NATURAL, and C

Language N Effort (hours), FP = IFPUG 4.1 R 2

COBOL 136 Effort = 9.6 FP + 2,110.1 0.52
Natural 67 Effort = 11.4 FP – 922.8 0.84
C 33 Effort = 8.9 FP + 1,388.1 0,58

Note: The reader should be aware of the poor (i.e., too low) R2 coefficients
for COBOL and C. In other industries such as medicine, tests showing R2 > 0.75
are considered to be reliable, whereas R2 < 0.5 is almost regarded as being
contraindicated. The authors do not endorse, but rather simply present these
findings for the information of the reader.

Detailed research showed that for the three samples of Table 11.10, the rela-
tionship is very strong only for both external input functions (EI, R2 > 0.72) and
external output functions (EO, R2 > 0.77).

Effort per Project Phase

The work effort breakdown for development team effort (only) for new deve-
lopment projects is different from enhancement projects. The following figures
are from the ISBSG Special Report: Planning projects – project phase ratios:
new development (see Fig. 11.8) and enhancements (see Fig. 11.9).

11.4 ISBSG and Its Products

312

Fig. 11.9. Project team effort ratios for new development projects with six phases recorded
(ISBSG 2007)

In earlier versions of the database (pre-2007), there were five phases used
in the ISBSG products: planning, specification, programming, test, and installa-
tion. With the newest release CD r10 in 2007, the specification phase has now
been broken out into its own phase to permit researchers and professionals
with a more granular level of data analysis.

Organizations participating (submitting data) to ISBSG typically follow the
submission guidelines (submit effort data by phase); however, many organiza-
tions may have only collected their data at a higher (summary) level and cannot
break it down into its component phases after the fact. Note that the overall
effort across five or six phases of software development makes no difference,
but you need to ensure that your organization compares itself to a similar
organization and the phase breakdowns if you want to achieve good bench-
mark comparisons.

The following charts are taken from the ISBSG Special Analysis Report:
Planning projects – project phase ratios (March 2007. www.isbsg.org), based on
a subset of ISBSG projects (see Figs. 11.9 and 11.10). All these project phase
ratios can be used as percentage methods.

Even though the measurement methods and work effort stages of individual
organizations differ, the results for new development or for enhancement are
nearly identical across organizations. For example, for new development pro-
jects:

the effort for planning/specification is about 30% (almost 1/3),
the effort for programming and test is about 60% (nearly 2/3), and
the effort for installation of the completed software product about 10% of
the overall project effort.

11 Benchmarking of IT Projects

313

Fig. 11.10. Project team effort ratios for enhancement projects with six phases recorded
(ISBSG 2007)

Research involving the different stages of the measured effort was pub-
lished in the ISBSG compendium, revealing that the effort of the core project
team (stage 1) accounted for 75% of the total project effort (including across
all stages).

The ISBSG analysis results provide hints for the proportions (effort ratios) of
phases in the percentage method for estimation, especially in the absence of
one’s own organizational data. In any regard, remember that figures obtained
from one’s own history and one’s own organizational environment are always
more reliable and more predictable of future performance than theoretical
models.

Project Delivery Rate (PDR)

The project delivery rate (PDR) is measured in hours per Function Point
(h/FP). The PDR is the main metric for speed of delivery that emerges from
analysis of the ISBSG repository. The PDR tells us how many hours are nec-
essary to elaborate one Function Point. That is, the higher the PDR, the less is
the productivity. The productivity in Function Points per person month can
easily be calculated from the PDR by dividing 120 (net hours per person
month) by the PDR:

Productivity = 120/PDR.

11.4 ISBSG and Its Products

314

The PDR is also a measure for the efficiency of the IT development, since the
less hours are necessary for elaborating a Function Point, the more efficient is
the IT development environment.

The project delivery rate varies by development platform, language, and
other major characteristics. For a sample range by development platform, see
Table 11.11.

Table 11.11. PDRs regarding development platforms

Release 6 The SW metrics
compendium

PDR regarding devel-
opment platform (hours
per FP) N Average Median N Average Median
Mainframe 226 11.2 9.0 212 14.5 10.7
Midrange 51 7.9 6.1 95 17.5 12.1
PC 51 5.6 3.5 83 18.1 12.8
Overall total 328 9.8 7.3 390 16.0 12.0

N number of projects

Newer repository analysis reports that the mainframe projects have a 1.2
months longer duration on average, whereas midrange projects have 0.8 months
average less duration and PC projects 2 months less.

The “Benchmark” releases 6 and 7 (analysis of the databases) deliver figures
for PDR related to programming language by development platform. Table
11.12 shows an excerpt of some of the findings.

The PDR average overall for all projects contained in the Repository
release 6 is 8 h per Function Point, and considers only the effort of the IT
core team (stage 1). When end user effort (and other IT related effort) is added in
stage 4, the PDR average increases to 9.5 h per Function Point.

When we harmonize (throw all projects of all organizations, all platforms and
all programming languages together) and average the PDR across the release
6 overall repository, the result is a PDR of 9–10 h per FP. In The Software
Metrics Compendium, it is reported to be more likely 15–16 h per Function
Points.

One question that your organization should be asking before using the
ISBSG database and research reports is how do you use the tables above (and
those similar to it) for benchmarking? Perhaps you may wish to compare
your own figures against them? What kind of decisions can you make?
Remember that sustainable measurement relies on a Goal/Question/Metric
approach as examined elsewhere in this book.

11 Benchmarking of IT Projects

315

Table 11.12. PDRs by programming language and platform

Release 6 (mainframe only) The SW metrics
compendium (all

platforms)

Programming
Language

N Average Median N Average Median
ABAP 5 15.5 13.8
Access (R. 6 only
PC)

 21 1.7 1.8 28 3.3 2.0

C (R. 6 only mid-
range and PC)

 12 15.0 10.3 27 15.6 14.9

COBOL 70 13.3 11.8 64 20.1 16.0
COBOL II 18 16.1 16.7 32 17.0 13.8
EASYTRIEVE 9 11.5 10.8 8 12.9 13.0
IDEAL 4 7.3 6.8
JAVA 10 26.8 19.6
NATURAL 41 7.3 6.6 21 12.7 9.6
Oracle (R. 6 only
midrange and PC)

 11 4.2 3.3 49 13.4 10.3

PL/I 22 7.1 5.5 8 15.9 13.6
SQL (R. 6 only mid-
range and PC)

 13 6.1 6.5 56 16.9 13.6

TELON 11 11.7 8.6 7 14.6 10.9
VISUAL BASIC 4 8.1 7.3 54 13.3 7.5
Other 4GL 20 12.6 10.0 10 12.1 8.4
Program Generators 8 13.7 5.3
All (R. 6 only main-
frame)

207 10.9 8.9 379 15.0 11.9

 N number of projects

Project Duration

The PDR is not the only measure of development efficiency. Project dura-
tion (in months) is a measure for the elapsed time between the start and the end
of a project. Duration is often called the “time to market” and its significance can
be major for many organizations, especially those in innovative competitive
industries (e.g., cell phone communication software). ISBSG reported in
2002: Only 10 of 267 projects lasted longer than 30 months. Project duration
was mostly 3, 6, or 12 months.

Another accumulation of projects was found with 4, 7, or 8 months dura-
tion. The Software Metrics Compendium delivered the following results from
412 projects: most projects lasted 2 or 8 months (with equal frequency). Only
15% of the repository project took longer than 12 months.

Two years later in 2004 (release 8), the average project duration decreased
by 30% from 11 to 8 months for projects completed since 1996.

11.4 ISBSG and Its Products

316

The Software Metrics Compendium gives further results for duration of
the 412 projects regarding size and effort as displayed in following two Tables
11.13 and 11.14.

Table 11.13. Project duration and its relationship to functional Size (ISBSG 2002)

Size (function points) Project duration
Less than 300 FPs 1–6 months with productivity of 40–60 FPs per

month (very high productivity)
Between 300 and 800 FPs Range from 5 to 11 months, average = 8 months
Between 800 and 1,400 FPs Range from 10 to 18 months, average = 12–14

months
Greater than 1,400 FPs Typically took a minimum of 12 months, on

average 18 months (note that this represents a
sample size of only 7% of the projects)

Table 11.14. Project duration dependent on effort (ISBSG 2002)

Work effort (Level 1,
project team effort)

Project duration

Less than 800 h Duration increases with effort. Average
is 1 month per 100–200 h effort.

800–2,000 h 3–7 months, on average 5 months
2,000–3,200 h 4–9 months, on average 7 months
3,200–20,000 h 8–12 months, on average 10 months
Greater than 20,000 h Typically minimum of 14 months, on

average 24 months

The chapter Product- and Process Metrics contains further regression for-
mulae from The Software Metrics Compendium as compared with formulae
from other investigations.

Team Size

The effects of team size have been investigated with eagerness in the ISBSG
analyses. When only the development platform was considered, the result was
predictable: the larger the project team, the lower the productivity. This is
understandable because the need for communication increases directly with
increases in team size. During the project, the need for effective communica-
tion is continuous between groups and departments, and this results in a lower-
ing of productivity when more persons are involved. The following results
were reported in the Software Metrics Compendium (518 projects):

Dividing the project size by team size produces a metric of Function Points
per person. Up until a team size of three people, the average responsibility
ranges from 115 to 190 FPs per person in a project, with the median being 80–
120 FPs per person. Teams with more than two persons on average up to three
persons are responsible for the highest ratios of FPs per person. The Software
Metrics Compendium averages are displayed in Table 11.15.

11 Benchmarking of IT Projects

317

Table 11.15. Function Point responsibility per person in relation to team size

Maximum
team size

Function point responsibility
per person

4 60–100
5 to 9 35–70
More than 10 20–50

The Software Metrics Compendium shows that for projects with a size of
more than 3,000 FPs, team size is typically between 30 and 50 persons, with
PDRs of 20–40 h per FP. This translates into a productivity of 3–4 FP per
person month.

Furthermore, The Software Metrics Compendium delivers the following
regression formulae for the PDR (project delivery rate), with maximum team
size (mTS):

All platforms (375 projects): PDR = 2.96 mTS0.636, with R2 = 0.297
Mainframe (105 projects): PDR = 4.40 mTS0.382, with R2 = 0.109
Midrange (79 projects): PDR = 2.66 mTS0.655, with R2 = 0.292
PC (65 projects): PDR = 1.57 mTS0.853, with R2 = 0.324

The reader should carefully regard the poor (i.e., too low) regression coeffi-
cients for the formulae. As noted previously, in other industries such as medicine,
tests that show an R2 > 0.75 are supposed to be reliable, whereas R2 < 0.5 is
almost regarded as being contraindicated. We do not endorse, but rather simply
present these findings for the information of the reader.

11.4.4 Further Results of the ISBSG Research

The main result of ISBSG research is that the programming language is the
most influential factor for the PDR (The Benchmark r6, p. 52). After platform
and language, only team size and organization type are significant (The
Benchmark r6, p. 61).

In summary, the ISBSG research, and in particular, the Compendium and
other comprehensive repository analyses, delivers a rich treasure of metrics
about system development for the practitioner and researcher alike.

11.5 Internet Links to Benchmarking Organizations

Many other organizations may be available using links from the websites
listed below (Table 11.16). Typically, Benchmarking organizations provide
information and links to further benchmarking-relevant URLs. Note: as of this

11.5 Internet Links to Benchmarking Organizations

318

Table 11.16. Internet links to benchmarking organizations

Organization Url
The APQC (The American Productivity &
Quality Center

http://www.apqc.org/portal/apqc/site?
path=root

Benchmarking Center Middle East
(BCME)

http://www.ameinfo.com/news/Comp
any_News/B/BCME/index.html

The Benchmarking Center http://www.benchmarking.co.uk/
content.html

Cutter Benchmarking Review (Journal
available by subscription)

http://www.cutter.com/content-
and-analysis/journals-and-
reports/cutter-benchmark-review.html

The Finnish Software Measurement Asso-
ciation (FiSMA) online databases (for
members)

http://www.fisma.fi/in-english/
methods/

Gartner Worldwide IT Benchmark Data
Exchange

http://www.gartner.com/surveys

Germany: Deutsches Benchmarking Zen-
trum

http://www.benchmarkingforum.de

Greek Benchmarking Centre http://www.urenio.org/benchmark/ce
nter.html

The Hong Kong Benchmarking Clearing-
house

http://www.hbc.hk/

Integrated Software Industry Benchmark-
ing Association™

http://www.isiba.com/

The IT Metrics and Productivity Institute
(ITMPI)

http://www.itmpi.org/

The NASA Benchmarking Clearinghouse
at Kennedy Space Center

http://benchmarking.ksc.nasa.gov/KB
C/kscbnchmrk.htm

Slovak Benchmarking Information Centre
(SBIC)

http://www.sbic.sk/en/

The Software Engineering Institute (SEI)
software engineering measurement and
analysis (SEMA) and Software Engineer-
ing Information Repository (SEIR)

https://seir.sei.cmu.edu/seir/

printing, all links were active and valid. Note: all websites were operational at
the time of this printing.

11.6 Management Summary

Metrics are ideally suited for comparing IT projects and learning by com-
parison.

The main question of benchmarking is how we can learn from other organi-
zations in order to improve our own organization.

11 Benchmarking of IT Projects

319

Only about 1% of the world’s software developers do any form of mea-
surement at all.

Benchmarking is the process of identifying, sharing, and using knowledge
and best practices. It focuses on how to improve any given business process
by utilizing top-notch approaches rather than merely measuring the best per-
formance. Finding, studying, and implementing best practices provide the great-
est opportunity for gaining a strategic, operational and financial advantage.

The most important consideration is that benchmarking be seen as a con-
tinuous process and not as a standalone, one-time only one action. When
benchmarking is initiated for an organization, it should be performed on a con-
tinual basis so that organizational learning can be achieved through incre-
mental successes.

Benchmarking is used by leading organizations to improve their corporate
knowledge through systematic data analysis and an open discussion of project
experiences.

A prerequisite for effective benchmarking is that the participants (in par-
ticular, management) are eager to change and improve; in other words, to
truthfully compare themselves with others and take the necessary actions to
improve how they do business. As with all initiatives that cause change in the
organization, the implementation of benchmarking needs support from senior
management. To succeed, benchmarking relies on the honest and fair play of
all concerned, and this simply is not possible in all organizations

When drawing conclusions from the data analysis, be sensitive to the dam-
age hasty comparisons or evaluations can bring to an organization just learn-
ing to digest criticism or highlighting of its problems.

Do not lie with statistics – even if two numbers appear to be correlated,
make sure that someone with statistical knowledge does the data analysis.
Forget the game of trying to conjure up some brilliant presentation by fiddling
with figures and metrics that are simply not related.

For effective external benchmarking, only those organizations with similar
processes can be used: the so called peer organizations.

One of the tasks of an estimation competence center is to support the pro-
ject leaders for efficient development of their IT projects. This includes delivery
of knowledge about a variety of project metrics such as those found in the
ISBSG research reports and products.

A prerequisite for benchmarking is the availability of historic data.
The most interesting and reasonable approach to using the INSEAD data is

to calculate and verify one’s own productivity levels on several historical pro-
jects before comparing with the average of similar projects in the database.

11.6 Management Summary

320

When using external databases, ensure that the data are comparable and
applicable to your type of development before publishing your estimates.

ISBSG supports and delivers a series of products, including guidance docu-
ments about benchmarking and project estimating, special analysis reports,
benchmarking data, training materials, individual analysis of corporate projects.

Research conducted on the ISBSG sample confirms that the data are self-
contained, internally consistent, and contain no apparent anomalies.

The ISBSG preferred unit of size in is repositories is Function Points, and
the five ISO/IEC conformant functional size measurement methods (FSMM)
are all represented to various degrees.

The aim of the benchmarking research is to aid organizations to adopt more
efficient software development practices.

Project size in the ISBSG databases is predominantly measured in units of
functional size, with a negligible number recorded using SLOC.

Most of the projects in the ISBSG database have a size of less than 2,000
Function Points.

Functional size measurement can work equally well and provide necessary
support for software and systems development worldwide, regardless of where
the development or measurement takes place!

It is recommended that your organization collect work effort data at a
detailed enough level that you can split it to any lower level at a future point in
time.

The work effort breakdown for development team effort (only) for new
development projects is different from enhancement projects.

For example, for new development projects, the effort for planning/ speci-
fication is about 30% (almost 1/3), the effort for programming and test is
about 60% (nearly 2/3), and the effort for installation of the completed soft-
ware product about 10% of the overall project effort.

Research involving the different stages of the measured effort was pub-
lished in the ISBSG compendium, revealing that the effort of the core project
team (stage 1) accounted for 75% of the total project effort (including across
all stages).

The PDR is measured in hours per Function Point (h/FP). The PDR as the
main measure for speed of delivery is one of the main metrics that emerges
from analysis of the ISBSG repository.

The PDR tells us how many hours are necessary to elaborate one Function
Point. That is, the higher the PDR, the less is the productivity.

11 Benchmarking of IT Projects

321

The PDR average overall for all projects contained in the Repository
release 6 is 8 h per Function Point and considers only the effort of the IT core
team (stage 1).

When we harmonize (throw all projects of all organizations, all platforms,
and all programming languages together) and average the PDR across the
release 6 overall repository, the result is a PDR of 9–10 h per FP.

Project duration (in months) is a measure for the elapsed time between the
start and the end of a project. Duration is often called the time to market.

The effects of team size have been investigated with eagerness in the
ISBSG analyses. When only the development platform was considered, the
result was predictable: the larger the project team, the lower the productivity.

Teams with more than two persons on average up to three persons are
responsible for the highest ratios of FPs per person.

The Software Metrics Compendium shows that for projects with a size of
more than 3,000, FPs team size is typically between 30 and 50 persons with
PDRs of 20–40 h per FP. This translates into a productivity of 3–4 FP per per-
son month.

The main result of ISBSG research is that the programming language is the
most influential factor for the PDR. After platform and language, only team
size and organization type are significant.

In summary, the ISBSG research, and in particular, the Compendium and
other comprehensive repository analyses, delivers a rich treasure of metrics
about system development for the practitioner and researcher alike.

11.6 Management Summary

12 The IFPUG Function Point Counting Method

The IFPUG (International Function Point Users Group) Function Point
Method (FPM) is a method to measure the (functional) size of software from
the user perspective (depicted in Fig. 12.1).

and Systems Engineering – Software measurement – Functional size measure-
ment – Definitions of concepts) as: “a size of the software derived by quantifying
the Functional User Requirements,” where the Functional user requirements
(FUR) are in turn defined as a subset of the User Requirements. Requirements

As an ISO/IEC conformant Functional Size Measurement (FSM) method,
the IFPUG FPM measures the functionality in software delivered to the user as
required by the user, and quantified by following the IFPUG Counting Practices
Manual (CPM) set of counting rules. Note that functional size is purely the
unadjusted function point size as outlined in the following paragraphs.

The term user is not defined strictly as a person or end-user, but rather as any
person, thing, other application, hardware, or software that needs to interact
(send to or receive data from) with a piece of software. This is consistent with
the term actor in object-oriented or use case technology.

The functional size measure is independent of the nonfunctional require-
ments, including the technology used for implementation, since the techno-
logical aspects of the software development are not part of the functional size.

Fig. 12.1. Counting a software application

Application

IFPUG Function PointsIFPUG Function Points

Functional size is defined (according to ISO/IEC 14143-1:2007 Software

that describe what the software shall do in terms of tasks and services.

324

Function Points are derived from the logical (or functional) user require-
ments concept, and the person counting the Function Points will learn a lot
about the functional requirements of the software during the process of evalu-
ating the functional size.

The following goals are often cited for using the IFPUG FPM:

Standardized and integrated software measurement
Improvement of estimation accuracy and project management
Improvement of quality of the development process
Knowledge transfer of estimation experiences and lessons learned
Reduction of complexity and uncertainty in the estimation process (because
the object of estimation has been quantified as part of the sizing process)
Basis for indicators and metrics.

An extract of the exact rules for counting according to IFPUG are provided
in a further chapter of this book. There exists a wide variety of information
sources about the IFPUG FPM on the Internet; however, the actual IFPUG web-
site is http://www.ifpug.org. Note that IFPUG is a not-for-profit users group
headquartered in Princeton, NJ, and it is owned and operated by and for the
members. IFPUG is not associated or managed by any vendor or consulting
organization.

Additional sources of IFPUG methodology information (not all of it in ac-
cordance with the official IFPUG function point counting practices) include
the following:

Carol Dekkers, Quality Plus Technologies, Inc.: http://www.qualityplustech.com,
David Garmus: http://www.davidconsultinggroup.com,
The IT Metrics and Productivity Institute: http://www.itmpi.org/
The University of Quebec at Montreal, Canada: http://www.lrgl.uqam.ca,
Capers Jones and Software Productivity Research: http://www.spr.com.

During the last decade, many advances have been made worldwide to popu-
larize and advance the use of FSM of software. In particular, five of the frequently
used ways of sizing software are conformant with the ISO/IEC definitions and
themselves have become ISO/IEC standards. All FSM methods evaluate soft-
ware based on its functional user requirements. This means that the functional
size is independent of the development environment and user demands for
quality; in other words, the functional size does not change with changes in
development technology, programming language, skills, experiences, or per-
formance of the developers. They also agree that functional user requirements
can be defined in a catalogue of logical transactions that will be performed by the

12 The IFPUG Function Point Counting Method

software and countable in functional size measurement units.

325

The current ISO/IEC conformant FSM methods are:
ISO/IEC 19761:2002 Information technology, Software and systems engi-
neering – COSMIC-FFP: A functional size measurement method
ISO/IEC 20926:2002 Information technology, Software and systems engi-
neering – IFPUG 4.1 Unadjusted functional size measurement method: CPM
ISO/IEC 20968:2002 Information technology, Software and systems
engineering – Mark II Function Point Analysis: CPM
ISO/IEC 24570:2004 Information technology, Software and systems engi-
neering – NESMA functional size measurement method version 2.1: Defini-
tions and counting guidelines for the application of Function Point Analysis
ISO/IEC 29881:2008 Information technology, Software and systems engi-
neering – FISMA 1.1 functional size measurement method.

12.1 Functional Size Measurement Methods History

The first method that described function point analysis was originally deve-
loped in 1979 by A. J. Albrecht from IBM, and first presented publicly at a
GUIDE/Share conference. Interest in the method and its application as a basis
for objective estimating grew quickly around the world, and by 1986, the
IFPUG was formed in Toronto, Canada. The first IFPUG CPM version 1.0
was released in 1988 by the IFPUG. IFPUG 1.0 (as it is abbreviated in general
usage) formalized Albrecht’s 1984 standard set of function point rules. Since
its inception, IFPUG has remained a volunteer, not-for-profit membership organi-
zation based in the United States, with members residing in many of the coun-
tries where software process improvement and measurement are important.
Membership benefits of the IFPUG include the CPM in its current release
as well as reduced conference attendance and discounts on publications (see
http://www.ifpug.org). The CPM describes the counting rules in a standard-
ized form. Since the first CPM appeared nearly 20 years ago, the IFPUG FPM
has been translated into German (IFPUG 4.0), French, Italian, Japanese, Korean,
Portuguese, and Spanish. The IFPUG publishes biannually the Metric Views –
 not to be mistaken for the biannual Germany journal: Metrics News (also in
English, older editions downloadable free of charge) of the German GI Metrics

actually changed its name in 2008 to Software Measurement News).
The IFPUG Standard 4.1 is acknowledged as an ISO/IEC Standard 20926,

and to conform to ISO/IEC definitions, it had to be published with the 14 GSCs
(General System Characteristics for calculation of adjusted Function Points)
being OPTIONAL only. (ISO/IEC defines “functional size” as describing only
the tasks and business processes supported by the software, and the 14GSCs
and resultant VAF go beyond mere functional size). The formal release of
IFPUG CPM Release 4.2 (2004) included the 14 GSCs as a mandatory step in

12.1 Functional Size Measurement Methods History

group (http://ivs.cs.uni-magdeburg.de/sw-eng/us/ - the German Metrics News

326

IFPUG function point counting; however, the next version of the IFPUG stan-
dard when it is submitted to ISO/IEC to replace the ISO/IEC 20926:2002
standard will again reference the Value Adjustment Factor (VAF) as an optio-
nal step to conform with the ISO/IEC definitions.

Figure 12.2 shows the evolution of the functional size measurement Methods
from IFPUG, COSMIC-FFP, NESMA, FiSMA and Mark II during the last 30
years.

The software functionality measured by the IFPUG counting practices
manual rules is clearly based on an elementary process-oriented, stimulus-
response-model. This implies that the composite counting items inputs, outputs,
and inquiries are each transactional types that interact (receive or send data) in
relation to a “user” (as previously defined). This was not so clearly stated in
earlier IFPUG CPM releases, and the lack of clarity hindered the usability
(and potential applicability) in the past.

Fig. 12.2. History of Functional Size Measurement (FSM) methods

12.2 The Benefits of the IFPUG FPM

The IFPUG FPM can easily be learned and understood and applied to a variety
of software. This becomes important particularly when counts may have to be
audited or formally released as part of the quality assurance process. Function
Points define objectively the functional size of software applications from the

IFPUG

1975 1980 1985 1990 1995 2000

IBM Albrecht IFPUG 4.0 IFPUG 4.1

Mark II FPA 1.0 - 1.2

1979

1984 1990 1994

19991975

Symons
1988 1998

1999 2001 20031997

FFP COSMIC-FFP

1.0 2.0 2.1 2.2

Laturi 1.0-2.0

1991

Experience 2.0

2002

FiSMA
1.0

FiSMA
1.1

3.0

CO
SM

IC

2007

2007

IFPUG 4.2

1986 2004

Mark II 1.3.1

NEFPUG Definitions
& Counting

Guidelines For The
Application Of FPA

2005

20041996

1990 1995
NESMA Counting Practices

Manual (CPM) 1.0-1.1

2004
NESMA
CPM 2.0

IFPUG CPM 1.0 - 3.4

Fi
SM

A

Mark II
CO

SM
IC

NESMA
1989

12 The IFPUG Function Point Counting Method

327

user view, and are typically expressed in the user’s language. This is consistent
with the understanding about the functionality of their application. The fact
that a function point count must be done based on the functional user require-
ments has the added bonus that it forces the project team to see the software
from the perspective of the user and to respond accordingly. The functional
elementary processes should identically match the specified functional user
requirements. A by-product of function point counting is a better design and
improved control during the project.

Authors’ note: It has been observed through first hand experience that when
the Function Point Analysis is done with the involvement of the end users, they
are motivated to better teamwork and more committed engagement. In addition,
we have observed that the overall user satisfaction with the project increases.
This is a key project success factor according to the Standish Group’s annual
CHAOS Report.

12.2.1 Leveraging the Use of Function Points (and the Analytical
Approach) in Software Development

Figure 12.3 shows how measured Function Points can profitably be leveraged
for the software engineering process and project management groups.

Fig. 12.3. Leveraging Function Points to benefit software development

The following list includes ways that Function Points (FP) can be used in
the short term.

FP size as input for estimation and project management.
FP list of included functions as the basis for project planning and architec-
tural design.

Measurable
Specifi-
cations

Functional
Size

Evaluation of
Software for

Balance
Estimation

Checking
Requirements

Creep

Measuring
Productivity &
Improvement

Measurement
of Actual

Effort

Bench-
marking

Contract
Management

Decision Aid
for

Investments
and Suppliers

12.2 The Benefits of the IFPUG FPM

328

FPs allocated to parts of the software as the basis for structuring projects
and planning of releases.
FPs size as a basic metric for quality-planning and management-reviews
(common denominator for defect density).
FP methodology as implicit inspection of requirements for completeness
and misunderstandings, and quality improvement of user-specified require-
ments.
FP methodology for design of test cases and for estimation of test effort.
FP size contributes to metrics for stability and reliability (Mean time to
failure as a function of size).
FP size as the basis for software benchmarking and risk analysis.
List of functional user requirements (on which the count is based) delivers
user-oriented documentation of the application.
FP size at various points in the development life cycle is used for measure-
ment of requirements creep (scope management).
FP size as one of the input variables for calculation of various productivity
and quality metrics.
FP methodology supports reuse in IT development by early and standard-
ized quantification of business cases in the requirements definition phase,
for contracting, for project-estimation, for test case identification, for en-
hancements, and for documentation.
Figure 12.4 shows the benefits of the FPM at a glance.

Fig. 12.4. Mind map of benefits of the Function Point Method (FPM)

The principal benefits of the FPM include the following:

The methodology is independent of the development environment as well
as the skills or attributes of developers.
By consequent use of Function Points according to the IFPUG standard and
careful documentation of the counting results, the organization gets valuable

Benefits of
Function P oints

Benefits of
Function P oints

Estimation
of Effort

Sa feguard
Investments

and Dec isions

Standardized
Documentation of

Bussiness Cases

Standardized Language
for IT and E ndusers

Prerequisite
for Benchm arking

Usable for Specifica tion,
Deve lopment and

Maintenance

Identification of
Test Cases

12 The IFPUG Function Point Counting Method

329

interproject consistent data about the size of elaborated and to be developed
applications. This information is the basis for solid effort estimates for soft-
ware development.
Through internationally agreed standardizations based on functional size,
interorganizational benchmarks can be enabled.

The FPM facilitates estimation in an manner easier and more precise than
other assessments of size (such as the use of unqualified judgements of small,
medium, or large software size). Function Points can be used during specifi-
cation, development, enhancement, and maintenance of software, as well as for
safeguarding investment decisions. Beneficial side effects are quantified quality
(when FP are correlated with defects), risk awareness, easy to be derived test
cases, measurable productivity (when correlated to effort hours), and stand-
ardized business requirements (for users as well as for developers).

Figure 12.5 shows the areas for application of the FPM.

Fig. 12.5. Areas of application of the FPM and/or functional size

12.2.2 Function Points as Part of a Pricing Evaluation Process

Function Points can facilitate comparison of prices from suppliers and to
evaluate cost ratios for software under contract (e.g., price per FP or FPs per
US-$ or per Euro). This metric (cost per FP) can also be discussed with the
software suppliers. Capers Jones reports in IT Measurement – Practical Advice
from the Experts (IFPUG 2002) that “standard” software such as spreadsheets

Function Point
Analysis

Application Project

Function-Point-
Prognosis

Project Estimation
Effort, Defects, Duration,

...

MetricsDatabase
Productivity, Quality, ...

Actual Data
Effort, Defects, Duration,

...

Benchmarking

Internal External

Documentation

Application
Atlas Test Cases SLA

12.2 The Benefits of the IFPUG FPM

330

can be bought for about 0.25 US-$ per FP. Specialized niche products may then
cost about 10 to more than 300 US-$ per FP. Development costs of applications
may vary widely from a low of 200 US-$ per FP for small systems to more
than 5,000 US-$ per FP for large military or defense systems. These prices can
be compared with development costs of about 1,500 US-$ per FP in Western
Europe and about 350 US-$ in Eastern Europe.

Howard Rubin also contributed a chapter about pricing comparisons in the
above mentioned book.

ISBSG publications also discuss how function points can be used as part of
price comparisons (see http://www.isbsg.org). The metric “price per FP” can
contribute to decisions about whether to “build-or-buy.” Note: Build-or-buy is
an English expression meaning a decision about “Building” customized soft-
ware, typically under contract with a supplier; or “Buying” standard packaged
software. Figure 12.6 shows how Function Points fits into the decision making
process associated with Build-or-Buy decisions.

Fig. 12.6. “Make-or-Buy” decision based on using FP size as part of the pricing equation

12.2.3 Function Points as the Basis for Contract Metrics

Another interesting use of Function Points is to directly measure and manage
software development performed under contract. Because FP are indepen-
dent of the tools, techniques, people, and the technical implementation of

Function Point Counting
for „Build-or-Buy“ Decisions that compare:

a) Cost of acquiring packaged (Standard) Software to
b) Custom development (under contract)

Comparison of Products using
Size (FP) per US-$

Comparison of Suppliers via
US-$ per FP bids

Acquisition of Standard Software (Buy) Custom software development
under Contract (Build)

“Build-or-Buy“ Decision on the basis of Size and Price

12 The IFPUG Function Point Counting Method

331

software, different perspectives between a purchaser and supplier can be dis-
cussed objectively on the basis of Function Points. Capers Jones reports in IT
Measurement –Practical Advice from the Experts that between 1995 and
2001 FPs and LOC metrics were in direct conflict in at least a dozen U.S. Inter-
nal Revenue Service (IRS) cases, with the LOC metric being on the losing side
of the judicial decision in virtually every case. In one tax case in 1996, both IRS
and the defendant used FPs to prove their case. High profile precedents like
this helps to resolve any anxiety practitioners may have about the unreliability
of software measurement and estimation.

A few examples of contract metrics include the following:
Contracted price per delivered FP for new development or enhancement.
Fixed price for a certain number of FPs (new development or enhance-
ment), which can then be normalized to a cost per FP.
Fixed or FP based pricing for the maintenance of a portfolio with a certain
size as measured in FPs (typically done on the basis of cost per 1,000 FP).
Variation from fixed price (at preagreed cost per FP) if the software size is
larger or smaller than negotiated.
For improvement of team or departmental performance (setting goals, bonus
systems) the evaluation may be based on the following:

o Delivery rate expressed as number of FPs per hour for new develop-
ment or enhancement

o Cost per FP for new development or enhancement
o Maintenance load expressed as number of FPs maintained per person

in 1 year (person is often referred to as “Full-Time-Equivalent” or FTE
in North America)

o Defect density expressed as a number of defects per FP
o % improvement in delivery rate based on comparison between a current

and previous delivery rate.
Using function points as part of performance measurement in contractual

arrangements, the following measures are generally collected:

Number of FPs for each project or application (depending on what per-
formance metric is desired: project FP are needed for productivity metrics;
application FP are needed to determine support ratios)
Price points for delivery of different types of development or for different
levels of FPs (price per FP)
Estimated costs, effort hours, duration, anticipate team size (by job role and
availability)
Actual costs, effort hours, duration, actual team size (all at project postmortem)
Tracking of project progress and measures in the case of delay (together
with mitigating factors for delay)
Approved changes (sized in FP).

12.2 The Benefits of the IFPUG FPM

332

In summary:
The effort for planning, performing, and documentation of Function Point

counts can be justified as long as FP are used appropriately together with other
measures. Function points in and of themselves tell only the functional size of
software in a manner similar to the square foot (or square meter) size of a buil-
ding tells only the area of a floor plan. When used appropriately in performance
measurement, function points provide an objective denominator (as in a “per
square foot”) that normalizes metrics for comparison across software projects.
The benefits in such cases far outweigh the costs of the learning curve and
organizational resistance, and additionally the structured analytical approach
to counting FP provides intangible gains to the requirements process. Capers
Jones estimates the effort to implement a fully-functioning measurement and
analysis program to be maximally 3% of the cost of a project – not much when
you consider the savings that better requirements and accurate estimates can
provide.

12.3 Application Areas for Function Points

The primary application areas of the IFPUG FPM are in estimation of new
software development and enhancement. The following is a partial list of the
most common application areas for FP-based metrics:

1. Estimation of software development costs and/or effort (based on FP
and other project attributes)

2. Estimation of maintenance costs and/or effort of implemented systems
(based on FP supported per person figures)

3. The Earned-Value method has been applied to some projects based on
Function Points for evaluation and delivery. More research is needed
in this area. Capers Jones addresses this topic in IT Measurement –
 Practical Advice from the Experts

4. Comparison of functionality of an old system vs. its replacement dur-
ing reengineering (rebuild)

5. Projection of productivity trends in software development based on his-
torical rates (FP per hour for particular types of development)

6. Cost estimation based on cost per FP or FP per hour (speed of delivery)
as a basis for planning of resources and milestones

7. When parts of a project have to be delivered in releases, the functional-
ity can be allocated to and accounted for using FPs

8. Defect density metrics (defects per FP) can be used for better planning
of the test phase in the project

12 The IFPUG Function Point Counting Method

333

9. FPs can be used for risk assessment. Capers Jones published in As-
sessment and Control of Software Risks that projects with less than 500
FPs fail only in 20% of all cases, whereas the failure rate of projects
with more than 5,000 FPs is about 40%

10. Pam Morris (in IT Measurement – Practical Advice from the Experts)
found with regression analyses a correlation (R2 = 0.8638) between the
size of an application measured in FPs and the number of persons (P)
necessary for maintenance:

P = 0.0012 FP.

Thus, for the maintenance of an application with a size of 1,000 FPs there are
1.2 persons necessary or 1 person per 833 FPs.

It has been suggested that the applicability of the IFPUG FPM is restricted
to commercial applications (Management Information Systems, MIS) for the
reason that the development costs for engineering or other types of more com-
plex applications depends from other factors. (Commercial applications mainly
manipulate large data volumes and use many inputs and outputs.)

Technical or scientific applications (e.g., in R&D or production) focus mainly
in processing of data, and often involve complex calculations and combinatory
problems to be solved. While the IFPUG methodology does not regard these
aspects explicitly, it should be noted the factors influencing work effort and
cost are explicitly external to any functional size measurement method as
defined in ISO/IEC 14143-1:2007 Functional Size Measurement – Definition
of Concepts.

For more technical IT projects there is a stronger orientation on processing
criteria. In this area input and output functions are often trivial, whereas pro-
cessing features have an important role. The COSMIC Method, presented in the
chapter about variants of the FPM, claims to address internal processing more
concretely, and the reader is directed to select the most appropriate functional
size measurement method (amongst the five ISO/IEC conformant methods) to
meet their specific needs. The one caveat is that it is usually best to select one
method for all of your functional sizing needs so that the functional size of
various projects can be effectively and easily compared.

Chris Kemerer from the Massachusetts Institute of Technology (MIT) showed
in a research study comparing 15 software projects that the FPM could be
used for various types of software beyond management information systems or
commercial applications. Furthermore, Kemerer found that estimation based
on functional size measurement produced the most consistent and accurate
results compared to source-lines-of-code (SLOC) based estimating methods
(SLIM, COCOMO, and Estimacs).

12.3 Application Areas for Function Points

334

12.4 The Evaluation of Function Point-Based Estimation
Methods

Noth and Kretzschmar (in their book in 1984) tested 20 different methods of
estimating software development effort, and found that those based on sizing
with Function Points belong to the few methods that they could recommend for
use. This can be seen from their test protocol of the FPM shown in Table 12.1.

According to Noth and Kretzschmar, using function points (functional size

as the best option.

ences can be combined in a single formula and then the particular indivi-
dual influences do not have to be separately examined in detail.
The estimating method can easily be adapted according to organizational
requirements.

Test criteria Evaluation 1 2 3 4 5
Usability x
Ease of learning x
Effort to develop estimates from the
measure

 x

Tool support x

Ease of use

Transparency x
Applicable early in the development
life cycle

x

Structuredness x
Ease to apply iteratively x

Contribution to
project control

Sensitivity analysis x
Precision x
Understandability x
Ease of evaluation x
Degree of influence x
Number of parameters x
Objectivity x
Stability x
Defect localization x
Adaptability x

Quality of results

Adaptivity x
1, excellent; 5, poor

12 The IFPUG Function Point Counting Method

ing advantages:

By using a specific organizational experience curve, many different influ-

on size measurement using Function points
Table 12.1. Test protocol from Noth and Kretzschmar (1984) of estimating models based

The size measurement focuses on the functional size, which was regarded

measurement) as the input variable for size in effort estimating has the follow-

335

Noth and Kretzschmar say that the biggest disadvantage of function-
point-based estimating methods is that a detailed estimation on an individual
module-by-module basis is not possible. As such, the method is only applicable
for gross planning.

Another evaluation of function point-based estimating was published by
Ruede who used the catalogue of criteria from Herrmann:

Precision:
A high degree of precision can be achieved by the transfer of experiences
between the project postmortems and subsequent new development pro-
jects. Functional size measurement-based estimating delivers more precise
results over the course of usage.
Standardization:

 Functional size (also known as a function point count) can be easily under-
stood by an end user with respect to its content and basic calculations.
Early Applicability:
Functional size measurement can be used very early since the requirements
are the basis for the counts. See also the chapter about Function Point Pro-
gnosis in this book.
Data Collection:
The necessary information for estimation and functional sizing can easily
be gathered.
Objectivity:
Functional size is not influenced by demands from management or indi-
viduals.
Transparency:
Functional size measurement can be done together with the end user. The
resultant estimates based on this size can be explained and controlled easily.
Degree of Details:
The effort for single activities or tasks and to develop specific programs and
modules cannot be evaluated using FP-based estimating methods, rather the
effort for the lifecycle development of software applications and projects.
 A detailed view is possible from the user side.
Stability:
Functional size results are stable even when development techniques or
methods change.
Flexibility:
Functional size deviations can easily be seen during the iterative process
and comparisons made between the planned functionality vs. what was actu-
ally delivered. Evaluations can be corrected.
Ease of Use:
Functional size measurement can easily be learned, the number of parame-
ters on which it is based is acceptable, and the sizing process is not time-
consuming.

12.4 The Evaluation of Function Point-Based Estimation Methods

336

Hence, estimating methods based on the FPM for sizing software fulfill the
major prerequisite requirements of a method for estimation of effort.

Besides the test criteria, Ruede published two other essential advantages of
using functional size-based estimation:

1. Software development evolves in the direction of IT organizations and
neglects the areas of programming replaced by tools. FPMs are the correct
way to assess software functional size since the user requirements are the
basis for calculations.

2. The productivity of application development can be demonstrated and
improvements can be planned based on per FP calculations where the
common denominator is functional size.

The above-mentioned study by Kemerer shows also that Function Point
counts performed using the same functional size measurement method and
release (e.g., IFPUG release 4.2) can be compared between different organiza-
tions (benchmarking).

Many users choose to employ size measurement using IFPUG or other
Functional Size Measurement Method because of its early applicability in the
software life cycle, and also because it delivers objective and consistent esti-
mates of functional size even when requirements are not concrete. Through
using FP as the common denominator (similar to using per square foot or per
square meter ratios in building construction), function point based estimating
also delivers the chance to gain experiences and rules of thumb.

The goals of the IFPUG function point analysis method are to measure
small units in order to support flexible comparisons and early deviations from
plan. A basis for planning can be elaborated and the controlling of IT projects
can be improved. More precise estimates of size (and effort using a FP-based
estimating model) for follow-up projects are possible, and effects of changes
in the development environment become transparent.

It is important to note that there are obstacles to the universal application of
FP-based estimation and functional size measurement, including wide spread
prejudices (and ignorance due to misunderstanding or lack of “informed” opin-
ions), leading to the conclusion in some circles that they are not feasible or even
that they should be avoided. Figure 12.7 provides some counter-arguments for
the types of statements that are often levied against functional size measurement.

12.5 The Optimum Time to Count FPs

The optimum time for a first Function Point count is the end of the require-
ments analysis. This phase delivers the following:

12 The IFPUG Function Point Counting Method

337

Description of the user requirements
Description of the data structures.
This contains all necessary information for a Function Point count.
The chapter Estimation Fundamentals: The Right Time for Estimation at the

beginning of this book is also valid for Function Point counting. Note that
before this point in the development life cycle, function points can only be
estimated but not counted.

during project progress, because throughout the project there evolves new
information such as scope changes, clarifications to requirements, (as well as
requirements creep).

We recommend (consistent with the practices at IBM) to revisit the original
Function Point count for any updated information (and changes) at the end of
each phase of the software project. This practice also supports the tracking of
requirements scope creep and scope management principles.

The counting of Function Points is ideally considered to be a part of the
project documentation, reviews, project controlling, and releases at the end of
each project phase.

Revisiting the Function Point count at different times as the project progresses
enables early adjustments (and corrections) to the resultant effort estimates, and
thus it increases the precision and approximation of the actual effort.

Fig. 12.7. Counter points to prejudices against Function Points

Points and counter-points about function points...

... they are developed by
theoreticians or academicians
and they are not practical for
use.

Originally developed by A.
Albrecht as a in-practice project
for the development of system
software at IBM.

PREJUDICE (POINT) COUNTER-POINT

... They produce
administrative overhead.

The effort to perform FP counts
compared to their benefit, and
the overall project effort is
negligibly low (less than 3%).

... They are not usable for
object-oriented or other types
of application development.

FP‘s are a Meta-Model that
allows a mapping of the
functional requirements, no
matter in which description or
technical implementation is
used.

12.5 The Optimum Time to Count FPs

 It does not make sense that a Function Point count is only performed once

338

When an effort estimate is required at an earlier stage than at the end of the
requirements phase, we recommend the development of one or more Function
Point prognosis methods. See the chapter titled Application of the FPM: Func-
tion Point Prognosis in this book. This requires counting of historical, completed
software projects and requires one to perform regression analyses. Experiences
from a sample size of 16–20 completed projects can form a reliable basis for
such methods. Another approach is to use the SPR-Function Points (see chapter
Variants of the FPM: SPR Function Points) when you need a FP estimate
before completing the requirements phase.

12.6 The Process of Function Point Counting

Before starting a Function Point count using the IFPUG method, the following
information must be available to the counter:

The outputs produced by the application
The inputs entering the application across its boundary
The internal logical files that are maintained by the application
Entities and Relationships between internal logical data
Inquiries for data retrieval that can be asked of the application
Interfaces between the application and other applications
Interfaces between the application and its users
Key logical processes of the application.

Note again that the word user in function point terminology means anything
(i.e., human users, other applications, hardware, software, etc.) that interacts
with the software. This is similar to the word “actor” in use case terminology.

The process of Function Point counting is described by IFPUG as follows
(see Fig. 12.8):

Fig. 12.8. The process of IFPUG Function Point Counting

Use Cases
Data Models

Component Models
Processes

Requirements
Dialogues
Prototypes...

Collect
Functional

Requirements

Rules
according
IFPUG

CPM

Perform
„Mapping“

ILF, EIF
EI, EO, EQ

Functional
Requirements
According to

IFPUG Model

Anwendungsgrenze andere Anwendung

Benutzer

Eingabe
(EI)

Ausgabe
(EO)

Abfrage
(EQ)

Interner
Datenbestand

Externer
Datenbestand

EI
EO
EQ

Anwendungsgrenze andere Anwendung

Benutzer

Eingabe
(EI)

Ausgabe
(EO)

Abfrage
(EQ)

Interner
Datenbestand

Externer
Datenbestand

EI
EO
EQ

Rules
according
IFPUG

CPM

Perform
Evaluation,
„Measure“

IFPUG
Function

Points

1 2 3 4

12 The IFPUG Function Point Counting Method

339

Define the type of count
Define the scope of the count and the system boundary
Count the unadjusted FPs.

Note that this is now the functional size of the software according to ISO/IEC
where functional size is defined as the size of the functional user requirements.
Therefore, the functional size of a piece of software equals the UNADJUSTED
Function Point count. However, the next two steps, which have been part of the
IFPUG method since the beginning, adjust the functional size by considering
the effects of some nonfunctional requirements.

It is anticipated that all future releases of the counting practices manual
(IFPUG CPM) will include the VAF (steps 5 and 6) as optional to be consis-
tent with the ISO/IEC version of the IFPUG standard.

Optional steps (in the ISO/IEC version of the IFPUG standard, currently still
part of the IFPUG CPM 4.2):

Calculate the VAF after determining the 14 GSCs
Calculate the adjusted FPs.

We recommend two further steps (regardless of whether steps 4 and 5 are
done) that go beyond the IFPUG rules:

6. Document the details of the count.

Function Point counts as well as FP estimates should be performed by project
leaders or project team members knowledgeable about the functionality to-
gether with support of the competence center. The release of counts and estimates
will be more consistent when there is a final quality check done by the compe-
tence center. Thus, our recommended final step is:

12.6.1 Step 1: Define the Type of Count

There are three types of Function Point counts, the first two specific to IT
projects:

1. New development
2. Enhancement
3. Application.

The relationships between these count types are shown in Fig. 12.9.

A new development project is the first build of an application. Thus, all deli-
vered functionality is considered to be added. Thus, Function Points counted
are the added (= delivered) plus any FP for user required “conversion” functions.

12.6 The Process of Function Point Counting

7. Quality assurance of the FP count by the competence center.

340

Fig. 12.9. Types of Function Point counts according to IFPUG

An enhancement project can add functionality, as well as change or delete
functionality. Accordingly, the FP is the summation of the added, changed, and
deleted FP, plus any FP for the user required “conversion” functions.

Figure 12.9 demonstrates that the IFPUG methodology regards requirements
scope creep based on at least two Function Point counts. The first count will
be at project start to measure the planned functionality, while the second will be
at project postmortem to measure the actual delivered functionality.

At project postmortem of an enhancement project, the Function Points of
the enhanced application must also be updated based on what has been added,
changed, and deleted.

In the IT department of an international insurance company in Germany,
the following standards (see Fig. 12.10) were introduced for definition of an
application software (AS):

Has at least 1 user
Has at least 1 EI and 1 EO/EQ
Has a sovereign data-storage, -administration, and -derivation, that is, it has
at least 1 ILF (usually, although not necessarily)
Interfaces must exist to satisfy the logical (functional) user requirements
Processes business cases completely. Note: the exception is if there are
central interfaces or comparable follow up processes involved in the final
handling of a process
Is maintained and administered by one organizational unit (this was a specific
internal company standard)
Different products do not necessarily lead to separate boundaries between
ASs
Inventory or insurance administration will normally be considered as dif-
ferent ASs (specific internal company standard)

Project B
Enhancement
FP Count 1

Project B
Enhancement
FP Count 2Project

Post
Mortem

Project A
New Development

FP Count 1

Project A
New Development

FP Count 2
Project

Post
Mortem

FP‘s of the installed
Application

initialises

updates

New Functionality (ADD) and
Conversion Functionality (CFP)

New (ADD), Deleted (DEL) and Changed
Functionality after Change (CHGA) and Conversion

Functionality (CFP)

Functionality of the
Application after New

Development or Enhancement
(FP-APPS)

12 The IFPUG Function Point Counting Method

(an update of count 1)

(an update of enh.
Count. 1)

341

Fig. 12.10. Example of an internal corporate standard for the definition of application
software

the placement of the application boundary
Different ASs have unique and different functionalities
Different users may provide a hint of different ASs, except in the case of in-
terface systems.
Business processes of different mandatory authorities are typically admini-

stered in different databases. Exception are if there exist also common proc-
esses besides the separate processes in the same database. In these cases they
are not defined as separate ASs (this is an internal corporate standard as an
example for the readers).

12.6.2 Step 2: Define the Scope of the Count and the Application
Boundary

The IFPUG FPM distinguishes between the size of a software project
(Counting scope) and an application.The size of a project can include several
applications each having different functionality from user view (not from tech-
nical view) and, thus having different application boundaries. As such, there may
be several Function Point counts within a single “business” project.

The definition of the application boundary determines which functionality is
counted for the project and which functionality would be counted for external
applications.

definition of an AS

There exists at least one user.

Business cases of the AS are processed until the case is finally
elaborated (if final handling is not done by central interfaces or

Additional Hints for Determination of AS:
AS are mostly administered by different
organizational units.
The borders of the AS should be defined from
user viewand not fromtechnical view.
Define the AS borders alike as you want to measure
and compute your metrics.

12.6 The Process of Function Point Counting

Attributes for Definition of Applications (AS)

followup processes).

Processes for administration (at least 1 EI and 1 EO/EQ).
Maintained entities and data administration (at least one 1 ILF) and

Batch- or interface-processing vs. online processing should not determine

Statistical reporting of an administered internal file alone is no reason for

342

Some estimators guess that the Function Points have been counted world-
wide for about 30,000 applications, but the actual number of discrete software
applications is not known other than it is a minority of the actual number of total
software applications in existence. As functional size measurement increases
in usage, hopefully more than 1% (according to statements by Prof. Alain Abran
at the Software Measurement European Forum in 2005) of software organi-
zations will be involved in software measurement.

Principally, the application boundary must be defined from the user view.
As depicted in Fig. 12.11, the user is outside the system. After determining the
boundary, data files maintained within the application and the associated main-
tenance functions (create, add change, delete) are counted as internal logical files,
with external data files counted for those entities administered and maintained
outside the application boundary. In enhancement projects, it has to be regarded
that the new application boundary is consistent with the boundary of the base
system.

Since the application boundary is critical to the determination of the appli-
cation functionality, it is important for it to be documented clearly. This
includes the description of assumptions used to locate the boundary.

Practically, this documentation (typically including system diagrams) can
easily be reused in (or as) architecture diagrams in the application atlas of the
organization.

Fig. 12.11. Defining the application boundary

12.6.3 Step 3: Count Unadjusted FPs

The IFPUG Function Point Methodology distinguishes five function types as
shown in Table 12.2.

Application Boundary Other Application

End User

Input
(EI)

Output
(EO)

Inquiry
(EQ)

Internal
File

External
File

EI
EO
EQ

12 The IFPUG Function Point Counting Method

343

Table 12.2. IFPUG function types

ILF (Internal Logical Files): Internal logical files with their
records and data elements; data that are maintained within the
system boundary by the software under consideration. Persis-
tent logical entities

Data function
types

EIF (External Logical Files): External interface files with their
records and data elements; data that are maintained outside the
system boundary (by other applications). Persistent logical en-
tities maintained by another application, but referenced by this
one
EI (External Inputs): External input functions with their logical
data groups and data elements. External inputs are elementary
processes
EO (External Outputs): External output functions data with their
logical data groups and data elements. External outputs are ele-
mentary processes

Transaction
function types

EQ (External Inquiries): External inquiry functions with their
logical data groups and data elements. External inquiries are
elementary processes

Function Points are counted according to specific IFPUG formulae according
to the type of count (see step 5):

For enhancement projects: added plus deleted plus changed plus user required
conversion functionality must be counted.
Added functionality enlarges the functional size of the project and the func-
tional size of the base application.
Deleted functionality enlarges the functional size of the project (since it is
worked on it), but reduces the functional size of the base application.
Changed functionality enlarges the functional size of the project and can
enlarge, reduce, or leave unchanged the functional size of the base appli-
cation.
User required conversion functionality is counted as part of the functional size
of the project, but does not affect the functional size of the base application.

The Function Points are then classified according to a complexity matrix into
low, average, or high. The result is documented in a Table 12.3.

The sum of the Function Points are called the unadjusted Function Point
count. This is the functional size according to ISO/IEC. The steps 4 and 5 of
the IFPUG method as defined earlier modify (adjust) this unadjusted Function
Point count based on the influence of fourteen nonfunctional user requirements.

these steps will be deemed to be “optional” steps for consistency with the ISO/
IEC version of the IFPUG method.

12.6 The Process of Function Point Counting

Note that in the future IFPUG releases (after IFPUG 4.2) it is anticipated that

344

Table 12.3. Summary of a Function Point Count

Functional type Complexity FPs Number of unique
functions

Sum FPs

Low 7
Average 10

ILF

High 15
Low 5

Average 7
EIF

High 10
Low 3

Average 4
EI

High 6
Low 4

Average 5
EO

High 7
Low 3

Average 4
EQ

High 6
Sum of unadjusted FPs

The next step involves determining the influence of the 14 GSCs. The
sum of the values for the 14 characteristics is called the TDI (Total Degree of
Influence). The TDI is then multiplied by 0.01 and added to the constant 0.65
to calculate the VAF:

VAF = (TDI 0.01) + 0.65.
The final but also optional step in the current IFPUG FP method is to calcu-

late the adjusted FPs. To do so, the adjusted FP is then calculated by multiply-
ing the unadjusted FPs with the VAF:

Adjusted FP = unadjusted FP VAF.

Since the 14 GSCs are estimation parameters based on the nonfunctional user
requirements, and not part of functional size measurement, only the unadjusted
FPs can be considered ISO/IEC-conformant as a functional size measure. The
two steps from the unadjusted FPs to the adjusted FPs take the functional size
measurement (unadjusted FP) in the direction of software estimation by con-
sidering influences of the nonfunctional requirements in system development.

In the following sections, each of the IFPUG five function types is described.

Classification of Logical Files

Internal Logical Files (ILF) and External Logical Files (EIF) must be distin-
guished and counted. The main difference between an ILF and an EIF is that

12 The IFPUG Function Point Counting Method

345

an ILF is maintained by the application being counted, whereas the EIF is main-
tained by an external application. The technical term “maintain” is defined as an
elementary process that changes the data in the entity (including processes
whereby data on the file is modified through processes that create data, update
or inserting data, change or otherwise modify data, or delete data). Theoretically,
all five manipulations must be possible.

The most important consideration is that the entities (logical files) are
regarded from the user view. Counting FPs after the design phase or later in
the project (e.g., after implementation) can leave the Function Point counting
practitioner with difficulties to view everything from the user perspective. The
only advice is to remember this restriction as often as possible. A technical
perspective (as opposed to the user perspective) can obscure the proper view-
point and result in an over or under count. For example, an application may
physically store data about customers across multiple database files, whereas
from the user perspective it is one logical file (entity). This should be counted
as one ILF.

A prerequisite to accurate Function Point counting is a logical data model,
not a physical one. The entities of the logical data model are used for counting
and as such the Function Point count will disregard supraentities, IT-technical
data elements or implementation specific files, group elements, and filler fields.

The EIFs are external interface files (persistent logical entities) as identi-
fied from the requirements. These are logical files (entities) maintained by other
applications and only referenced by the application being counted. Thus, an
EIF is an ILF of another application that is simply read or referenced by this
application or one can say it is a logical reuse file.

The complexity of internal and external logical files depends on two dim-
ensions:

The number of data element types (DET)

IFPUG defines these as follows:

DET: A DET is a unique user recognizable, nonrecursive field (in an ILF
or EIF).

RET: A RET is a user recognizable logical subgroup of data elements within
an ILF or EIF.

Standalone entities are counted (with the exception of hard-coded/non-
maintained data and code tables. See the current IFPUG CPM available from
http://www.IFPUG.org for full counting rules and exclusions to what is counted)
and the number of fields. When a logical entity contains at least one field, then

12.6 The Process of Function Point Counting

The number of record element types (RET).

346

a RET is counted. Key fields are counted only once no matter on how many
RETs they are contained.

After determination of the RETs and DETs on a persistent logical entity
(“file”), the complexity (low, average, or high) is determined using a complexity
matrix (see Table 12.4).

The relative complexity is then translated into unadjusted function points
according to the following table (Table 12.5).

quired by different restrictions from law in Germany) and 7 DET. Thus, the
file is evaluated as low complexity (Table 12.4) and would be equal to seven
unadjusted FP if it is an ILF or five unadjusted FP if it is an EIF (Table
12.5). The higher Function Point count for ILFs as compared to EIFs consi-
ders that the file is maintained by the application being counted. Note that this
means that there will also be at least one data maintenance EI for that ILF
present in the application.

New users of the IFPUG method often have difficulties to distinguish
between ILFs and EIFs. A rule of thumb is to count an ILF if data are stored
and maintained (and are not part of the exclusions as outlined above), and
an EIF when data are only retrieved or extracted or referenced from an entity
maintained within another application boundary.

One additional piece of advice to determine if the requirement for the file is
a physical (i.e., specific to the technical development language or implemen-
tation used) or a logical requirement is to consider whether the requirement
would disappear if it was implemented differently. For example, if there is a
file that contains a copy of information that is maintained by another appli-
cation, is extracted from that application, imported to the application being

Table 12.4. Complexity of IFPUG data functions: ILF and EIF

RETs/DETs 1–19 DETs 20–50 DETs >50 DETs
1 RET Low Low Average
2–5 RETs Low Average High
>5 RETs Average High High

Table 12.5. Unadjusted Function Points based on logical file complexity

ILF EIF Complexity
Number of Unadjusted FP Number of Unadjusted FP

Low 7 5
Average 10 7
High 15 10

12 The IFPUG Function Point Counting Method

The example in Fig. 12.12 shows a logical data model of a salary system.

 The example in Fig. 12.2 shows 2 RET (since the indicator is functionally re-

347

Fig. 12.12. Internal Logical File complexity example

counted, and named with an application specific name, then the question would
be “If we had perfect technology (i.e., considering only the user requirements)
would we still need to make a copy of the data within our application?” If the
answer is “no, we could simply read it from the other application,” then we
know that the file is an implementation-specific requirement, and the file is
simply the physical implementation to read the EIF from the other application.
However, if the answer is “Yes, the owner application changes the data all the
time, and our application needs a snapshot point in time view of the other appli-
cation’s data”, then we know that the requirement is a functional, logical user
requirement and the file would be counted as an ILF.

Classification of Transactions

Transactional functions are External Input (EI), External Output (EO) and
External Inquiry (EQ), and are defined by IFPUG as follows:

EI: An EI is an elementary process that processes data or control infor-
mation that comes from outside the application’s boundary. The primary intent
of an EI is to maintain one or more ILFs and/or to alter the behavior of the system.
Counted are all elementary input processes having unique processing logic.

EO: An EO is an elementary process that sends data or control information
outside the application’s boundary. The primary intent of an EO is to present
information to a user through processing logic other than, or in addition to, the
retrieval of data or control information. The processing logic must contain at
least one mathematical formula (calculation), create derived data, maintain
one or more ILFs, or alter the behavior of the system.

EQ: An EQ is an elementary process that sends data or control information
outside the application’s boundary. The primary intent of an EQ is to present

Employee

- Name

- Insurance Number

- Department

- Indicator. Wages/Salary

Wages

- US-$ per Hour

-

Salary

- Salary Group

2 RET‘s

- Wages

- Salary

7 DET‘s

- Name

- Insurance Number

- Department

- Indicator. Wage/Salary

- US-$ per Hour

- Payment Cash Point

- Salary GroupPayment Cash Point

12.6 The Process of Function Point Counting

348

information to a user through the retrieval of data or control information from
an ILF or EIF, and in addition, the processing logic contains no mathematical
formulae or calculations, creates no derived data, does not maintain an ILF,
and does not alter the behavior of the system.

As such, if an elementary process has the primary intent of sending data ex-
ternal to the application boundary, it typically will be a binary choice between
an EO or EQ.

Typical examples for transactions are, for example, the following:

 EI: Add a new employee

EO: Online or printed reports with calculated data (can also be contained in
an export file)

EQ: Online data is input to retrieve and display employee data without any
other processing

The example in Fig. 12.13 shows a dialogue for maintenance of an elec-
tronic address book with 3 EIs and 1 EQ.

Fig. 12.13. Transactions example

Before counting the unadjusted Function Points, the complexity of each of
the transactional functions has to be determined. The complexity of a trans-
action depends on two dimensions:

The number of data elements (DET, Data Element Types)
The number of referenced files (FTR, File Type Referenced).
The number of DETs is determined as the number of data element types

that cross the application boundary (in plus out minus duplicate fields that cross
both in and out). Counted are the fields used by the transaction plus 1 DET for
the ability to specify the function to be performed (e.g., “New” command) plus
1 DET for any error and/or confirmation messages and/or confirm that proces-
sing should continue, which are provided as part of the function (regardless of

12 The IFPUG Function Point Counting Method

Delete

1 EI each

together 1 EQ
for presentation of retrieved data

New

Change

Close navigation,
not counted

Name
Alias
Street
ZIP Code
City
Telephone
Telefax
Notes

Digital Addressbook

<Error Messages
displayed here>

349

how many are present, it is 1 DET for the total error/confirmation/continuation
messages or functionality there may be).

The number of FTRs is simply the number of external and internal logical
files required to process the transaction.

The EI “New” in Fig. 12.13 for adding a new address has, for example, 10
DETs (8 for the data fields shown on the dialog from Name through to Notes,
plus 1 DET for the function initiator button New plus 1 DET for the display of
error message(s)) and 1 FTR (only a single Internal Logical File is needed to
create a new entry). The complexity matrix for EIs (see Table 12.6) classifies this
EI as low.

Table 12.6. Complexity of EIs

FTRs/DETs 1–4 DETs 5–15 DETs >15 DETs
0–1 FTR Low Low Average
2–3 FTRs Low Average High
>3 FTRs Average High High

Regarding the complexity of EQs, and EOs, one has to consider that either
function may consist of an input part as well as an output part. If a DET is inclu-
ded on both the input (question) and output (response) side, it is counted only
once. Therefore, the DETs of both parts are added together, but only the ones
that are distinct. The same concept holds for FTRs, where if a FTR is accessed
both on the input and output sides of an EQ function, it is counted only once.

The applicable complexity matrix for EOs and EQs is presented in Table 12.7.

Table 12.7. Complexity of EOs and EQs

FTRs/DETs 1–5 DETs 6–19 DETs >19 DETs
0–1 FTR Low Low Average
2–3 FTRs Low Average High
>3 FTRs Average High High

The example data retrieval (at the bottom of Fig. 12.13) function has a pri-
mary intent to display information to a user. It retrieves data from a logical
file, and the elementary process does NOT involve calculations, derive data,
update any ILFs, or alter the behavior of the system. It therefore is an EQ.

The EQ has 3 DETs on the input side (the data field “Name” plus 1 DET for
the selection button that identifies the function as a query plus 1 DET for any
error messages that can occur) and 1 FTR. The output part has 8 DETs (the data
field Name plus the other 7 displayed DETs) and 1 FTR. To determine the
complexity of the EQ, use 10 DETs (the 3 DET on the input side + 8 DET on
the output side – 1 DET, because the Name field is on both sides), and 1 FTR

12.6 The Process of Function Point Counting

350

(the same logical file is used on both sides). The resultant complexity is low
according to Table 12.7.

The Function Points to be counted for the transactions can be derived again
using the appropriate column as shown in Table 12.8. The EQ we just counted
from Fig. 12.13 is worth three unadjusted FP.

Table 12.8 Unadjusted Function Points of transactions

Complexity EI EO EQ
Low 3 4 3
Average 4 5 4
High 6 7 6

12.6.4 Step 4: Calculate the VAF after Determining the 14 GSCs

After counting unadjusted Function Points, the VAF has to be determined. It is
calculated in a formula using the sum of the values 14 GSCs:

1. Data Communications
2. Distributed Data Processing
3. Performance
4. Heavily Used Configuration
5. Transaction Rate
6. Online Data Entry
7. End-User Efficiency
8. Online Update
9. Complex Processing
10. Reusability
11. Installation Ease
12. Operational Ease
13. Multiple Sites
14. Facilitate Change.

The Degree of Influence (DI) of each of these characteristics is rated on a
scale from 0 (no influence) to 5 (strong influence). There exists a set of exac-
ting definitions in the IFPUG CPM for determining the DI for each of the 14
GSCs (see Chap. 15, IFPUG Function Point Counting Rules). The DI’s of the
14 GSCs are added together, and the sum is called Total Degree of Influence
(TDI). From this the VAF is calculated with the formula

VAF = (TDI 0.01) + 0.65.
This leads to the result that the VAF ranges from 0.65 to 1.35; thus adjusts

the unadjusted Function Point count by up to 35%. A typical VAF (e.g., in
the IT department of an international insurance company in Germany) is for

12 The IFPUG Function Point Counting Method

351

host applications to range from about 1.0–1.1. Experiences of other organi-
zations confirm that VAFs between 0.95 and 1.1 are typical in Europe and else-
where in the world.

The 14 GSCs correlate strongly with the six categories outlined in ISO/IEC
9126 Quality Attributes that play an important part in a quality assurance plan
(see also chapter Estimation Fundamentals: ISO 9126 Quality Attributes and
IFPUG GSCs in this book).

Note that the ISO/IEC 9126 standard is slowly being replaced by the
SQUARE series of ISO/IEC standards that expand and further define “Quality
Metrics” for software and systems.

12.6.5 Step 5: Calculate the Adjusted FPs

As can be seen from Fig. 12.9 (see step 1: Define the Type of Count) the follow-
ing three types of count are distinguished:

1. New development
2. Enhancement
3. Application.
According to the type of count, the Function Points are calculated using

specific (and different) formulae as described below.
Function Points for new development projects: A new development project

adds functionality to the software application. Further functionality can evolve
if existing data must be converted and integrated in the new system (migrations).
The adjusted Function Points of a new development project are calculated
using the VAF:

DFP = (UFP + CFP)VAF,

where DFP is the development Function Points, adjusted; UFP is the unadjusted
Function Points; CFP is the Function Points from conversions (migrations),
which are functions specifically required by users (e.g., user requested conver-
sion reports comparing the results of the existing vs. the new cutover payroll
system being installed). These are user-specified and requested reports that are
of essence during the development project, but are never put into the produc-
tion software for ongoing use. (For this reason, the conversion functionality is
NOT counted in the base or installed application Function Point count.); and
VAF is the Value Adjustment Factor of the application.

Function Points for enhancement projects: An enhancement project changes
the functionality of an existing application. The following cases can occur
(often all four together):

New functionality is added
Existing functionality is changed

12.6 The Process of Function Point Counting

352

Existing functionality is deleted
Conversion (migration) functionality is required.

Since the GSCs always pertain to the entire application, they must be eva-
luated both before and after an enhancement project. Two VAFs are distin-
guished when calculating the FP for enhancement projects: VAFA and VAFB.
The Function Points of an enhancement project are calculated with the follow-
ing formula:

EFP = [(ADD + CHGA + CFP)VAFA] + (DEL VAFB),

where EFP is the enhancement Function points, adjusted; ADD is the added
functionality, new; CHGA is the unadjusted FPs for change of functionality
after enhancement; CFP is the unadjusted Function Points for conversion func-
tionality; VAFA is the VAF of application after enhancement project; DEL is
the unadjusted FPs for functionality deleted; and VAFB is the VAF of appli-
cation before enhancement project.

Examples for enhancement of functionality may be as follows:

A batch transfer for exchange of data with another application is obsolete
(deletion of functionality)
The user demands additional reports from the application (addition of new
functionality)
An already existing report should show additional data elements (change of
existing functionality).

Function points of an application: In this case it has to be determined if the
application is delivered the first time (initialization of new development) or if
an existing application is enhanced (the enhancement project updates the
application size). In both cases, when the count is for a project, there may occur
conversion (migrations) functionality. Conversion functionality does not change
the size of the applications. Hence, the FPs of an application after the comple-
tion of a new development project are calculated as follows:

AFP = ADD VAF,

with AFP the application FPs after new development (adjusted), ADD the
added functionality of the new development (unadjusted), and VAF the Value
Adjustment Factor.

In the situation of the update of an existing application by an enhancement
project, the Function Points are calculated according to the following formula:

AFP = [(UFPB + ADD + CHGA) – (CHGB + DEL)]VAFA,

with AFP the application FPs after new development (adjusted), UFPB the
unadjusted FPs before enhancement, ADD the added functionality of the new

12 The IFPUG Function Point Counting Method

353

development (unadjusted), CHGA the unadjusted FPs for change of function-
ality after changing it, CHGB the unadjusted FPs for change of functionality
before changing it, DEL the unadjusted FPs for deletion of existing functional-
ity, and VAFA the VAF of application after enhancement.

Maintenance projects: Here it has explicitly to be stated that a pure main-
tenance project does not alter the functionality of an application (i.e., Main-
tenance projects typically are equal to zero function points). However, if the
maintenance project DOES alter the functionality, then it is really an enhancement
project according to IFPUG terminology, regardless of what the business
might use to classify the project.

Note that this also occurs in the opposite manner: if the business classifies a
project as an enhancement, but there is no alteration of any logical functionality
in the project, then the project, according to IFPUG FP terminology, is actu-
ally a maintenance project and would warrant a Function Point count.

12.6.6 Step 6: Document the Count

This step is not part of the IFPUG method, however it is one of two final steps
recommended by the authors - even if the optional adjustment factor steps 4
and 5 are not done. The first Function Point count of a new development pro-
ject succeeds or fails along with the planning of the measurement. Hence, the
right people often have to meet and allocate enough time to review the neces-
sary (requirements) documentation. The final Function Point count of a new
development project after delivery occurs at the project postmortem to meas-
ure the actual delivered functionality. This means revisiting and often updating
the first Function Point count.

If the final documentation is complete and structured according to the
requirements, then it becomes a trivial matter to update the final delivery Func-
tion Point count, and the effort to perform it is minimized.

Persons who neglect to adequately document their Function Point counts
could be considered by some to diminish the value (and auditability) of the
counting and measurement process itself.

The documentation of a Function Point count should at a minimum com-
prise the following information:

The type of count
Name of the project or application (as applicable)
Date of the count and name of the counter and participants
Indication of whether it is a first or final (delivered) count (if the count is
for a project)

12.6 The Process of Function Point Counting

354

Counting practice release used to count (e.g., IFPUG 4.2)
List of the documentation used for the count (e.g., requirements document
version n.n dated dd/mm/yy, object diagram dated dd/mm/yy)
The system boundary (description and/or diagrams)
The logical files and transactions
The elementary processes counted
A description of any processes or functions excluded from the count (e.g.,
duplicate functions, menus, or files required for implementation reasons)
The VAF and the values of the 14 GSCc
The unadjusted and adjusted FPs
Assumptions and decisions that had an influence on the count
Project description and identifying attributes (e.g., platform, development
language(s), team size, and any situations that occurred during the project such
as changes in direction, delays, changes of management, canceled function-

The process should be at least formal enough that there are usable documents
available for subsequent reporting. Thus, at least some forms should be used
that enable structured documentation of the aforementioned items. Furthermore,
it must be communicated (“publicly stated within the organization”) which forms
are to be completed to document the FP counts and who is responsible for their
completion. In Appendix A of this book there is an example checklist that can
be used as a general form to document IFPUG Function Point counts. The form
can be tailored for use with other functional size measurement methods.

Furthermore, the same rigor and discipline should be used with these FP
measurement activities as is used in accounting, bookkeeping, and controlling
departments. When quality assurance of a Function Point count is done by a
competence center or by a Certified Function Point Specialist (CFPS), the docu-
mentation should be structured in such a manner that any other experienced
Function Point counter could understand and get an overview of the Function
Point count in the shortest time possible.

Many organizations use an automated tool to document their counts, for
example, the FP repository tool: Function Point Workbench™ (FPW) – see the
chapter Tools for Estimation in this book for details. Tools such as these
deliver reports in a structured way (hierarchy diagrams and hierarchy trees)
that can easily be prepared for web presentation as well as in other formats.
Practical experience of the authors attests that the effort to count enhancement
projects and to update the application baseline is minimized when historic
counts are available in a structured form as provided by a tool such as FPW™.

The graphical documentation of the application boundary can often be done
with graphical software as, for example, MS PowerPoint or Visio, and in the

12 The IFPUG Function Point Counting Method

ality, etc.).

355

absence of automated diagrams or tools, even a manual diagram with the boun-
dary depicted can be scanned and attached to the Function Point count auto-
mated files (e.g., MS Excel spreadsheet).

Besides it can be recommended to document for each project a log-book
(alike a ship’s log) with following additional (to the before mentioned) infor-
mation of the count:

Who did what at which time?
At which time in the project was the count done?
Which special aspects are valid for the project and how is it characterized in
the project portfolio?
Which suggestions and decisions were used and for which reasons?
How was the process of the count/estimation performed?
What are the next measures and when are they to be done and by whom?
Which documentation was used for counting?
A cross-reference between physical fields and logical functions.

This logbook is a standard text software document and can be added (as well
as the system boundary diagram) to the count documentation in the FPW™ or
other FP repository software. In Appendix A of this book we have included an
example of such a logbook.

Using the processes described here and tools (checklists and forms as well
as software), the organization gains clear, well-structured, and standardized
documentation of all Function Point counts. Enhancement projects can thus
proceed from precise knowledge of the existing application, and can reuse many
of the documents as a basis for subsequent enhancement count(s). In addition,
it becomes an easy task to verify Function Point counts going forward.

12.6.7 Step 7: Quality Assurance of the Count by the Competence
Center

A Function Point count should be reviewed before its final release by a third
person or a competence center. In this way, a quality report can show formal or
content-related contradictions or weaknesses in the process or in the Function
Point counts. For this quality assurance (QA) step, the following three topics
can be examined with a QA checklist:

1. Prerequisites
2. Process
3. Documentation.

The first topic checks if the prerequisites for the count were adequate.
This requires that the Function Point counters were trained and whether they

12.6 The Process of Function Point Counting

356

were provided with adequate information to gain enough knowledge about the
logical functionality of the application and/or project.

The second topic examines the formal process of the Function Point count
and, by using random checks ensures that the graphical diagrams and other
documentation is consistent with the resultant FP lists of transaction and files
(maybe documented in a tool).

The final topic is a check that all necessary information about the Function
Point count has been adequately documented.

The results of the checklist can be documented in a short report. Together,
the checklist and the report become the quality report. In Appendix A of this
book is a sample checklist that can be used to perform the quality assurance of
a Function Point count.

12.7 The Process to Implement the IFPUG Function Point
Counting Method

The process to implement IFPUG Function Point Counting in an organization
is similar to that of introducing estimation as outlined in the chapter The Imple-
mentation of Estimation. Similar tasks and prerequisite steps must be considered
and dealt with before the measurement process becomes an organizational habit
and becomes part of the way of doing business. In addition, some of the effort
for the implementation of a formal estimation can be transferred to the imple-
mentation of the Function Point counting processes.

Günter Büren reports on a project sponsored by the European Community
whereby 113 person days of effort were required to implement Function Point
counting and an estimating process in a small consultancy.

As a rule of thumb, one can say that an experienced Function Point counter
is able to count between 300 and 1,000 Function Points a day. The higher rate
of counting can surely be reached if all relevant (and up-to-date) documentation
is at hand, and if the count is done with automated tool support. The Function
Point counting effort could actually end up to be as much as triple to this if pro-
ject documentation is not at hand, is incomplete, differs from the implemented
application, is not available at all, and if there is no tool support.

On the other hand, the effort for Function Point counts for large IT projects
can be in the range of several person days. Professor Dumke states that the
software development work of 10 person years can rarely be Function Point
counted in a single day.

12 The IFPUG Function Point Counting Method

357

Note that the minimum time needed to perform a well-documented and
detailed Function Point count rarely is less than half a day for the following
reasons:

1. It takes time to understand what is involved in the project or application
functionality (no matter how big it may be).

2. It takes time to explain the process of Function Point counting to project
participants.

3. It takes time to assemble and gain even a high-level appreciation for the
needed count documentation and what has been assembled for the count.

4. It takes time to perform the count (even if it is small).
5. It takes time to document and record the information for the Function

Point count.

All together, it typically takes at least half a day to be able to do all of these
tasks.

Critical success factors for the implementation of IFPUG Function Point
Counting in an organization include the following:

Proper planning of the process to introduce and embed the prerequisite
tasks needed to perform Function Point counts in the organization (informa-
tion gathering, training and participation of management, counters, project
team members, and a competency center staff knowing about what Func-
tion Point counting can and cannot do; and development and documentation of
a Function Point counting process manual and organization specific counting
conventions).
A comparable (stable) development environment where Function Point
counting is intended to be applied.
Realistic expectations about FP based measurement and estimation.
Committed (and visible) management support.
An understanding that measurement is a necessary prerequisite for estima-
tion, planning, management, controlling, and improvement of the software
development tasks.
Automated support for measurement and recording of project effort.
The planning and resource allocation of the necessary effort to learn and
become proficient in Function Point counting.
The readiness to give insight (and feedback) to the processes needed and
into the development of necessary documentation.
Acceptance of the need for control of the processes of measurement and
estimation.
Training of the staff and gaining of experiences in a competence center.

12.7 The Process to Implement the IFPUG Function Point Counting Method

358

12.8 The Limitations of the IFPUG Function Point Counting
Method

The FPM is naturally criticized by users of the SLOC-based metrics, but also
by proponents and inventors of alternative methods (such as Mark II, COSMIC).
Some of the arguments are politically motivated; however, there remain
weaknesses in the IFPUG method (and in other functional size measurement
methods).

No matter what methodology is used, the most important consideration is
consistency in the application of the method, adequate training of the involved
staff, and appropriate usage of an applicable (and calibrated) estimation method.

All investigations so far have led to the result that functional size measure-
ment is the most effective and reliable means of measuring software size that
can be used effectively in the early phases of the software development life
cycle.

Practically, the question is often raised about the precision of estimation
methods based on functional size measurement. Shigeru Nishiyama of Japan
performed a study of five new development projects in 1999, which were coun-
ted by two Function Point Counters (called fpA and fpB) and the results were
analyzed thoroughly. His regression analysis resulted in

Count by fpB = 0.97fpA + 4.01, with R2 = 0.999.

The negligible difference of 3% between the two counters resulted from
different interpretations of vague descriptions in the requirements documents,
and from intersections in the declaration of EIs, EOs, and EQs in the IFPUG
CPM. See the table Not defined cases in the chapter IFPUG Function Point
Counting Rules in this book.

By design, Function Points do not correlate with every aspect of software
development, but they were never intended to do so. FP cannot measure the
customer contentedness nor can they be used to measure individual produc-
tivity. Pam Morris of Australia documented a list of situations for which FP
are not applicable:

In the area of software maintenance:
o Defect correction
o Table changes
o Perfective and corrective maintenance
o Production systems support and control
o Response behavior of the system
o Security and access control

Consultancy and ad-hoc support
Project progress and implementation.

12 The IFPUG Function Point Counting Method

359

It has been often quoted that if all one has is a hammer, then everything
looks like a nail (the analogy to FP measurement is that if you only have FP as
a measurement, then everything appears to be Function Point countable). Con-
versely, a good toolkit contains a combination of tools each suitable to perform
particular tasks, such as a screwdriver for screws, a hammer for nails, and a
level to hang pictures evenly. Similarly, FP must be balanced by other mea-
sures to adequately manage the software development environment.

12.9 Management Summary

The IFPUG FPM is a method to measure the (functional) size of an application
(piece of software) from the user view.

As an ISO/IEC conformant Functional Size Measurement method, the
IFPUG FPM measures the functionality in software delivered to the user as
required by the user, and quantified by following the IFPUG CPM set of coun-
ting rules.

The functional size measure is independent of the nonfunctional require-
ments, including the technology used for implementation, since the techno-
logical aspects of the software development are not part of the functional size.

Function Points are derived from the logical (or functional) user require-
ments concept, and the person counting the Function Points will learn a lot about
the functional requirements of the software during the process of evaluating
the functional size.

At this point it may be worthwhile to note that there are at least five ISO/
IEC conformant functional size measurement methods.

The IFPUG FPM can easily be learned and understood and applied to a
variety of software.

It has been observed through first hand experience that when the Function
Point Analysis is done with the involvement of the end users, they are moti-
vated to better teamwork and more committed engagement. In addition, we have
observed that the overall user satisfaction with the project increases. This is a
key project success factor according to the Standish Group’s annual CHAOS
Report.

FP size at various points in the development life cycle is used for measure-
ment of requirements creep (scope management).

FP methodology supports reuse in IT development by early and standardized
quantification of business cases in the requirements definition phase, for con-
tracting, for project-estimation, for test case identification, for enhancements,
and for documentation.

12.9 Management Summary

360

The FPM methodology is independent of the development environment as
well as the skills or attributes of developers.

Function Points can facilitate comparison of prices from suppliers and to
evaluate cost ratios for software under contract.

ISBSG publications also discuss how function points can be used as part of
price comparisons (see http://www.isbsg.org). The metric price per FP can
contribute to decisions about whether to build-or-buy.

Another interesting use of Function Points is to directly measure and manage
software development performed under contract.

The effort for planning, performing, and documentation of Function Point
counts can be justified as long as FP are used appropriately together with other
measures.

Capers Jones estimates the effort to implement a fully-functioning mea-
surement and analysis program to be maximally 3% of the cost of a project –
not much when you consider the savings that better requirements and accurate
estimates can provide.

The primary application areas of the IFPUG FPM are in estimation of new
software development and enhancement.

FPs can be used for risk assessment.
The COSMIC Method, presented in the chapter about variants of the FPM,

claims to address internal processing more concretely, and the reader is directed
to select the most appropriate functional size measurement method (amongst
the five ISO/IEC conformant methods) to meet their specific needs.

Chris Kemerer from the Massachusetts Institute of Technology (MIT)
showed in a research study comparing 15 software projects that the FPM could
be used for various types of software beyond management information sys-
tems or commercial applications.

Estimating methods based on the FPM for sizing software fulfills the major
prerequisite requirements of a method for estimation of effort.

The goals of the IFPUG function point analysis method are to measure
small units in order to support flexible comparisons and early deviations from
plan.

The optimum time for a first Function Point count is the end of the require-
ments analysis.

It does not make sense that a Function Point count is performed only once
during project progress because throughout the project there evolves new
information such as scope changes, clarifications to requirements (as well as
requirements creep).

12 The IFPUG Function Point Counting Method

361

We recommend (consistent with the practices at IBM) to revisit the original
Function Point count for any updated information (and changes) at the end of
each phase of the software project. This practice also supports the tracking of
requirements scope creep and scope management principles.

The counting of Function Points is ideally considered to be a part of the
project documentation, reviews, project controlling, and releases at the end of
each project phase.

Revisiting the Function Point count at different times as the project progresses
enables early adjustments (and corrections) to the resultant effort estimates,
and thus it increases the precision and approximation of the actual effort.

When an effort estimate is required at an earlier stage than at the end of the
requirements phase, we recommend the development of one or more Function
Point prognosis methods.

Function Point counts as well as FP estimates should be performed by pro-
ject leaders’ or project team members’ knowledgeable about the functionality
together with support of the competence center.

There are three types of Function Point counts, the first two specific to IT
projects: New development, Enhancement, Application.

A new development project is the first build of an application. Thus, all deli-
vered functionality is considered to be added.

An enhancement project can add functionality, as well as change or delete
functionality.

At project postmortem of an enhancement project, the Function Points of
the enhanced application must also be updated based on what has been added,
changed, and deleted.

The IFPUG FPM distinguishes between the size of a software project (Coun-
ting scope) and an application.

Principally, the application boundary must be defined from the user view.
Since the application boundary is critical to the determination of the appli-

cation functionality, it is important for it to be documented clearly. This
includes the description of assumptions used to locate the boundary.

Since the application boundary is critical to the determination of the appli-
cation functionality, it is important for it to be documented clearly. This includes
the description of assumptions used to locate the boundary.

Practically, this documentation (typically including system diagrams) can
easily be reused in (or as) architecture diagrams in the application atlas of the
organization.

12.9 Management Summary

362

The two steps from the unadjusted FPs to the adjusted FPs take the func-
tional size measurement (unadjusted FP) in the direction of software estima-
tion by considering influences of the nonfunctional requirements in system
development.

ILF and EIF must be distinguished and counted.
The EIFs are external interface files (persistent logical entities) as identified

from the requirements.
The complexity of internal and external logical files depends on two dimen-

sions: the number of DET and the number of RET.
New users of the IFPUG method often have difficulties to distinguish between

ILFs and EIFs. A rule of thumb is to count an ILF if data are stored and main-
tained (and are not part of the exclusions as outlined above), and an EIF when
data are only retrieved or extracted or referenced.

Transactional functions are EI, EO, and EQ.
The complexity of a transaction depends on two dimensions: the number of

data elements (DET) and the number of referenced files (FTR).
After counting unadjusted Function Points, the VAF has to be determined.

It is calculated in a formula using the sum of the values 14 GSCs.
The 14 GSCs correlate strongly with the 12 ISO/IEC 9126 Quality Attributes

that are an important part of a quality assurance plan.

The first Function Point count of a new development project succeeds or
fails along with the planning of the measurement. Hence, the right people often
have to meet and allocate enough time to review the necessary (requirements)
documentation.

The final Function Point count of a new development project after delivery
occurs at the project postmortem to measure the actual delivered functionality.
This means revisiting and often updating the first Function Point count.

Persons who neglect to adequately document their Function Point counts
could be considered by some to diminish the value (and auditability) of the coun-
ting and measurement process itself.

The process should be at least formal enough that there are usable docu-
ments available for subsequent reporting.

Furthermore, the same rigor and discipline should be used with these FP
measurement activities as is used in accounting, bookkeeping, and controlling
departments.

Besides that it can be recommended to document for each project a log-
book (alike a ship’s log).

12 The IFPUG Function Point Counting Method

363

A Function Point count should be reviewed before its final release by a
third person or a competence center.

As a rule of thumb, one can say that an experienced Function Point counter
is able to count between 300 and 1,000 Function Points a day.

The Function Point counting effort could actually end up to be as much as
triple to this if project documentation is not at hand, is incomplete, differs
from the implemented application, not available at all, and if there is no tool
support.

On the other hand, the effort for Function Point counts for large IT projects
can be in the range of several person days.

No matter what methodology is used, the most important consideration is
consistency in the application of the method, adequate training of the involved
staff, and appropriate usage of an applicable (and calibrated) estimation method.

All investigations so far have led to the result that functional size measure-
ment is the most effective and reliable means of measuring software size that
can be used effectively in the early phases of the software development life
cycle.

By design, Function Points do not correlate with every aspect of software
development, but they were never intended to do so. FP cannot measure the cus-
tomer contentedness nor can they be used to measure individual productivity.

12.9 Management Summary

13 Functional Size Measurement Methods
(FSMMs)

There are currently five different ISO/IEC Functional Size Measurement Method
standards, four of which are outlined in this chapter, plus the IFPUG method
(unadjusted), which was described in an earlier chapter. Additionally, there are
variants of the IFPUG method and also of other methods that purport to meas-
ure the size of software. For convenience of the reader, the ISO/IEC standards
are included here, and the other sizing measures are included in the chapter
“Variants of the IFPUG Function Point Counting Method.”

Functional Size Measurement is a term coined by the International Organi-
zation for Standardization/International Electrotechnical Commission (ISO/
IEC) in its suite of standards numbered 14143-1 through 14143-6. The defini-
tion and framework standard of the series is ISO/IEC 14143-1 Software and
Systems Engineering – Software Measurement – Functional Size Measurement
– Definition of concepts. This standard was most recently updated and published
in 2007, replacing the first published version in 1998. Note that ISO/IEC stan-
dards have a lifespan of 5 years from the date of publication, after which they
must be reviewed by ISO/IEC to ensure ongoing relevance. ISO/ IEC work-
ing groups can then reaffirm a standard as it is, withdraw it, or update it (and a
new work item proposal is launched to revise it). The 14143-1: 2007 standard
reaffirmed the standard and then republished it via an ISO-specific process
called a technical corrigendum to correct minor technical defects and editorial
defects.

See the chapter “Measurement Communities and Resources” in this book
for more details about the ISO/IEC standards related to functional size mea-
surement.

The most important definitions from ISO/IEC 14143-1:2007 include the
following:

Functional Size Measurement (FSM): the process of measuring Functional Size
Functional Size: a size of the software derived by quantifying the Func-
tional User Requirements
Functional User Requirements (FUR): a subset of the User Requirements.
Requirements that describe what the software shall do, in terms of tasks and
services

366

FSM Method (FSMM): a specific implementation of FSM defined by a set of
rules, which conforms to the mandatory features of this part of ISO/IEC 14143.
The Finnish Software Measurement Association (FiSMA) states that the

typical user viewpoint for Functional Size Measurement is to estimate the
effort for a software project. Other important industry uses of FSM are pre-
sented in Fig. 13.1.

change
management
(includes tracking
scope creep)

determining
price for
maintenance

determining the
productivity (etc) after a
project

determining
price of a
software
product

any other
purpose

estimating
effort (etc.)
of a project

measuring
reuse rate

Purpose
of

FSM

“purpose of a
functional size
measurement
is to provide
the size of the
software”

Fig. 13.1. Common purposes of functional size measurement (FiSMA 1.1)

13.1 Short Characterizations of ISO/IEC-Conformant FSMMs

There are five ISO/IEC-conformant FSMMs currently published. All of them
use a different approach to measure the size of software to be developed.

As stated many times throughout this book, the functional size of a piece of
software is one of the main drivers in effort estimation. As mentioned in the chap-
ter about Variants of the IFPUG Function Point Counting Method, Ton Dekkers
reported at MetriKon 2003 that a minimum size in Function Points is necessary
for reliable estimations: about 200 FP (IFPUG) or about 100 Cfsu (Cosmic Func-
tional Size Units – soon to be referred to as simply COSMIC Function Points –
CFP). This threshold is similar for maintenance projects. Dekkers states that a
minimum size of 100 MFP (NESMA Maintenance Function Points) or 60 MCFP
(Maintenance CFP, COSMIC) is a prerequisite for reliable estimating.

At the time of this printing the five (see Table 13.1) ISO/IEC Functional Size
Measurement Method standards that conform to the mandatory provisions of
ISO/IEC 14143-1 Definitions of concepts include the following:

13 Functional Size Measurement Methods (FSMMs)

367

Table 13.1. ISO/IEC Functional Size Measurement Method standards

Functional Size Measurement Method (FSMM) ISO/IEC standard number
IFPUG 4.1 Unadjusted Function Point Counting
Method

ISO/IEC 20926

COSMIC-FFP (Vs. 2.1) – A Functional Size
Measurement Method

ISO/IEC 19761

FiSMA 1.1 Functional Size Measurement Method ISO/IEC 29881
Mark II Function Point Analysis – Counting
Practices Manual

ISO/IEC 20968

NESMA Functional Size Measurement Method
version 2.1 – Definitions and counting guidelines
for the application of Function Point Analysis

ISO/IEC 24570

This book addresses the IFPUG Function Point Counting Method as a sepa-
rate chapter not only because it is the first and longest standing method, but also
because it is the basis for the demonstrated experiences of the authors.

Nonetheless, the remaining four ISO/IEC Functional Size Measurement
Methods warrant a closer look. Each one is further outlined in this chapter.

The ISBSG Practical Project Estimation, 2nd edition (2005) devotes a num-
ber of chapters to the various FSMMs and also to shortcut methods to arrive at
an estimated functional size. It should be noted that one of the most important
critical success factors for software measurement and estimation is a consis-
tent unit and methodology for measuring the software’s functional size.

chapter.

13.2 COSMIC

The Common Software Measurement Consortium (COSMIC) first developed
the COSMIC-Full Function Point (FFP) method in an effort to provide a Func-
tional Size Measurement Method specifically designed to meet the mandatory
provisions of ISO/IEC 14141-1 and to address what COSMIC perceived as a
gap in the ability of any method to measure the size of real-time applications.
COSMIC-FFP was published as ISO/IEC 19761 COSMIC-FFP – A Func-
tional Size Measurement Method.

COSMIC (dropping the FFP) and changed the Cfsu (COSMIC functional sizing
unit) designation of the measurement unit to CFP (COSMIC Function Points).
We have updated all references from this point on in this chapter to reference
simply COSMIC when we refer to the method, and used CFP to refer to the
units – for currency and consistency.

13.2 COSMIC

Note: the COSMIC consortium in 2007 changed the name of the method to

The following Fig. 13.2 explains the relationship between the various ISO
standards and the functional size measurement methods presented in this

368

Fig. 13.2. Relationship between the various ISO standards and the functional size measure
ment methods presented in this chapter

The COSMIC consortium was founded in 1998 as a volunteer organization
of experts of software measurement from Australia, Canada, Finland, Germany,
Ireland, Italy, and Japan.The COSMIC group consists of about 40 people from
8 countries who combined their effort voluntarily and proposed principles for
a software Functional Size Measurement method. At the end of 1999, they pub-
lished the COSMIC-FFP Version 2.0 Measurement Practices Manual (MPM),
and made it publicly available on the Web. Since then, the basic rules have not
changed and, version 2.2 was standardized within ISO/ IEC and published as an
international standard (ISO/IEC 19761:2003 COSMIC-FFP – A Functional Size
Measurement Method).

The COSMIC website (http://www.cosmicon.com) released the COSMIC
Method v3.0 in 2007 and stated: “Version 3.0 represents the first major update
of the COSMIC method for four years (the previous version was 2.2) and as
the designation implies, the new documents contain important advances and
clarifications of the method. Note, however, the basic model used to measure a
functional size of software via the COSMIC method has not changed since it
was first published in 1999.”

Various COSMIC documents (e.g., the Measurement Practices Manual) are
currently available in a number of languages including Arabic, English, French,

13 Functional Size Measurement Methods (FSMMs)

ISO/IEC Functional Size Measurement (FSM)
Framework Standards

14143-1 Definition of concepts

14143-2 Conformity evaluation of software size measurement
methods to 14143-1

14143-3 Verification of FSM methods

14143-4 Reference model

14143-5 Determination of functional domains for use with FSM

14143-6 Guide for use of 14143 series &
related international standards

ISO/IEC Conformant Functional
Size Measurement Methods
19761 – COSMIC(-FFP) method

20926 - IFPUG method

20968 - Mk II method

0 7542 - NESMA method

29881 - FiSMA method

Other standards

International Software Benchmarking
Standards Group

(ISBSG) draft standard

Guide to the Project Management
Body of Knowledge (PMBOK™)

Other relevant ISO/IEC standards
9126 series – Software quality metrics

12207 series – Software and systems
development life cycle

15939 – Software measurement framework

16326 – Software engineering project
management

369

The main goal of the COSMIC project was the development, delivery, and
market acceptance of a new method of software measurement:

Suited for as many as possible application areas (priority for business and
real-time software)
As a component for estimation applicable early in the software life cycle
Suitable for performance measurement.
Thus, the COSMIC Method is the first functional sizing method with the

following characteristics:

Designed by an international group of experts on an academic and theoreti-
cal basis
Drawn on the practical experience of all the main existing FP methods
Designed specifically to conform to ISO/IEC 14143 Part 1
Designed to work across MIS and real-time domains, for software in any
layer or peer item
Tested and revised through field tests before being finalized.

The COSMIC Method has an emerging number of users worldwide and is
now considered to be an acceptable sizing measure in various estimating soft-
ware packages (including KnowledgePlan™ and Experience® Pro software,
and also within the ISBSG database).

13.2.1 The COSMIC Counting Process

For measuring with COSMIC the purpose, scope, and boundaries of the mea-
surement have to be defined. Then the Functional User Requirements (FUR)
are collected in the so-called Mapping Phase, expressed in the form of the
COSMIC generic software model. In the last step, the identified components
are classified according to their size, and the measurement results are aggre-
gated (see Fig. 13.3).

At times, software is bounded by hardware. In the so-called front end, soft-
ware used by a human user is bounded by I/O hardware or by engineered
devices such as sensors or relays. In the so-called back end, software is boun-
ded by persistent storage hardware.

COSMIC measures the size of a piece of software from four distinct types
of data movement characterizing the functional flow of data attributes (see
Fig. 13.4).

13.2 COSMIC

Japanese, and Spanish with additional translations either underway or planned.
Also available is the COSMIC Guide to the Implementation of ISO/IEC 19761.

http://www.gelog.etsmtl.ca/cosmic-ffp or from http://www.cosmicon. com.
 This guide, as well as a number of other documents can be downloaded from

370

Fig. 13.3. The process of counting COSMIC Function Points

Fig. 13.4. COSMIC model for measurement

For the front end, two types of data movement (ENTRIES and EXITS) allow
the exchange of data with users across a boundary. In the back end, two types
of movement (READS and WRITES) allow the exchange of data attributes
with the persistent storage hardware. There are four base functional components
(BFC) counted in the COSMIC method:

13 Functional Size Measurement Methods (FSMMs)

Definition of
objectives and size

FURs (1) Mapping of FURs
(Mapping-Phase)

FURs in
COSMIC Form

Evaluation of
FURs (Measure-

ment-Phase)

Functional
Size of the FURs

in CFP (2)

(1) Functional User Requirements in any suitable form (Functional User Requirements)
(2) COSMIC -unit of measure (COSMIC function points) – formerly called Cfsu (COSMIC

Functional Size Unit). Changed to CFP in 2007.

1

2

3

Identify:
• Layers
• Boundaries
• Functional Processes
• Data Groups

• Identify Subprocesses
• Evaluate Subprocesses

Attribute
Attribute

Attribute …

Attribute
Attribute

Attribute …

ENTRY

EXIT

Functional
Process

READ

WRITE

Attribute
Attribute

Attribute …

Attribute
Attribute

Attribute …

Boundary of the software to be measuredUSER STORAGE

COSMIC Principles for the software to be measured:
• The software gets input from a user and produces output required by a user.
• The software manipulates units of information, which are shown as data groups with

attributes.
• The functional size is directly proportional to the number of data movements necessary to

perform the functional processes.

Data Group Data Movement ProcessLegend:

Source: According to COSMIC Manual v2.2.

371

ENTRY: this BFC moves attributes of a data group from a user across the
application boundary to the functional process that needs the data. The data
are updated, and data manipulations such as validation are included.
EXIT: this BFC moves attributes of a data group from the functional proc-
ess across the application boundary to a user. The data will not be read but
data manipulations such as formatting are included.
READ: this BFC moves attributes of a data group from a persistent storage
to the functional process that needs the data.
WRITE: this BFC moves attributes of a data group from a functional proc-
ess back to the persistent storage.

Note: It is important to remember that a data movement relates to exactly
one data group. If a functional process, for example, uses information from
three different persistent data groups (e.g., person, department, relation between
person and department), then the method would count three distinct Reads. The
COSMIC manual explicitly states that data groups are mainly entities of an
ER model in the third normal form.

The functional size in COSMIC depends only on data movements. A data
movement is defined as one CFP = one COSMIC Function Point.

Luca Santillo presented at IWSM 2005 in Montréal a COSMIC list for data
manipulation and movement classifications (see Table 13.2).

An advantage of this concept is that various interpretations of the elemen-
tary process do not affect the measurement result in COSMIC.

In COSMIC, there is no discussion of what constitutes elementary proc-
esses since the functional size is derived – one level deeper – from the number
of data movements. More critical to COSMIC is the determination of data
groups since the data movements are derived from them.

13.2.2 Software Layers in COSMIC

An important difference to the IFPUG method is the concept of software layers
such as tiers, service structures, or component deployments for the architec-
tural reasoning of boundaries.

The COSMIC methodology delivers the possibility to use the same user view
(single end-user perspective) as traditional IFPUG, as well as other views such
as the developer view.

Figure 13.5 shows the classical end-user view that ignores the other layers
of the system architecture and has its focus purely on the application.

In another example, the developer wants to determine the size of the user
requirements that influence a three-tier architecture with the following com-
ponents:

13.2 COSMIC

372

Table 13.2. Data manipulation and movement classification per COSMIC (Santillo, 2005)

Action Measured
as COSMIC
movement

Include it
as manipulation

Validations are performed Yes (Validation)
 Read

Mathematical formulae and calculations are per-
formed

 Yes (Creation)
Write

Equivalent values are converted Yes (Validation)
Read

Data is filtered and selected by using specified
criteria to compare multiple sets of data

 Yes (Valida-
tion) Read

Conditions are analyzed to determine which are
applicable

 Yes (Valida-
tion) Read

One or more data groups are updated Yes (Write)
One or more data groups are referenced Yes (Read)
Data or control information is retrieved Yes (Read)
Derived data is created by transforming
existing data to create additional data

 Yes (Creation)
Write

Behavior of the system is altered Yes (Creation)
Write

Prepare and present information outside the
boundary

Yes (Exit)

Capability exists to accept data or control
information that enters the application
boundary

Yes (Entry)

Data is resorted or rearranged Yes (Creation)
Write

Graphical user interface
Business rules
Data services.

The components are shown in Fig. 13.5. These three layers each have a
unique set of users.

Different abstractions are typically used for different measurement pur-
poses. For business application software, the abstraction commonly assumes
that the users are one or more humans who interact directly with the business
application software across the boundary; the I/O hardware is ignored. In
contrast, for real-time software the users are typically the engineered devices
that interact directly with the software, that is, the users are the I/O hard-
ware.

Thus, for example, the layers of the graphical user interface, business rules,
and data services in Fig. 13.6 are all separately considered by the COSMIC
approach.

13 Functional Size Measurement Methods (FSMMs)

373

Figure 13.7 shows a second example from developer view where the user
requirements influence all four layers of the application.

Fig. 13.5. COSMIC software layers for business applications from end-user view

Fig. 13.6. COSMIC software layers for three-tier architecture from developer view – example 1

Fig. 13.7. COSMIC software layers for four-tier architecture from developer view – example 2

13.2 COSMIC

Driver

Driver

Driver

Driver

Mouse

Key-
board

Monitor

Printer

O
pe

ra
tin

g
Sy

st
em

G
ra

ph
ic

al
U

se
r I

nt
er

fa
ce

A
pp

lic
at

io
n

X

D
at

en
ba

se
-s

ys
te

m

O
pe

ra
tin

g
Sy

st
em

D
riv

er

Ph
ys

is
ca

lS
to

ra
ge

Front End Back EndApplicationI/O-
Hardware

Storage-
Hardware

Software

Boundary Source: According to COSMIC Manual v2.2

Driver

Driver

Driver

Driver

Mouse

Key-
board

Monitor

Printer

O
pe

ra
tin

g
Sy

st
em

G
ra

ph
ic

al
U

se
r

In
te

rf
ac

e

B
us

in
es

s R
ul

es

D
at

a-
Se

rv
ic

es

O
pe

ra
tin

g
Sy

st
em

 a
nd

 D
at

ab
as

e-
sy

st
em

D
riv

er

Ph
ys

ic
al

St
or

ag
e

Front End Back EndApplicationI/O-
Hardware

Storage-
Hardware

Software

Source: According to
COSMIC Manual v2.2

B o u n d a r y S o u rc e : A c c o r d in g t o C O S M IC , U Q A M 2 0 0 0

P C B a c k -O f f ic e -S e r v e r F r o n t - E n d - P r o c e s s o r
(F E P)

M a in fr a m e

N e w C l i e n t -
A p p l ic a t io n

W A N

E n h a n c e m e n ts
o f S e r v e r -S W

E n h a n c e m e n ts
o f F E P

N e w S e r v e r -
A p p l ic a t io n

374

13.2.3 ISBSG Data with Respect to COSMIC

The ISBSG report: the Benchmark, release 8 from January 2004 reports on 66
COSMIC projects in the database, with an average project size of 254 CFP
(median 120 CFP). Overall, it is observed that real-time systems are typically
smaller than MIS systems, have a longer duration, and require more effort (and
thus the productivity is lower). See also Table 13.3.

Table 13.3. Differences between COSMIC real-time- and MIS- systems ISBSG R8

 Real-time projects MIS projects
N = Number
of projects

N Median Average N Median Average

Size 15 76 CFP 203 CFP 38 165 CFP 293 CFP
Effort 11 2,544 h 5,614 h 25 2,501 h 6,939 h
Duration 15 13 months 14.5 months 38 3.0 months 6.9 months
PDR 11 40.3 h/CFP 82.2 h/CFP 25 10.2 h/CFP 36.7 h/

CFP
Productivity 15 9.0 CFP/

month
11.5 CFP/
month

38 45.9 CFP/
month

74 CFP/
month

of the COSMIC

Breakdown of COSMIC
base functional components (BFC)

Median (%) Average (%)

% CFP for Entries 36.3 33.4
% CFP for Exits 35.2 34.6
% CFP for Reads 17.1 19.3
% CFP for Writes 9.7 12.7

The Benchmark release 8 also delivers about 52 COSMIC projects an over-
view of the proportions of the four components of the CFP (see Table 13.4).

13.2.4 Comparison Between Counts Done Using COSMIC
and IFPUG FPA

The layer concept of COSMIC Method can be an advantage compared with
the IFPUG method. But one has to keep in mind that the results of counts from
different layers are not directly comparable. It follows that further boundaries
for different layers and thus further data movements would be ignored in the case
of less layers. This is important to note especially when elaborating experience
curves.

Nevertheless, the COSMIC Method offers a different perspective to the pre-
viously established and known methods for Functional Size Measurement such

13 Functional Size Measurement Methods (FSMMs)

Table 13.4. CFP breakdown from ISBSG: The Benchmark release 8 for the four components

375

as IFPUG, FiSMA, Mark II, and NESMA. Its acceptance, use, and thus the
number of available case studies increase step by step.

Table 13.5. Comparison of the concepts of IFPUG FP counting method and COSMIC
concepts

IFPUG release 4.2 COSMIC version 2.2
Measures processes and data:
 Three functional types for processes
 External Input (EI)
 External Output (EO)
 External Inquiry (EQ)
 Two functional types for logical data
files
 Internal Logical Files (ILF)
 External Logical Files (EIF)

Measures explicitly (sub)processes based
on data movements according to the
following:
 Four functional types for (sub)

processes
 Input of data (ENTRY)
 Reading of data (READ)
 Writing of data (WRITE)
 Output of data (EXIT)

Minimum: 3 FP Minimum: 2 CFP
Maximum: 7 FP Maximum: no limitations (continuous

scale)
Considers the access to logical persistent
data files – once per process (FTR)

Considers the unique accesses to logical
persistent data files (data files are not
explicitly counted) on the level of reading
and/or writing (READ, WRITE)

Considers unique data element types
(DETs) to determine the complexity of
the transactional functions

Considers groups of data fields in relation
to the subprocesses ENTRY and EXIT

Processes can have a complexity of low,
average, or high depending on the number
of used data element types (DET) and
data files (FTR)

Each unique subprocess (READ, WRITE,
ENTRY, EXIT) counts as a CFP. This
implies that all subprocesses have equal
complexity

No explicit rules for multitier architec-
tural concepts in software development

Explicit rules for multitier architectural
concepts (Layer concept)

Explicit focus on external user view
without regarding aspects of implementa-
tion

The rules are defined in order to enable
different views (e.g., end user, developer)
and architectural concepts (e.g., Client/
Server) for counting

There exists exactly one unique logical
boundary per application (Application
Boundary)

A boundary exists between two different
layers. Since applications to be counted
can have several layers, there could exist
many boundaries
The IFPUG concept (end-user view, no
differentiation of layers) appears to be a
subset of the counting possibilities of the
COSMIC Method

All counts are principally comparable if
the standards are applied

All counts with equal view and equal
layer concept are comparable.

13.2 COSMIC

376

A comparison of five applications counted with the IFPUG FP method and
COSMIC, respectively, showed nearly no differences in the MIS environment,
but a 76% difference in real-time environment.

This is not a major surprise because the two methods measure a functional
size of the software in a different manner.

Table 13.5 shows a comparison of the major characteristics of both methods.
In the Fetcke study in 1999, four software applications of a data storage system

were measured. These were business applications with few data entities; all four
applications handled three entities or fewer, and the entities were all referred to by
the elementary processes (according to IFPUG FPA). In this study, all details of the
measurement process were reported for both IFPUG 4.1 and for COSMIC version
2.0. It should be noted that, while the Fetcke study used COSMIC version 2.0, the
results reported are considered valid also for the current version.

The sizes of the four projects in unadjusted IFPUG FP (uFP) and COSMIC
(CFP) are as follows:

Data Warehouse: 77 uFP, 81 CFP
Large Warehouse Customer Business: 56 uFP, 52 CFP
Customer Management: 49 uFP, 51 CFP
Manufacturer’s Warehouse: 40 uFP, 38 CFP.
A correlation analysis provided the following relation with R2 = 0.97:

CFP = 1.1uFP 7.6

Using the conversion formula, a deviation of 4% in average (range from 0%
to 8%) could be found.

Alain Abran et al. presented at IWSM 2005 in Montréal the so-called
Desharnais study of six projects from a governmental organization measured
both with IFPUG 4.1 FPA and with COSMIC 2.2. Regression analysis deliv-
ered the following conversion formula:

CFP = 1.35uFP(IFPUG) + 5.5, R2 = 0.98
The project size ranged between 87 and 936 CFP/uFP.

13.3 FiSMA 1.1 Functional Size Measurement Method

The first version of the FiSMA FSM Method was published in 1991 under the
original name Laturi and funded through a cooperative industry project of
the same name. Since then, there has been continuous use and maintenance of
the method through the establishment of the Finnish Software Measurement
Association (FiSMA), incorporated in 1996 (http://www.fisma.fi). The early
versions of FiSMA 1.1 were known by other names (Laturi Function Points and
Experience Function Points). The current name: FiSMA 1.1 FSM Method is

13 Functional Size Measurement Methods (FSMMs)

377

consistent with the name of the maintenance organization, and better reflects
that FiSMA 1.1 is the result of 15 years of cooperative Finnish industry involve-
ment in its development and evolution. The FiSMA 1.1 Functional Size Mea-
surement Method is the newest member of the ISO/IEC FSMM standards and
is known under the name ISO/IEC 29881:2008 FiSMA 1.1 Functional Size
Measurement Method.

The user community of the FiSMA FSM Method was organized in 1990,
and over 2000 project managers and software practitioners have been trained
to use FiSMA FSM.

The documentation for the FiSMA FSM Method is publicly available (http://
www.fisma.fi) in English and Finnish. Tool support for FiSMA FSM has faci-
litated rigorous application of the method and made the measurement results
readily verifiable. The FiSMA Experience® repository currently contains data
from more than 850 completed software projects including FiSMA functional
size and effort details. This database continues to grow as more completed pro-
jects are submitted.

From the specification (FiSMA): FiSMA 1.1 is based purely on Functional
User Requirements. User requirements can be thought of as functional – what
the software does, and nonfunctional – how the software must perform (includ-
ing quality requirements). For FiSMA 1.1, the Functional User Requirements
are the object of measurement. While some FSM methods are process oriented,
FiSMA 1.1 is service oriented. Process-oriented methods require the identi-
fication of all functional processes supported by the piece of software. In con-
trast, service-oriented methods, such as FiSMA 1.1, require identification of
all different services provided by the piece of software.

The FiSMA 1.1 relationship chain between users and the developed piece
of software involves user needs and services as presented in Fig. 13.8.

FiSMA 1.1 identifies seven distinct base functional component (BFC) classes:

Interactive end-user navigation and query services (q)
Interactive end-user input services (i)
Noninteractive end-user output services (o)
Interface services to other application (t)
Interface services from other applications (f)
Data storage services (d)
Algorithmic and manipulation services (a).

Each BFC class of FiSMA 1.1 further decomposes into several BFC types.
All together, there are 28 BFC types. Figure 13.8 depicts the relationships
between the BFC classes and their component BFC types. Each BFC class is
explained in the clauses that follow.

13.3 FiSMA 1.1 Functional Size Measurement Method

378

Fig. 13.8. FiSMA 1.1 links between users and a piece of software

Fig. 13.9. FiSMA 1.1 BFC classes and BFC types

13 Functional Size Measurement Methods (FSMMs)

USER

User Needs

Specify

Functional User
Requirements

Implement

Services

A PIECE OF
SOFTWARE

Functional Services
of FiSMA 1.1

Interactive end user
navigation and query

services (q)
Interactive end user

input services (i)
Non-interactive end

user output services (o)

Data storage services
(d)

Interface services from
other applications (f)

Interface services to
other applications (t)

Algorithmic and
manipulations services (a)

Me
ss

ag
es

 in
f1

Lo
g-

in,
 lo

g-
ou

t
fun

cti
on

s
q2

Fu
nc

tio
n

de
sig

na
tor

q1

Fu
nc

tio
n L

ist
q3

Se
lec

tio
n l

ist
s

q4

Da
ta

inq
uir

ies

 q
5

Ge
ne

ra
tio

n
ind

ica
tor

s
q6

Br
ow

sin
g l

ist
s

 q

7

1-
fun

cti
on

al
i1

2-
fun

cti
on

al
i2

3-
fun

cti
on

al
i3

Fo
rm

s
o1

Re
po

rts
o2

Em
ail

s o
r t

ex
t

me
ss

ag
es

o3

Mo
nit

or
 sc

re
en

s
o4

Entities/classes d1

Other records d2

Se
cu

rity
 ro

uti
ne

s
 a

1

Ca
lcu

lat
ion

s
a2

Si
mu

lat
ion

s
a3

Fo
rm

att
ing

 al
g.

a4

Db
 cl

ea
nin

g
a5

Ot
he

r r
ou

tin
es

a6

Me
ss

ag
es

 ou
t

t1

Ba
tch

 re
co

rd
s

t2

Si
gn

als
 ou

t
t3

Ba
tch

 re
co

rd
s

f2

Si
gn

als
 in

f3

379

Note: For ease of presentation, Fig. 13.9 uses the following short form con-
ventions: (a) Each of the seven BFC classes is denoted by a single alphabetic
character and (b) Each BFC type is prefixed by its class alphabetic character
and a sequential integer number that has been assigned to it.

13.3.1 The FiSMA 1.1 Measurement Process

The FiSMA 1.1 measurement process consists of the following steps:

1. Gather documentation and software development artifacts to describe the
functional user requirements for the software (to be or already) devel-
oped. These include any items such as use cases, preliminary user re-
quirements, use manuals, entity relationship diagrams, screen, report, or
database mockups, data flow diagrams, etc. – anything that describes
what the software will do in terms of tasks or services, independently of
any quality or technical requirements.

2. Determine the Scope of the FSM: The Scope of FiSMA 1.1 is determined
by the purpose for doing the FSM and includes the FUR to be developed
or enhanced in the project or application to be counted.

3. Determine which are the Functional User Requirements to be measured
by FiSMA 1.1 by determining the Scope as outlined in step 1 and include
only those user requirements that describe what the software is to do in
terms of tasks and services.

4. Identify the BFCs within the Functional User Requirements from step 2
in two main parts: (1) measuring the end-user interface services, and (2)
measuring indirect services. If one of these two parts does not exist for
the piece of software, then the process consists only of measuring the
services that are present.

5. Classify the BFCs into the appropriate BFC type by mapping each BFC
identified to the descriptions of the BFC types that follow. Be cautious to
identify duplicate logical functionality so that it is counted only once per
instance of the FSM. Two BFC types are considered to be duplicate if
they have the same characteristics (i.e., identical BFC types with the
same values for each of the component parts for the BFC type, i.e., iden-
tical data elements, reading references, and/or writing references as appro-
priate for the BFC type.).

6. Assign the appropriate numeric value to each BFC using the calculations
outlined for each BFC type.

7. Calculate the Functional Size by adding together the size for each com-
ponent part. The unit of measure for FiSMA 1.1 is the FiSMA Function
Point or Ffp.

Note: Each equation that follows includes one or more constants whose
value was derived through research in the FiSMA 1.1 development. The value

13.3 FiSMA 1.1 Functional Size Measurement Method

380

for each constant represents the number of a particular item (e.g., data fields)
equal to 1 Ffp for the type. We have denoted the value of each constant in the
equations that follow using the notation “–>” followed by the value.

13.3.2 FiSMA 1.1 Components

The listing of components presented here is abridged for brevity. For detailed
descriptions of FiSMA 1.1 components and examples, see the FiSMA 1.1 man-
ual downloadable from http://www.fisma.fi.

Interactive End-User Navigation and Query Services (q)

This class of BFC involves data and/or services crossing the boundary into or
out of the software. Interactive end-user navigation and query services specify
all parts of the interactive user interface where there is no maintenance of per-
sistent data stored in the system. Maintenance refers to any service where data
is changed as a result of the service and includes, for example, creating, updat-
ing, or deleting. The number of functional size units for each navigation and
query service depends on the number of data elements of the BFC and the
number of unique entities that need to be referenced. (There is an indirect rela-
tionship between the entities identified in this step as being referenced and the
BFC types identified within the BFC Class called data storage services. Each
independent entity identified as a reference in this BFC type must also be ex-
plicitly counted once in the software application’s stored data).

In FiSMA 1.1, the BFC class Navigation and query services are divided
into seven BFC types:

able visual way for a user to indicate the specific service(s) to be per-
formed.

2. Log-in and log-out functions (q2) usually does not update persistent data.
They control user access and prevent illegal use.

3. Function list (q3) is a service to provide a set of pre-defined alternatives
to enable a user to indicate the specific service(s) to be performed.

4. Selection lists (q4) show a list of acceptable parameter values to the end

but they may be more complicated.

user.

trol information for a subsequent service. Very often they are connected
to some other type of functional services, such as a report or manipula-
tion routine.

13 Functional Size Measurement Methods (FSMMs)

user. Often they are very simple, showing values of one single data item,

5. Data inquiries (q5) show the specific contents of data store(s) to the end

6. Generation indicators (q6) help the user to prepare the data and/or con-

1. Function designator (q1) is a service that provides a uniquely identifi-

381

7. Browsing lists (q7) show a list of similar data elements, typically the
most important details to help filter the entities for further operations.

The size for each service within this BFC class is given by the following
equation:

Sq = aq + n/dq + rr/cq,
where

Sq = size of query (dialog, menu, etc.)
n = number of data elements, fields
rr = number of reading references to entities
dq = BFC class specific number of data elements = 1 Ffp 7.00
cq = BFC class specific number of reading references = 1 Ffp 2.00
aq = establishment cost = 0.2 Ffp.

Interactive End-User Input Services (i)

This class of BFC involves data and/or services crossing the boundary into the
software. Interactive end-user input services specify all parts of the interactive
user interface where there is maintenance of data store(s) of the software. Data
storage consists of logical entities (data records). Maintenance refers to any ser-
vice where data is changed as a result of the service, and includes, for example,
creating, updating, and deleting. From a user’s point of view, interactive end-user
services perform those business tasks that change the data contents of the soft-
ware. From the information system point of view, end users manipulate system
data using interactive end-user services.

The number of functional size units of input functions depends on the num-
ber of different data elements of the BFC measured, and the number of needed
reading and writing references to unique entities. (There is a direct relation-
ship between the entities identified in this step as writing references and the
BFC types identified within the BFC Class: data storage services. Each inde-
pendent entity identified as a writing reference in this BFC type must also be
explicitly counted once as stored data.)

In FiSMA 1.1, end-user input services are divided into three BFC types:

One-functional input dialogs (i1) support only one of the three maintenance
types: create, update, or delete.
Two-functional input dialogs (i2) support two of the three maintenance types:
create, update, and/or delete.
Three-functional input dialogs (i3) support all three maintenance types:
create, update, and delete.

13.3 FiSMA 1.1 Functional Size Measurement Method

382

The size for each service within this BFC class is given by the following
equation:

Si = m (ai + n/di + rw/ci + rr/bi),

where
Si = size of input
m = functionality multiplier; value 1, 2, or 3, depending on how many

functions create, update, and delete the BFC incorporates
n = number of data elements, fields
rw = number of writing references to entities
rr = number of only reading references to entities
di = BFC class specific number of data elements = 1 Ffp 5.00
ci = BFC class specific number of writing references =1 Ffp 1.50
bi = BFC class specific number of reading references = 1 Ffp 2.00
ai = establishment cost, 0.2 Ffp.

Noninteractive End-User Output Services (o)

This class of BFC involves data and/or services crossing the boundary out of
the software. Noninteractive end-user output services specify all parts of the
user interface that are noninteractive and do not maintain data store(s) of the
software. The number of functional size units of output functions depends on the
number of different data elements of the BFC and the number of needed read-
ing references to entities. There is an indirect relationship between the unique
entities identified in this step as being referenced and the BFC types identified
within the BFC Class: data storage services. Each independent entity identi-
fied as a reference in this BFC type must also be explicitly counted once as
stored data.

FiSMA 1.1 output services are divided into four BFC types:

Output forms (o1) are services resulting in printed or displayed documents,
which always present the same layout (e.g., a receipt).
Reports (o2) are services resulting in printed or displayed documents, whose
layout may vary within the specified framework according to the presented
data (e.g., product list or sales report).
E-mails and text messages (o3) are services resulting in electronically trans-
mitted output documents, which have a standardized structure. The structure
often contains title fields, data fields, and optional attachments.
Monitor screen output (o4) service involves continuously displayed docu-
ments, which are updated regularly in consequence of data changes (e.g.,
measurement display of a process).

The size for each service within this BFC class is given by the following
equation:

13 Functional Size Measurement Methods (FSMMs)

383

So = ao + n/do + rr/co,
where

So = size of output
n = number of data elements, fields
rr = number of reading references to entities

do = BFC class specific number of data elements = 1 Ffp 5.00
co = BFC class specific number of reading references = 1 Ffp 2.00
ao = establishment cost, 1.0 Ffp.

Interface Services to Other Applications (t)

This class of BFC involves data and/or services crossing the boundary out of
the software. Interface services to other applications specify all automatic data
transfers that move data from the measured piece of software to another appli-
cation or any device. The number of functional size units of outbound inter-
face functions depends on the number of different data elements of the BFC
measured (i.e., the number of attributes) and the number of needed reading
references to entities.

There is an indirect relationship between the entities identified in this step
as being referenced and the BFC types identified within the BFC Class: data
storage services. Each independent entity identified as a reference in this BFC
type must also be explicitly counted once as stored data.

FiSMA 1.1 outbound interface functions are divided into three BFC types:

Messages to other applications (t1) are services where data groups are sent
on-line, usually in real-time, to any other application.
Batch records to other applications (t2) are services where data groups are
written to a temporary file for transfer to another application.
Signals to devices or other applications (t3) are services where data strings
or single pieces of information are sent to any other application or device
(e.g., a LED).

The size for each service within this BFC class is given by the following
equation:

St = at + n/dt + rr/ct,
where

St = size of interface to other application
n = number of data elements (attributes)
rr = number of reading references to entities
dt = BFC class specific number of data elements = 1 Ffp 7.00
ct = BFC class specific number of reading references = 1 Ffp 2.00
at = establishment cost, 0.5 Ffp.

13.3 FiSMA 1.1 Functional Size Measurement Method

384

Interface Services from Other Applications (f)

This class of BFC involves data and/or services crossing the boundary into the
software. Interface services from other applications specify all automatic data
transfers that receive data groups that are provided and sent by another appli-
cation or any device.

The number of functional size units of inbound interface services from
other applications depends on the number of different data elements of the BFC
measured, and the number of reading and writing references to entities.

There is an indirect relationship between the entities identified in this step
as being referenced and the BFC types identified within the BFC Class: data
storage services. Each independent entity identified as a writing reference in
this BFC type must also be explicitly counted once as stored data.

FiSMA 1.1 divides this BFC class into three BFC types:

Messages from other applications (f1) are services where data are received
on-line, usually in real-time from any other application
Batch records from other applications (f2) are services where data are recei-
ved in groups or batches from any other application
Signals from devices or other applications (f3) are services where data
strings or single pieces of information are received from any other applica-
tion or device (e.g., a sensor).

The size for each service within this BFC class is given by the following
equation:

Sf = af + n/df + rw/cf + rr/bf,
where

Sf = size of interface from other application
n = number of data elements, fields

rw = number of writing references to entities
rr = number of only reading references to entities
df = BFC class specific number of data elements = 1 Ffp 5.00
cf = BFC class specific number of writing references = 1 Ffp 1.50
bf = BFC class specific number of reading references = 1 Ffp 2.00
af = establishment cost, 0.2 Ffp.

Data Storage Services (d)

This class of BFC involves data storage associated with data crossing the
boundary by means of another BFC class into the software. Data storage ser-
vices specify a group or collection of related and self-contained data in the real
world, about which the user requires the software to provide one or more data
stores. Data storage services are functional services provided by the piece of
software to satisfy these data storage requirements. These groups or collections

13 Functional Size Measurement Methods (FSMMs)

385

of related and self-contained data are often called entities, data groups, data
classes, or objects of interest, depending on the terminology used in the devel-
opment environment.

Data storage services result in data stores and make data available for main-
tenance, inquiry, or output. Note: Data storage services are typically imple-
mented as tables in relational databases, or as records in data files in general.

The number of functional size units of data storage services depends on the
number of different data elements (i.e., the number of attributes related together)
in the self-contained group or collection.

In this FSM method, data storage services are divided into two BFC types:

Entities or classes (d1) are data storage services resulting in one or more
unique data stores representing fundamental things of relevance to the user,
and about which persistent information is stored.
Other record types (d2) are the other types of data storage services and
result in one or more unique data stores besides that which are counted as
entities or classes.
The size for each service within this BFC class is given by the following

equation:

Sd = ad + n/dd,

where
Sd = size of entity or record
n = number of data elements (attributes)
dd = BFC class specific number of data elements = 1 Ffp 4.00
ad = establishment cost, 1.5 Ffp.

Algorithmic and Manipulation Services (a)

This class of BFC involves data and/or services performed by the software
to independently transform data that may or may not cross the boundary.
Algorithmic and manipulation services are user-defined, independent data
manipulation functions usually associated with another type of BFC. However,
independence means that the functionality of the service is extra to the service
provided by any other BFC type. Algorithmic manipulation may consist of
arithmetic and/or logical operations.

The number of functional size units of algorithmic and manipulation ser-
vices depends on the number of different operations performed and the num-
ber of different variables needed to perform the service.

In this FSM method algorithmic and manipulation services are divided into
six BFC types:

Security routines (a1) are manipulating services providing security features
such as encryption, decryption, advanced authorization, etc.

13.3 FiSMA 1.1 Functional Size Measurement Method

386

Calculation routines (a2) are manipulating services providing arithmetic or
logical counting services.
Simulation routines (a3) are manipulating services providing simulative
calculating services.
Formatting routines (a4) are manipulating services providing special format
conversion services (i.e., beyond typical, simple editing). Note: An example
of a formatting routine could be changing table rows into graphics.
Database cleaning routines (a5) are manipulating services supporting data
storage maintenance, such as removing unnecessary records and combining
or cumulating data elements based on user-defined rules. Note: These rou-
tines are often scheduled and performed in batch mode.
Other manipulation routines (a6) include all independent user-defined data
manipulation services, which are not counted as any other algorithmic and
manipulation BFC-type functions.

The size for each service within this BFC class is given by the following
equation:

Sa = aa + n/da + rc/ca,
where

Sa = size of algorithm
n = number of data elements (variables, operands)
rc = number of rules, operations
da = BFC class specific number of data elements = 1 Ffp 5.00
ca = BFC class specific number of calculation rules = 1 Ffp 3.00
aa = establishment cost, 0.1 Ffp.

The functional size (S) of a piece of software is the sum of the sizes (Sx) of
BFCs by class as outlined earlier:

S = Sq + Si + So + Sf + St + Sd + Sa.

13.3.3 Research Related to FiSMA 1.1 FSMM

A number of researchers around the world have performed rigorous data
analysis on the FiSMA Experience project repository to validate the relation-
ship of software size measured using the FiSMA FSM Method to development
effort. The FiSMA functional size has been validated through formal pub-
lished research reports and has always been found to have a positive R2 corre-
lation to development effort. In fact, the FiSMA FSM Method is one of the
few existing FSM Methods (either ISO recognized or not) that has been sub-
ject to such extensive academic research.

Any of the research reports alone could be considered as important evi-
dence of the usefulness of the FiSMA FSM Method, but taken in combination,

13 Functional Size Measurement Methods (FSMMs)

387

they prove unequivocally that the FiSMA FSM Method is sound, valid, and
verifiable as an FSMM. A few of the researchers involved in analyzing the
FiSMA Experience repository have published either books or articles about
their findings and include the following:

Katrina D. Maxwell (INSEAD, France)
Barbara Kitchenham (Keele University, UK)
Risto Nevalainen (Helsinki University of Technology, Finland)
Khaled El Emam (University of Ottawa, Canada)
Isabella Wieczorek (Fraunhofer Institute, Germany)
Martin Shepperd (Bournemouth University and Brunel University, UK)
Ross Jeffery (University of New South Wales, Australia)
Rahul Premraj (Bournemouth University, UK and Saarland University,
Germany)
Joseph Blackburn (Vanderbilt University, USA)
Soumitra Dutta (INSEAD, France)
Luk Van Wassenhove (INSEAD, France)
Pekka Forselius (University of Jyväskylä, Finland)
Cigdem Gencel (Middle East Technical University, Turkey)
Carolyn Mair (Bournemouth University and Brunel University, UK).

13.4 Mark II Function Point Method

The Mark II Method is primarily used in the UK, and it was originally devel-
oped by Charles R. Symons in 1988. It includes the counting of entities and
relationships in the data model. The Mark II Counting Practices Manual is
available free of charge from the UKSMA homepage (United Kingdom Soft-
ware Measurement Association), http://www.uksma.co.uk. It is also acknowl-
edged (without the GSCs) as an FSMM by ISO/IEC: ISO/IEC 20968:2002 Mk
II Function Point Analysis — Counting Practices Manual.

According to Charles Symons, Mark II was developed to do the following:

Reduce subjectivity by measuring entities and their performance instead of
files
Get equal Function Point figures when counting a whole system or adding
the counts of all parts of a system independent of the boundaries of the
partial systems
Mainly measure the effort instead of the functionality delivered to the end
user
Add 5 complexity factors to the 14 GSCs in the IFPUG Function Point
Method.

13.4 Mark II Function Point Method

388

Mark II improves the measurement of very simple and very complex trans-
actions and is a mapping of modern system analysis methods that are easy to
be calibrated (only four variables). It is unknown how widespread the MK II
method usage is at the current time – especially since its originator, Charles
Symons, is deeply involved in the COSMIC consortium.

Mark II gives more weight to the inputs and less to the outputs than the
IFPUG method. For small projects, there are slight differences in measure-
ment of size.

Mark II and COSMIC start from the point that files are implied by the
requirement of an output response stimulated by an input. This is counted with
the input, the process, and the output. Hence, Mark II and COSMIC do not count
the files in order to avoid multiple counting.

Comparisons with an earlier IFPUG release (version 3.0) were done for
projects registered by UKSMA in the ISBSG database, which showed follow-
ing correlations (no R2 given):

1 IFPUG 3.0 FP = 41.4 + 0.77 × Mark II FP

1 Mark II FP = 20.3 + 1.25 × IFPUG 3.0 FP

The following factors influenced these equations:

The relation of transactions to data elements
The relation of entities to data elements
The relation of files to data elements
The relation of transactions, outputs, and inquiries.

Mark II optionally can use the 14 IFPUG GSCs plus the following five
additional characteristics:

Requirements from other software systems
Security, check ability, data security
User training
Direct use by third parties
Documentation.

Should a user choose to make use of these 19 GSC’s, they can be modified
and additional ones can also be added to the group.

Mark II appears to be more data oriented than the IFPUG method and may
be easier to learn since it has less rules and functional components to count.
Mark II and COSMIC deliver a more linear measure of functional size than
does the IFPUG method.

13 Functional Size Measurement Methods (FSMMs)

389

13.5 NESMA FPA

In 1989, the NESMA (Netherlands Software Metrics Association) published
their first standard for FPA, based on the principles of the Albrecht FPA method.
The NESMA method version 2.1 is also acknowledged as an ISO/IEC Stan-
dard: ISO/IEC 24570:2004 NESMA Functional Size Measurement Method, ver-
sion 2.1 — Definitions and counting guidelines for the application of Function
Point Analysis. The method is available in Dutch and English, and can be
downloaded from the NESMA website at http://www.nesma.nl.

Earlier versions of the NESMA standard led to sizing results that were
significantly smaller than sizing results obtained with the IFPUG Function
Point counting method due to a variation in the IFPUG and NESMA rules and
rule interpretations. However, through close collaboration, the current versions
of both standards are now highly comparable, and according to NESMA mem-
bers who also serve on the IFPUG Counting Practices Committee, the methods
are 95–99% the same.

As part of the standard the NESMA has also developed an early usable
Function Point prognosis method, Indicative Function Point Counting. This
method counts the ILFs and estimates for each ILF: 3 EI, 2 EO, and 1 EQ, all
classified as average complexity. For each read-only file there is counted 1 EO
and 1 EQ with average complexity. All EIs, EOs, and EQs are counted with
average complexity. Summation delivers the Indicative Function Points with

13.5.1 Similarities and Differences Between NESMA and IFPUG
Function Point Standards

The following information is from the NESMA website (http://www.NESMA.nl,
document V2.0 from June 8, 2004).

NESMA and IFPUG have worked closely to avoid divergence between
their respective counting standards since 1990. To facilitate this cooperation,
NESMA counting practices committee members have also served as members
of the IFPUG counting practices committee. In fact, one of these NESMA
experts has even chaired the IFPUG counting practices committee (to the pre-
sent day).

While there have been areas of difference in the past, the work done by
NESMA’s own committees has proven valuable to effect similar rule clarifica-
tions in the IFPUG Function Point counting standard, creating even greater
convergence between the IFPUG and NESMA counting practices.

Because there are regular updates made to both organizations’ counting prac-
tices manual and associated documents, we recommend that the reader refers

13.5 NESMA FPA

an error range of +/– 50%.

390

to the NESMA website (http://www.NESMA.nl) for up-to-date progress bet-
ween the two standards and their convergence and areas of commonality.

The following text is directly from the NESMA website:
The NESMA counting guidelines have been stable since version 1.0 of the

manual was published in 1989. In Appendix C of the second version of the
NESMA Counting Practices Manual (1996), the differences between the two
standards were first described. That description is no longer valid. The newest ver-
sion (2.2) of the NESMA Counting Practices Manual (2004) no longer cottains
an explanation of the differences. The new document is available at http://
www. nesma.nl.

In the NESMA Counting Practices Manual, version 2.0, a percentual differ-
ence was stated for the lower number of Function Points usually obtained by
IFPUG. Unfortunately, this percentage, although merely meant to be an indi-
cative value, was taken as a matter-of-fact. Because the remaining differences
have been further reduced, this percentage is no longer valid. Actual versions
of the NESMA and IFPUG Counting Practices Manuals: IFPUG NESMA
Handboek Telrichtlijnen FPA, versie 2.2 [2004] and IFPUG Counting Practices
Manual (CPM), release 4.2 [IFPUG, 2004] – are practically the same guide-
lines.

NESMA and IFPUG both use the same terminology, albeit in a different
language. The NESMA maintains a list of English words related to FPA. This
can be downloaded from the NESMA site.

Both NESMA and IFPUG differentiate the same five types of user functions:
ILGV (ILF), KGV (EIF), IF (EI), UF (EO), OF (EQ). The rules for determining
the type and complexity of a function are the same, with a few exceptions:

External Inquiry vs. External Output
Complexity of an External Inquiry
Implicit Inquiry
Code data (Code tables)
Physical media
Queries with multiple selections (and/or situations).

In the following, each of the four topics is described in more detail.
External Inquiry vs. External Output: For IFPUG, an External Inquiry is de-

fined as a function that presents data to a user from a logical file (ILF or EIF)
without undergoing additional processing (such as calculations, updates to an
ILF, etc.). In all other cases, it is considered an External Output. For NESMA,
the same rules apply, but in addition, a unique selection key must have been
entered and the output must be fixed in scope. In some cases, therefore, IFPUG
will count an External Inquiry while NESMA counts the same function as an
External Output (e.g., Show all customers). The impact of this difference is

13 Functional Size Measurement Methods (FSMMs)

391

marginal for the number of Function Points for a system or project because
only the type of function (External Inquiry or External Output) is affected; not
the number of counted functions.

Complexity of an External Inquiry: For NESMA, the functional complexity
of the input part of an External Inquiry is based on the complexity rules for an
External Input function; the complexity of the output part is based on the rules
for an External Output function. The more complex of the two will be used as
the complexity of the External Inquiry. For IFPUG, the functional complexity
is determined in the same way as all other transactions, by counting the number
of data element types crossing the application boundary and identified in the
data functions. In practice, the impact of this difference is marginal for the
number of Function Points for a system or project.

Implicit Inquiry: When modifying or deleting data, the data is often first pre-
sented to the user for viewing. This is known as an implicit inquiry. For NESMA,
the underlying goal of a function is always the primary objective. NESMA
therefore does not consider the implicit inquiry as a separate transactional func-
tion, but as an integral part of the modify function or delete function. The data
element types presented to the user by the implicit inquiry are therefore added
to those counted in the modify function or delete function. NESMA will only
count the External Inquiry if it is specifically identified by the user for the
purpose of querying data; IFPUG does not have specific rules for this situation
in CPM 4.2. Some IFPUG counters will therefore count this as a separate
External Inquiry function (if counted nowhere else). The impact of this differ-
ence is marginal for the number of Function Points in a system or project.
Usually the user will have defined this function as an (explicit) inquiry (and it
will thus be counted). The implicit inquiry will then not be counted (again)
because the same function can not be counted twice.

Code tables: In general, entities can be seen as being composed of primary
data (business objects) or composed of secondary data (supportive data). In the
case of primary data, both NESMA and IFPUG follow the same counting
guidelines as of CPM 4.2 (2004). Secondary data usually consist of code tables,
also called “FPA-tables” by NESMA. As an example, consider the “translation
table”: article code _ article description. During data function counting, NESMA
will classify all code tables as one ILF and/or one EIF. The number of record
types will be set equal to the number of identified code tables. Altogether, the
FPA table-ILF will also count for one External Input, one External Inquiry, and
one External Output. For the FPA table-EIF no transactional functions are coun-
ted, even though External Inputs or External inquiries may be present. Since
CPM 4.2 (2004), IFPUG considers code tables to be an implementation of
technical or quality requirements for the user, and not part of the functional
requirements. In accordance with the ISO FSM standard, IFPUG has therefore
decided that code tables and the transactional functions associated with them
are not to be counted using Function Points. Once again, the impact of this

13.5 NESMA FPA

392

difference is marginal for the number of Function Points for a system or pro-
ject. The difference will be at most 25 Function Points for an FPA table ILF,
and 20 Function Points for an FPA table EIF.

Note: The IFPUG Counting Practices Committee periodically issues updates,
called CPM (counting practices manual) releases and normally it takes some
time before major changes are adopted by all IFPUG counters. The effects on
benchmarking data become apparent even later.

Physical media: Physical media is ignored in NESMA counting practices.
NESMA looks at the underlying functionality. If the number of data element
types and the logical processing are the same, input entered through different
media will be counted as one External Input by NESMA. The same holds true
for External Outputs. Reports that can be presented on different media (print,
screen, etc.) are counted as one External Output function (when the number of
data element types and the logical processing remain the same). In CPM 4.2,
no specific counting guidelines are given by IFPUG for this situation, how-
ever, IFPUG is resolving whether to conform to the NESMA counting guide-
line in this matter. It is anticipated that a definitive decision will be made in
2008 concerning counting multimedia using the IFPUG method.

Inquiries containing multiple selection criteria (and/or situations). In the
NESMA counting guidelines only mutually exclusive selections are to be
counted. IFPUG has no specific guidelines for this situation. Some IFPUG
counters therefore, count every conceivable combination of selection criteria
as separate functions, which may result in large differences in Function Points
among IFPUG counters.

It is anticipated that the IFPUG will, at some time in the future, adopt the
NESMA counting guideline.

13.5.2 NESMA Function Points for Enhancements

The NESMA published in 2001 A Guide for Function Point Counting of
Enhancement Projects based on the NESMA FPA standard. This guide de-
fines a way to count maintenance and enhancement.

This NESMA Standard was presented during the IFPUG Fall conference in
2000 in San Diego. This publication is also available from the NESMA home-
page http://www.nesma.nl/english/download.htm.

Enhancements are all changes of the functionality of an application system.
This results in a change, addition, or deletion of functions. Enhancement that
only adds functions is new development.

Maintenance is divided in three categories: corrective, perfective, and adap-
tive maintenance. For Estimation purposes, the functionality that is tested is
added to the changed, added, and deleted functionality.

13 Functional Size Measurement Methods (FSMMs)

393

The NESMA method calculates Enhanced Function Points (EFP) by
weighting the Function points with an impact factor. The impact factor has a
range of 0.25–1.5 depending on how much the functionality of the application
is impacted by the enhancement.

13.6 Outlook for Functional Size Measurement Methods

The ISBSG database release 10 includes 4,106 total complete projects, and the
five ISO/IEC Functional Size Measurement Methods (FSMMs) are featured
prominently. Table 13.6 shows the numbers of projects by the software sizing
method used. The ISO/IEC Functional Size Measurement Methods are high-
lighted.

Table 13.6. ISBSG CD release 10 breakdown by sizing method

Software sizing method Number of Projects
IFPUG 4.0 988
IFPUG addendum to existing standards 841
IFPUG not specified 732
FiSMA 1.1 340
IFPUG 4.1 308
IFPUG 4.2 231
IFPUG 3 154
COSMIC-FFP 117
NESMA 152
Mark II 35
LOC 146
IFPUG 2 15
IFPUG 3.4 12
Dreger 10
Backfired 8
Automated 4
Unknown 3
Albrecht 2
Feature Points 2
Retrofitted 2
In-house 1
Other 1
System Components 1

 Note: Highlighted cells depict ISO/IEC FSMMs

For the users of measurements it is most desirable that there will be only
few methods (to be comparable, e.g,. for benchmarking) but applicable ones.
Here is a recommendation that is still valid: Less is more!

13.6 Outlook for Functional Size Measurement Methods

394

13.7 Management Summary

There are five ISO/IEC-conformant FSMMs currently published. All of them
use a different approach to measure a size of software to be developed.

As stated many times throughout this book, the functional size of a piece of
software is one of the main drivers in effort estimation.

The Common Software Measurement Consortium (COSMIC) first deve-
loped the COSMIC-Full Function Point (FFP) method in an effort to provide a
Functional Size Measurement Method specifically designed to meet the man-
datory provisions of ISO/IEC 14141-1 and to address what COSMIC perceived
as a gap in the ability of any method to measure the size of real-time applications.

For measuring with COSMIC, the purpose, scope, and boundaries of the
measurement have to be defined. Then, the Functional User Requirements (FUR)
are collected in the so-called Mapping Phase, expressed in the form of the
COSMIC generic software model.

The functional size in COSMIC depends only on data movements. A data
movement is defined as one CFP = COSMIC Function Point.

An advantage of this concept is that various interpretations of the elemen-
tary process do not affect the measurement result in COSMIC.

An important difference to the IFPUG method is the concept of software
layers such as tiers, service structures, or component deployments for the ar-
chitectural reasoning of boundaries.

The ISBSG report: The Benchmark, release 8 from January 2004 reports on
66 COSMIC projects in the database, with an average project size of 254 CFP
(median 120 CFP). Overall, it is observed that real-time systems are typically
smaller than MIS systems, have a longer duration, and require more effort
(and thus the productivity is lower).

The layer concept of COSMIC Method can be an advantage compared with
the IFPUG method. But one has to keep in mind that the results of counts from
different layers are not directly comparable. It follows that further boundaries
for different layers and thus further data movements would be ignored in the
case of less layers. This is important to note especially when elaborating experi-
ence curves.

Nevertheless, the COSMIC Method offers a different perspective to the pre-
viously established and known methods for Functional Size Measurement such
as IFPUG, FiSMA, Mark II, and NESMA.

The FiSMA 1.1 Functional Size Measurement Method is the newest mem-
ber of the ISO/IEC FSMM standards and is known under the name ISO/IEC
29881:2008 FiSMA 1.1 Functional Size Measurement Method.

13 Functional Size Measurement Methods (FSMMs)

395

From the specification (FiSMA): FiSMA 1.1 is based purely on Functional
User Requirements.

FiSMA 1.1 identifies seven distinct base functional component (BFC) classes:
Interactive end-user navigation and query services (q), Interactive end-user input
services (i), Noninteractive end-user output services (o), Interface services to
other application (t), Interface services from other applications (f), Data storage
services (d), Algorithmic and manipulation services (a).

A number of researchers around the world have performed rigorous data
analysis on the FiSMA Experience project repository to validate the relation-
ship of software size measured using the FiSMA FSM Method to development
effort.

The Mark II Method is primarily used in the UK and was developed by
Charles R. Symons in 1988. It includes the counting of entities and relationships
in the data model.

Mark II improves the measurement of very simple and very complex trans-
actions and is a mapping of modern system analysis methods that are easily to
be calibrated (only four variables).

Mark II gives more weight to the inputs and less to the outputs than the
IFPUG method. For small projects, there are slight differences in measurement
of size.

Mark II appears to be more data oriented than the IFPUG method and may
be easier to learn since it has less rules and functional components to count.
Mark II and COSMIC deliver a more linear measure of functional size than
the IFPUG method.

In 1989, the NESMA (Netherlands Software Metrics Association) pub-
lished their first standard for FPA, based on the principles of the Albrecht FPA
method. The NESMA method version 2.1 (without the GSCs) is also acknow-
ledged as an ISO/IEC Standard.

As part of the standard, the NESMA has also developed an early usable
Function Point prognosis method – Indicative Function Point Counting.

The NESMA published in 2001 A Guide for Function Point Counting of
Enhancement Projects based on the NESMA FPA standard. This guide de-
fines a way to count maintenance and enhancement.

For the users of measurements, it is most desirable that there will be only
few methods (to be comparable, e.g., for benchmarking) but applicable ones.
Here is a recommendation that is still valid: Less is more!

13.7 Management Summary

14 Variants of the IFPUG Function Point Counting
Method

There are a number of variants of the IFPUG Function Point method in different
countries. This chapter provides an overview of some of these variants.

The IFPUG FP method is an ISO/IEC standard (the ISO standard currently
at the time of printing is ISO/IEC 20926 IFPUG 4.1 unadjusted Function Point
Counting Method). In addition, there are four additional functional size meas-
urement methods (FSMMs) recognized by ISO/IEC, each of which uses its
own approach to measure a piece of software’s functional size. These FSMMs
are identified and described in further detail in the previous Chapter Func-
tional Size Measurement Methods.

Capers Jones published a list of 35 variants of the IFPUG Function Point
Method, which includes a motley crew of different sizing methods. Among
those listed were:

Prior versions of the IFPUG method from 1.0 (1986) through to 4.2 (2004)
Well-known and publicized variants such as Feature Points
Unknown or obsolete variants such as the Australian Software Metrics Asso-
ciation (ASMA) method (of which ASMA board members were unaware)
Obsolete variants such as 3D Function Points
Standalone Prior versions of the FSMMs described above
Other measures of software size not necessarily based on the IFPUG method
such as Object Points.

The following methods are characterized as IFPUG variants and are only
mentioned for historical reasons as information to the reader:

SPR Function Points
Feature Points
3D Function Points.
These IFPUG Function Point variants consist of the following steps:

Classification and counting of specific model parameters (data, objects, func-
tions, etc.), evaluation of the application’s nonfunctional requirements or

398

characteristics (similar to the GSCs in the IFPUG methodology), and calcu-
lation of the software size
The size is then used to estimate the development effort by computing
the effort with an experience curve. The elaboration of an experience curve
must be done before the introduction of the method.

In addition, we present a number of other sizing methods in this chapter
including the following:

Object points and size measures intended to address the size of software
developed using O-O (object-oriented) development
Data points
Use Case Points (UCP).

These variants are also methods to quantify the size of the software to be
developed. Size is a well-documented and accepted influencing factor in soft-
ware development effort estimation. Ton Dekkers reported at the MetriKon
2003 conference that the lower level threshold (minimum size) for reliable es-
timates is 200 IFPUG FP for development, or a minimum size of 100 MFP
(NESMA Maintenance Function Points) is needed for maintenance.

14.1 The Data Point Method

The Data Point Method is a little-known variant of the IFPUG Function Point
Method that was developed by Harry Sneed to size software based on data
objects. Size is derived by examining the data objects, the user interface, infor-
mation objects and their data elements, attributes, and relations. The user inter-
face consists of screens, reports, and system messages.

Data Points result from the number of:

Information objects
Attributes
Communication objects
Input data and output data
Views.

Instead of the 14 GSCs approach to non-functional requirements used in the
IFPUG method, the Data Point Method relies on eight quality factors and ten
project conditions. Tool support is also available from Harry Sneed of Case
Consult GmbH in Germany (PC-CALC, see chapter “Tools,” which contains a
subsection “Internet Addresses for Estimation Tools”).

14 Variants of the IFPUG Function Point Counting Method

399

14.2 Feature Points

Feature Points is mentioned only for information because its inventor, Capers
Jones, officially discontinued formal support of the method several years ago.
Even so, there are practitioners who continue to adhere to the Feature Point
approach for sizing their software applications and projects.

Feature Points was developed and introduced by Capers Jones in 1984 to
address the needs of the engineering and scientific community and its soft-
ware. Feature points was built on the IFPUG foundation of five functional
components and introduced algorithms as the sixth component to be counted.
Feature points also reduced the number of General Systems Characteristics
down to 2.

1. Algorithms were not precisely defined.
2. There was a lack of correlations to other FP variants.

While still there are estimating models that recognize Feature Points, Capers
Jones discontinued his support (per online discussions on the now defunct
CRIM listserv), in favor of fully endorsing the IFPUG Function Point count-
ing method. In the posting, Capers asserted that part of the original rationale
behind Feature Points was to overcome the psychological barrier held by en-
gineers who could not embrace the fact that the productivity on complex engi-
neering projects could be lower than on others.

14.3 Object Point Methods

In 1990, Luiz Laranjeira was working at the University of Texas in Austin and

Lorenz of IBM wrote in his book Object Oriented Software Development –
Practical Guide about object-oriented measurement and measures. Then in
1994, Chidamber and Kemerer from MIT (Massachusetts Institute of Tech-
nology) published an important publication on object-oriented measurement.

Since then, there has been a score of publications about object-oriented
measurement and object-oriented methods, including those by Henderson-

Points.
There are also many articles and surveys reporting on the use of IFPUG FP

in object-oriented environments, such as those by Fetcke, Catherwood, and

14.3 Object Point Methods

on Object-Oriented Metrics). Associated with this, Jensen reported on Effort

researching the size estimation of object-oriented systems. Soon after, Mark

A couple of drawback to Feature Points becoming a standard included:

Sellers, Hateras Software, Lorenz, Minkiewicz, and others (See also the chapter

400

others. IFPUG published their Case Study 3, specifically to demonstrate how to
apply the IFPUG Function Point Counting in OOA (Object-Oriented Analysis)
and OOD (Object-Oriented Design) software development.

In 1996, Harry Sneed of Germany also published his Object-Point method
(not to be confused with his other aforementioned Data Point method). Sneed
differentiates between an object model (classes), communication model (mes-
sages or interfaces), and process model (processes or transactions). Accord-
ingly, he aggregates Class Points, Message Points, and Process Points that are
weighted with quality attributes and project factors. Sneed’s publication has
incomplete details and shows some inconsistencies that hindered the dissemi-
nation and adoption of his method.

The future will tell whether there will emerge a special Object Point method
that will gain widespread adoption, or whether the established IFPUG method
(or other functional size measurement method) will prevail in the object-
oriented environment.

14.4 SPR Function Points

SPR Function Points are mentioned here for informational purposes because
they are referenced in published literature. The experience of the authors sug-
gests that the use of SPR Function Points is not common.

SPR Function Points were a simplified variant of IFPUG function points in
the early 1980s. They were developed by Capers Jones of SPR (Software Pro-
ductivity Research) who also developed Feature Points. SPR Function Points-
simplified FP counting by eliminating the low/average/high classification for
IFPUG Functional Components and counted all files (ILF, EIF) and transac-
tions (EI, EO, EQ) as average. Additionally, the 14 GSCs were distilled down to
two: problem complexity and data complexity.

SPR Function Points also introduced the functional mix concept used today
in publications of the International Software Benchmarking Standards Group
(ISBSG). The functional mix concept states that the unadjusted FP of an entire
project or application could be approximated if the contribution of only one of
the five functional components is known. This was also supported by SPR’s
Checkpoint for Windows tool (now known as KnowledgePlan™).

When approximating using a functional mix, caution is urged because the
degree of error ranges in this process is higher than with other approximation
methods. A calculation in an international insurance company in Germany
came to the conclusion that the error range was significantly higher by using

14 Variants of the IFPUG Function Point Counting Method

401

the SPR Function Point approximation method than with the use of the self-
calculated proportions of the components of the Function Point Method.

14.5 3D Function Points

3D (three-dimensional) Function Points are also mentioned here for historical
purposes because they too can be found in literature. It is unknown whether
there is any continued usage of the 3D FP method and whether they were ever
used outside of the Boeing Company where they were first introduced. 3D
Function Points were published by Scott A. Whitmire in 1992 of Boeing Com-
puter Services after 2 years of development. The method makes assumptions
similar to the Feature Point method that software development depends not
only on its data and functions, but also on control flows. 3D Function Points
took the approach that software size depends on three dimensions:

Data-rich dimension (measured using IFPUG FP)
Control-rich dimension (measured by evaluating the transitions and states)
Process-rich dimension (measured by evaluating the data transformations)
In the original 3D Function Point Method, the results of each dimension

were added together to get the 3D FP size.

Note that in the late 1990s, the American author spoke at an international
measurement conference in the USA where Scott Whitmire also spoke. In his
presentation, Scott stated that he had revised his original 3D FP approach and
now advocated working with the results of each dimension separately and no
longer supported adding them together.

14.6 Use Case Points (UCP)

UCP were developed in 1993 by Gustav Karner not as a size measure in and
of itself, but only as part of as an estimating method. In the UCP method,
the size in units of UCP is multiplied by a productivity factor originally set
to 20 h per UCP. Schneider and Winter further recommend a more realistic
range from 20 to 28 h per Use Case Point to take into consideration the con-
tingency of working in teams. Information about the details of the Use Case
Points Method (UCPM) can be found at http://www.uea.ac.uk/~a168955/effort_
estimation/use_case_points.html

The adjusted UCP are derived by multiplying the UUCP (unadjusted UCP)
by the Technical Complexity Factor and by the Environmental Complexity
Factor. The UCP sizing method is depicted in Fig. 14.1.

14.6 Use Case Points (UCP)

402

Fig. 14.1. UCP software sizing method (note: the productivity factor converts UCP into an
effort estimate).

The unadjusted UCP (UCP) are determined by a three-step process:

1. The Unadjusted Use Case Weight (UUCW). This value is determined by
the total number of activities contained in all the use case scenarios.

2. The Unadjusted Actor Weight (UAW). This value is determined by the
combined complexity of all the use case actors.

3. UUCP = UUCW + UAW.

14.6.1 Unadjusted Use Case Weight (UUCW)

The UUCW is calculated by counting the number of use cases in each cate-
gory (simple, average, complex according to Table 14.1), then multiplying each
category of use case with its weight, and then adding the results.

Table 14.1. Computing UUCW.

Use case type Definition Factor
Simple 3 or fewer transactions or <5 analysis classes 5
Average 4–7 transactions or 5–10 analysis classes 10
Complex More than 7 transactions or >10 analysis classes 15

UUCW = (Number of simple use cases × 5) + (Number of average use cases × 10) +
(Number of complex use cases × 15)

14 Variants of the IFPUG Function Point Counting Method

USE CASE POINTS
(adjusted)

Unadjusted
Use Case Points

(based on Use Case Weight
&

Actor Weight)

Environmental
Complexity

(based on 8 factors)
Technical Complexity

(based on 13 factors)

403

14.6.2 Unadjusted Actor Weight (UAW)

To calculate the UAW, actors must be classified as Simple, Average, or Com-
plex based on their interactions (see Table 14.2).

Table 14.2. Computing UAW.

Actor type Definition Factor
Simple Program interface 5
Average Interactive, or protocol-driven interface 10
Complex Graphical interface (human) 15

The UAW is calculated by counting the number of actors in each category,
multiplying each total by its specified weighting factor, and then adding the
products.

14.6.3 Unadjusted Use Case Points (UUCP)

The UUCP are calculated by adding the UUCW and the UAW:

UUCP = UUCW + UAW

14.6.4 Technical Complexity Factor

This is the first of two complexity factors that modify the UUCP based on pro-
ject factors.

The technical complexity factor examines aspects of the project and
implementation-specific details (some are similar to the GSCs in the IFPUG
FP Counting method).

To get the technical complexity factor, go through the list of possible tech-
nical factors and rate each one on a scale of 0–5. (A “0” rating means the factor
is irrelevant to the project, a “5” rating means it is essential).

For each of the 18 factors, multiply its score from 0 to 5 by its weight (a con-
stant value) and then sum the results. The final result is then substituted into
a Technical Complexity Factor calculation. Table 14.3 depicts the technical
factors.

14.6.5 Environmental Complexity Factor

This is the second of the two complexity factors, and it considers the impact
of the experience (or lack thereof) of the project team. For each of the eight
factors, rate it on a scale from 0–5. (“0” means the factor is irrelevant to the

14.6 Use Case Points (UCP)

404

project, “5” means it is essential). Each factor is calculated by multiplying its
score by its weight and producing a sum of the results. The final result becomes
the Environmental Complexity Factor. See Table 14.4 for details.

Table 14.3. Technical complexity factor.

Technical
factor
number

Technical factor description Weight Value
(0–5)

Weight × value

T1 System will be distributed
(released) 2

T2 Performance objectives 1
T3 End-user efficiency 1
T4 Complex internal processing 1
T5 Code must by reused 1
T6 Easy to install 0.5
T7 Easy to use 0.5
T8 Portable 2
T9 Easy to change 1
T10 Concurrent 1
T11 Includes special security features 1

T12 Provides direct access for third
parties 1

T13
Special user training facilities are
required 1

Total technical complexity factor

Table 14.4. Environmental complexity factors.

Environmental
factor number

Environmental factor description Weight Value Weight ×
value

EF1 Familiar with RUP 1.5
EF2 Application experience 0.5
EF3 Object-oriented experience 1
EF4 Lead analyst capability 0.5
EF5 Motivation 1
EF6 Stable requirements 2
EF7 Part-time workers 1
EF8 Difficult programming language 2

Total environmental complexity
factor

14.6.6 Calculate Adjusted Use Case Points

Finally, UCP (adjusted) are calculated using this formula:

UCP = UUCP × TCF × ECF

14 Variants of the IFPUG Function Point Counting Method

405

where
UUCP = unadjusted Use Case Points

TCF = total technical complexity factor
ECFC = total environmental complexity factor

14.7 Outlook

Considering all of the variants of the IFPUG Function Point counting method,
one can summarize that the measurement of inputs, outputs, algorithms, logi-
cal files, entities, relationships, and data elements delivers a sound basis for mea-
surement.

Since there are also now five ISO/IEC internationally recognized standards
for Functional Size Measurement, the market will decide which method(s)
gain preference based on the measurement needs of practitioners.

Mathias Lother, Reiner Dumke, and Alain Abran presented at the IWSM
2001 a comparison of variants of the IFPUG Function Point counting method
in three tables that are combined here as Table 14.5.

Table 14.5. Variants of the Function Point Method in comparison.

Application area Support Method
Algorithmic/

Scientific
Management
information

systems

Real-time,
embedded

Tool support Data in
ISBSG

database
DeMarco’s
Big Bang

Yes Yes. At least:
PC-CALC
SoftCalc

No

Feature
Points

Yes Yes. At least:
SoftCalc
KnowledgePlan™

No

Boeing 3D Yes Checkpoint/
KnowledgePLAN™

No

IFPUG Yes Checkpoint/
KnowledgePLAN™,
PC-CALC,
Function Point
Workbench™,
FPC Analyzer,
Experience® Pro

Yes

For the users of measurement, it is most desirable that there be only a few
methods to choose from (to be comparable, e.g., for benchmarking) but amongst
them highly applicable ones. Here is a recommendation that is still valid: Less
is more! And, measure consistently!

14.7 Outlook

406

The American author attended an European International Project Manage-
ment Association (IPMA) and International Cost Estimation Council (ICEC)
joint conference in 2005 and discovered that the building construction industry
is as divided about how to size a floor plan as the FP industry is divided about
the best way to decide about determining the functional size of a piece of soft-
ware.

Construction engineers argued whether the floor plan should be sized on the
basis of taking measurements from the outside walls, inside walls, half way
into the framed wall, as well as how to count the square foot size (or square meter
size) of a staircase – as half the area on each of two floors, as full area on both
floors, or not at all. It is reassuring (while not altogether comforting) to know
that the construction industry with all its wisdom and best practices can still
argue about something as mundane as how to consistently measure the area of
a floor plan. Again the consistency of measurement methods is a pre-requisite
to creating comparability!

14.8 Management Summary

The variants of the Function Point Method deliver a method to quantify the
size of the software to be developed.

The Data Point Method is a little-known variant of the IFPUG Function
Point Method that was developed by Harry Sneed for estimating based on use
of data objects.

Feature Points are mentioned here only as information because its inventor,
Capers Jones, officially discontinued formal support of the method several
years ago.

Feature Points was developed and introduced by Capers Jones in 1984 to
address the needs of the engineering and scientific community and its software.

Feature points was built on the IFPUG foundation of five functional com-
ponents by introducing algorithms as the sixth component to be counted.

There has been a plethora of publications about object-oriented measurement
and other object-oriented methods.

In 1996, Harry Sneed of Germany published his Object-Point method (not
to be confused with his other aforementioned Data Point method).

SPR Function Points are mentioned here for informational purposes because
they are mentioned in published literature.

14 Variants of the IFPUG Function Point Counting Method

407

SPR Function Points simplified FP counting by eliminating the low/average/
high classification for IFPUG Functional Components and counting all files
(ILF, EIF) and transactions (EI, EO, EQ) as average.

3D (three-dimensional) Function Points are also mentioned here for histori-
cal purposes because they too can be found in literature. It is unknown whether
there is any continued usage of the 3D FP method – and whether they were ever
used outside of the Boeing Company where they were first introduced.

UCP were developed in 1993 by Gustav Karner as an estimating method
whereby the size in UCP is multiplied by a productivity factor originally set to
20 h per UCP.

For the users of measurement, it is most desirable that there be only a few
methods to choose from (to be comparable, e.g., for benchmarking) but amongst
them highly applicable ones.

Here is a recommendation that is still valid: Less is more! And, measure
consistently!

14.8 Management Summary

15 Using Functional Size Measurement Methods

This chapter presents different approaches and experiences in the practical use
of Functional Size Measurement. We begin with a report about experiences of
an organization that was able to develop a Function Point Prognosis and pre-
sent related information from other organizations about early Function Points,
also called Function Point estimation or FP proposals.

One of the biggest challenges is that estimates are required as early as pos-
sible from both the customer (acquirer) and supplier (contractor) point of
view. Early estimation requires good documentation of both the assumptions
supporting the FP estimation, and subsequently the estimates of work effort.
Ultimately, the counting and estimation data should serve as a treasure for
measurement programs. Experiences show that valuable information can be
gained from appropriate analysis of collected data.

An additional benefit of the FP documentation (FP count or FP estimate de-
tails) for an international insurance company in Germany was that it found
value in its Function Point Prognosis via regression analysis. Since FP size is
an important measure to estimate project work effort, the organization thus
gained the synergistic benefit to do reliable estimates early in its IT project life
cycle. Of course, a complete FP count at the end of the requirements analysis
is obligatory, as well as an improved estimate of work effort at this time.

This is only one example presented here since other organizations did similar
research. There is strong evidence that different environments lead to different
results. This means that each organization should develop its own heuristic
solution(s). Nevertheless, comparisons with other organizations are valuable
for the enterprise.

15.1 Function Point Prognosis

Since Function Point counts use the requirements documents as a prerequisite,
the so-called Function Point Prognosis or resultant estimates are valuable.

Because of the increasing demand for estimates of work effort even before
requirements are written, a number of early FP prediction models have been
developed. This is similar to estimating the square feet for a building for which

410

there is only a sketchy floor plan. Estimating the FP to be developed from an
idea of what the customer needs but cannot easily articulate is the first step –
and an uncertain one – which then leads to the second step, that is, use of the
FP size estimate as the input size variable in a work effort estimating software
model.

Because of the importance of these early FP size estimations, Meli and
Santillo (1999) published a comparative review of early Function Point esti-
mation methods that illustrates the valuable collection of worldwide efforts in
this direction.

Experiences in the IT department of an international insurance company
show that the necessary high-level information required to even do a FP esti-
mate can be established early in discussions with the project leader. Early
means that the customer or acquirer organization is in the initial or forming
stage of launching a software and systems development project in an organiza-
tion. Early means the beginning of a project, or in stable environments it may
mean even a year prior to project launch, when portfolio planning is done for
the upcoming year. Of course, planning based on relatively undocumented
user requirements is prone to high risk and margins of error due to the uncer-
tainty of preliminary estimates. During this process and in cooperation with a
competence center, the interfaces and tasks of the project can be collected, and
a rudimentary boundary diagram for the envisaged application can be docu-
mented. A valuable support for this Function Point Prognosis was that all of
the existing software applications had already been FP-counted. This means
that all of the interfaces were well known and could be taken into account early.

From the initial launch of the insurance company’s measurement program
in 1996, it was a long journey to arrive at the desired results of being able to
benefit from knowing the size of one’s application in conjunction with any
new development or enhancement project. The success achieved to date has
been the culmination of sufficient and committed management support. The
year 2002 was devoted to the introduction of project FP counting, estimation
(based on a Function Point Prognosis), and productivity ratios.

This chapter focuses on the follow-up investigation (expanded to 78 appli-
cations from the 20 original applications) in the IT department of an interna-
tional insurance company. Research papers were originally published by the
German author, Bundeschuh (1997–2002) in the Metrics News of the German
GI Interest Group on Software Metrics with the title Function Point Prog-
nosis (http://ivs.cs.uni-magdeburg.de/sw-eng/us/giak/MN-98-2.HTM) in 1997,
1998, 2001, and 2002. The 2002 publication in Metrics News was titled: 2002:
Function Point Prognosis Approved (http://ivs.cs.uni-magdeburg.de/sw-eng/
us/giak/MN-02-1.HTM). This final article clearly showed the validity of the
prognosis formulae in this organization.

 15 Using Functional Size Measurement Methods

411

This prognosis method was developed using regression analysis. The Func-
tion Points are in this case calculated from the numbers of EIs and EOs that
were known and counted without being classified as low, average, or high. An
error range of 12% could be determined for these early counts compared with
later Function Point counts at the end of the requirements analysis (regression
coefficient R2 > 0,948, see Table 15.1, IO = number of EIs and EOs).
Table 15.1. Function Point Prognosis formulae of the IT department of an international in-
surance company (Bundschuh, 1997–2002)

 Number of
applications

R2 Error (%) Prognosis formula

2001
Total 78 0.9483 13 FP = 7.8 × IO + 43
Host 69 0.9498 12 FP = 7.9 × IO + 40
PC 9 0.9503 21 FP = 6.4 × IO + 172
1998
Total 39 0.9589 20 FP = 7.6 × IO + 50
Host 28 0.9580 FP = 7.9 × IO + 11
PC 11 0.9760 FP = 6.5 × IO + 134
1997
Total 20 0.9525 13 (median 11) FP = 7.3 × IO + 56

The use of these prognosis formulae was recommended to the project leaders
as rules of thumb with +15% added on as an error range (also called contin-
gency).

The correlations were not as reliable for the other components (EQ, ILF,
and EIF) or for subsets of small, medium, and large applications. Figure 15.1
shows, as an example, the results of such a regression analysis:

Fig. 15.1. Regression analysis for development of the Function Point Prognosis

15.1 Function Point Prognosis

FP-Prognose auf Basis von IO's

y = 7,7905x + 43,499
R2 = 0,9483

0
1000
2000
3000
4000
5000
6000
7000
8000

0 200 400 600 800 1000

IO (Anzahl EI+EO)

Fu
nc

tio
n

P
oi

nt
s y = 7.7905x + 43.499

R2 = 0.9483

IO = Number of EI + EO

FP Prognosis based on IO‘s

412

The 1998 data were analyzed independently by Noel in a joint research with
the Software Engineering Management Research Laboratory, Université du
Québec à Montréal (UQAM), Canada, which obtained similar results. Noel
applied the same method to seven projects with COSMIC to find a similar cor-
relation for COSMIC Function Points, but the sample was too small for reli-
able results. Noel reported in his thesis an error range of 20%.

Nishiyama (1998) of Japan reports his findings regarding a Function Point
Prognosis for which regression analysis led to the following prognosis formula
based on the number of reports (lists, reports), screens, and files (with a reg-
ression coefficient R2 = 0.99 and an error range of less than 20%).

PFP = 12.31 × R + 6.01 × S + 8.05 × F,

where PFP = Prognosis Function Points, R = number of reports, S = number of
screens, and F = number of files.

Meli and Santillo (1999) presented another Function Point Prognosis, e.g.:
32–40 Function Points per ILF (35–38 for GUI – Graphical User Interfaces) or
from NESMA (metrics organization of The Netherlands):

IS = 35 × (number of ILF) + 15 × (number of EIF),

where IS = Indicative Size in FP, and the number of ILFs and EIFs are counted
separately.

15.1.1 Function Point Proportions

Another approach is to estimate the Function Points from the proportions of the
EIs, EOs, EQs, ILFs, and EIFs. There are results from the IT department of an
international insurance company, as well as actual data from the ISBSG in its
Software Measurement Compendium (ISBSG, 2002). The proportions of Func-
tion Point components of these investigations are shown in Table 15.2.

A comparison of the ISBSG publications through the years shows that the
proportion of each FP component changed slightly, with the number of FP
contributed by external inputs (EIs) decreasing slightly between 1997 and 2002,
while the contributions of external output (EOs) and external queries (EQ) in-
creased slightly.

Investigation in the IT department of an international insurance company
resulted in an error range of more than 37% (EOs) up to 48% (EQs) depending
on the Function Point component used for early estimation.

Using the proportion, breakdown of the functional components should not
be used in place of actual FP counts but rather should only be used as a rule of
thumb for plausibility checks when doing quality assurance of Function Point
counts.

 15 Using Functional Size Measurement Methods

413

Table 15.2. Proportions of the Function Point components from the IT department of an
international insurance company

Source: IT department
of an international
insurance company
(2001)

Number of
application

systems

Percentage of FP contributed by functional
component

Platform EI EO EQ ILF EIF
Total 78 22 39 8 16 14
Host 69 21 40 8 16 15
PC 9 28 31 12 19 10
ISBSG Report (June
2002)

311 New
development

29 24 15 24 8

Metric views (IFPUG) 26–39 22–24 12–14 24 4–12
IT department of an
international insurance
company:

1998 Total 39 25 39 14 17 6
1996/1997 Total 20 27 39 11 18 5
1997 Total 12 18 43 12 18 9
1996 Total 8 34 35 11 18 2

Further rules of thumb used in practice (literature sources unknown) include
the following:

The number of IT staff members in a project (ITM):
ITM = FP/150,

 where FP = size of the application to be developed.
The number of IT staff members necessary for the maintenance of an appli-
cation (MAM):

MAM = FP/3,500
The estimated costs in Euro for software development in Western Europe
(C):

C = FP × (1,500 €) per FP
The annual growth (G) percentage of software size after the first release:

G = FP × 7%
The requirements creep per month of project duration (RC) in units of
Function Points:

RC = FP × 2%
The number of calendar months from requirements concept until delivery
(M):

M = FP0.4

The error potential (E):
E = FP1.2

The number of required test cases (T):
T = FP1.25

15.1 Function Point Prognosis

414

The number of pages of documentation (P):
P = FP1.15

This demonstrates how valuable it can be to collect Function Point count data
centrally so that organizational learning can occur and to be able to improve
the quality of estimates. Furthermore, the data demonstrate that that the Func-
tion Point Prognoses are specifically related to the development environment.
They are only to be used as rules of thumb for quality assurance of their prac-
titioners’ own counts and estimates. There is always a considerable demand for
reliable information to use for early estimates.

15.1.2 Other Early Function Point Proposals

As interesting as this is the comparison of average Function Points, that is, the
answer to the question: “how many Function Points have an EI, EO, EQ, ILF,
or EIF typically?”

The average complexity for each functional component as outlined in the
IFPUG counting practices manual (IFPUG, 2004) gives the following number
of unadjusted Function Points (uFP):

EI = 4 uFP; EO = 5 uFP; EQ = 4 uFP; ILF = 10 uFP; EIF = 7uFP.

The ISBSG database (r5 was most recent to publish this particular break-
down) exhibits different figures, as does the IT department of an international
insurance company (see Table 15.3).

Table 15.3 shows that the average Function Points in the IT department of
an international insurance company increased over the years. This could hint
at growing complexity in this environment; however, this assumption must con-
sider that there is no comparability given since the number of counted applica-
tions also increased.

The average Function Points are said to be stable ratios in similar environ-
ments, and thus are appreciated as a rule of thumb for quick Function Point
Prognosis. This rule of thumb saves time because the additional effort for clas-
sification of the components as low, average, and high can be saved – espe-
cially, since at the early phases of development (i.e., before requirements are
finished) these are typically unknown.

For the administration of one ILF, it can be assumed that there would typi-
cally be the one file model profile: at least three external inputs (EI) – one for
each of the add, change, and delete maintenance functions, one output (EO),
and one inquiry (EQ) typically manifested as a browse function. Research
from the ISBSG database and the IT department of an international insurance
company delivered the following figures (see Table 15.4.).

 15 Using Functional Size Measurement Methods

415

Number of applications Average Function Points
by data source: EI EO EQ ILF EIF
IT department of an
international insurance
company (2001)

Total – 78 4.7 5.9 4.4 8.6 6.5
Host – 69 4.7 5.9 4.6 8.7 6.5
PC – 9 4.3 5.7 3.8 7.6 6.5

IFPUG unadjusted FPs
for average complexity

 4 5 4 10 7

ISBSG R5 4.3 5.4 3.8 7.4 5.5
ISBSG R5 Europe 4.2 4.9 3.8 7.2 5.3
IT department of an
international insurance
company (1998)

Total – 39 4.6 5.7 4.3 8.2 6.1
Host – 28 4.8 5.7 4.5 8.5 6.2
PC – 11 4.0 5.7 3.9 7.3 5.4

IT department of an
international insurance
company (1997)

Total – 20 4.6 5.5 4.3 8.1 5.7

Table 15.4. Maintained entities (ILF) proportion compared with other IFPUG Functional
Components

IT department of an international
insurance company

ISBSG r5

Applications 2001 1998 1997 Europe Total
N 78 39 20 32 238
Number of EI per ILF 2.6 2.7 2.7 3.8 2.9
Number of EO per ILF 3.6 3.3 3.7 2.6 1.5
Number of EQ per ILF 0.9 1.4 1.2 1.9 1.1
Number of EIF per ILF 0.6 0.5 0.4 – –

 Note: ISBSG r5 was the most recent with this type of breakdown

Accordingly, the IT department of an international insurance company cal-
culated the proportions of the other components in comparison to inputs and
outputs (see Table 15.5).
Table 15.5. Input (EI) and output (EO) proportions compared with other IFPUG Functional
Components

Input Output
78 Applications 2001 78 Applications 2001
Number of EO per EI 1.3 Number of EI per EO 0.7
Number of EQ per EI 0.3 Number of EQ per EO 0.3
Number of ILF per EI 0.4 Number of ILF per EO 0.3
Number of EIF per EI 0.2 Number of EIF per EO 0.2

15.1 Function Point Prognosis

Table 15.3. Number of average Function Points by IFPUG functional component

416

15.1.3 IFPUG General Systems Characteristics (GSC)

Another result of the internal insurance company research was that the VAF
(Value Adjustment Factor) in the IT department of the company was typically
in the range of a low of 0.73 (characteristic of migrations or conversion pro-
jects) up to a high of 1.22, with the average VAF = 0.95. (For host/mainframe
applications, the average VAF was 0.94, and for PC-based applications, the
average VAF was 0.96.) These values were also used as a rule of thumb when
plausibility checks for quality assurance of Function Point counts were per-
formed.

Accordingly, the range of typical scores for each of the 14 GSCs can be com-
pared. Figure 15.2 shows such a comparison where the gray bars are bounded
by the statistical high and low values, and the median value is depicted as a
dash in the center area of each bar.

Fig. 15.2. Comparison of the values of 14 GSCs (IT department of an international insurance
company – 2001)

15.1.4 Benefits of Early Function Point Estimates

In this chapter, some of the aforementioned results of the exploration of meas-
ured data are summarized, with a focus on the early Function Point estimates.

Early collection of the information about interfaces, component parts of the
project, and formal documentation of the same, along with a diagram of the
application boundary (later used for the organizational architecture atlas) are
all prerequisites to establish early Function Point Prognosis. When accompa-
nied by a counting log (simple Word document with notes about special FP
counting decisions), the project gains a valuable overview about the application

 15 Using Functional Size Measurement Methods

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Comparison of the 14 GSC Scores (Host)
Source: IT department of an international insurance company

G
SC

 S
co

re

General System Characteristics

417

portfolio and projects within. In general, these also might include reference
numbers (key figures) for quality assurance (percentages, rules of thumb).

Another well-known consequence of careful measurement and documenta-
tion of the Function Point counts is a higher level quality of the requirements
documents, since they are used, checked, and typically revised. Often they are
not available or not yet developed at the start of Function Point counting, and
therefore must be developed/revised after the count. The result of multiple eyes
examining the same requirements documentation multiple times leads also to
a overall better requirements, and accompanying increased efficiency in soft-
ware development. These are all secondary effects of Function Point counting,
and some clients even attest that these benefits may be worth far more at
times than the actual number of Function Points, at least at the beginning of a
measurement initiative.

With the available details, one can calculate with an Excel problem solver,
the average FP component complexity across the five functional components
(i.e., how many FPs does a typical EI, EO, EQ, ILF, or EIF have in the actual,
in-practice environment). It is widely agreed that this measure is stable and
can be used as a rule of thumb for quick estimation of counts, since the com-
ponents need not be classified as low, average, or high.

Note that it is always better to use your own organization’s functional com-
ponent average Function Point value rather than the IFPUG averages, be-
cause of the demonstrated difference (see previous tables). Another learning
experience was that the average Function Point size increased over time,
which may be caused by growing complexity in the application development
environment. Such results can only be gained by continuous recording and ex-
amination of the measured data over an elapsed time period.

These findings, compared with those from other organizations, show that
such data collection can be used to find heuristic solutions for FP Prognosis, by
using either Function Point proportions (typical FP), function ratios, regression
formulae, or rules of thumb. There is evidence that different environments
demand tailored solutions; this leads to our recommendation that each organi-
zation develops its own knowledge base (experience database) of heuristic solu-
tions, and should distinguish between different development platforms, etc.,
when doing so.

15.2 Estimation of Person Months of Work Effort Based
on Function Points

Function Points can provide valuable input for work effort estimates. For this
purpose, the regression formulae from the chapter “Product- and Process-
Metrics,” productivity, cost, and duration can be used. In addition, information

15.2 Estimation of Person Months of Work Effort Based on Function Points

418

from the various ISBSG products can provide information on which to double-
check estimates for effort, development productivity, project duration, and
team size.

The Volkswagen AG in Europe collected early experiences using early
Albrecht FP (pre-dates the IFPUG standards) and published their own, now
outdated formulae for effort (see also the chapter “Estimating Maintenance
Effort, Estimation of Maintenance Effort after Delivery” for details). In addi-
tion, the team observed the bathtub curve for maintenance effort. (The curve is
called a bathtub curve because of its shape (see fig. 6.1) – it begins with an initial
high of 1.4 h per FP in the first year of development, decreases to 0.6 h/FP
(better) by the sixth year, and then rises again to an average of 1 h/FP from the
13th year on).

Formulae are always only valid in the corresponding environment. Thus,
they cannot be used reliably as a 1:1 relationship in other organizations. It
would be purely coincidental if one of the mentioned formulas would fit ade-
quately in another organization, without needing calibration. And the quality
of the data must always be checked. For regression formulas, always ensure
that the regression coefficient is given as well as the sample size on which the
formula is based. This means that every organization must elaborate its own
regression analyses to get the most valuable results and leverage the value of
their own data. These analyses must be performed on a regular basis since the
environment changes over time.

The VW curve is very old (early Albrecht Function Points) – the publication
by R. Großjohann is from 1994. It is mentioned here only as an example to
show what is possible with well-documented Function Point counts.

In multivariate analyses it is always found that more than one parameter
(such as functional size) influences the effort for system development. The use
of estimation tools therefore makes sense, since they allow for control of many
influential parameters. When initiating the start of a metrics program, it can be
useful to perform a regression analysis with three small, three medium, and
three large projects at their postmortem reviews, by collecting functional size
and effort (Function Points and effort hours) to get started with an estimation
formula.

15.3 Productivity Analysis

The Function Point Method is well suited to be a part of calculating project
productivity. However, it must be stressed that productivity is not a personnel
metric, but rather a process metric influenced by tools, techniques, skills, pro-
gramming language, etc. As such, it should never be used to attempt to com-
pare persons or their productivity. Organizations that make the mistake of

 15 Using Functional Size Measurement Methods

419

ignoring this in advance and attempting to measure people find themselves in
a position of having to backtrack and perform major damage control. Just do
not do it! The result of misusing productivity results in skepticism and mis-
trust of the entire measurement initiative. Such a malpractice can destroy years
of successful nurturing of a metrics program in record time.

When comparing the productivity of projects and organizations, one always
has to regard that no two IT projects or organizations are exactly equal or
comparable in the many parameters relevant to estimating and work effort.
Thus, productivity comparisons can only provide hints for process improve-
ment opportunities and the drivers that cause differences in productivity.

This approach is a prerequisite for the intelligent use of productivity data.
Caution must be used when dealing with productivity, in a manner similar to
the caution required when using most rules of thumb as plausibility check. A
rule of thumb is a generic guideline and unsuitable for financial decisions or
objective go/no-go project decisions. These recommendations are supported
by the observation that measures show a large variance. For example, large
organizations with high communication distribution needs and strict require-
ments for high-quality software exhibit substantially lower productivity levels
(FP per person month) than small organizations with significantly less com-
munication and quality constraints, using the same technology.

Using the ISBSG Repository Data Disc r10 (ISBSG, 2007) with its research
tool “Early Estimate Checker V5.0,” it is possible to perform customized data
analysis with any subset of the more than 4,000 projects in the database.

According to ISBSG: “The ISBSG Early Estimate Checker V5.0 is a soft-
ware tool that utilizes the data in the ISBSG Repository Data CD release 10
with regression analysis to quickly generate estimates of the work effort and
elapsed time, (duration), required to carry out and complete a software deve-
lopment project, plus project delivery rate and speed of delivery. Use it to do the
following:

Generate initial rough estimates in the early stages of software development
projects.
Validate existing project estimates (e.g., bottom–up estimates generated
from a project’s work breakdown).
Assess the reasonableness and likely risk associated with a quoted estimate
(where on the range from most conservative to most optimistic is the esti-
mate positioned?).”

(see Fig. 15.3).

15.3 Productivity Analysis

The following screen illustrates the reality checker functionality available

420

Fig. 15.3. ISBSG: The early estimate checker (version 5.0)

15.4 Typical Function Point Counting Experiences

The Function Point counting rules contained in the IFPUG Counting Practices
Manual can be challenging for the uninitiated personnel. Beginners can do
themselves a favor by taking an IFPUG-certified FP workshop (typically 2
days and available on CD, as an online workshop, or in person. For further de-
tails contact the American author.).

Most organizations that implement Function Points as a core measurement
competence develop their own internal collection of FAQs (Frequently Asked
Questions) to assist with daily counting and provide some handy examples.
These hints and tips – especially for beginning practitioners – are a valuable
aid from the experiences of a large organization.

The examples in this chapter are not meant as a new standard but as guid-
ance to mentor and coach new counters. The examples were all discussed with
consultants and certified Function Point specialists (CFPS), and thus the ex-
amples are intended to work with the IFPUG standard. This chapter contains
the FAQs from a large international insurance company.

Note: The examples identified herein were collected/gathered during the
start-up phase of a metrics implementation program in the IT department of an
international insurance company.

 15 Using Functional Size Measurement Methods

421

15.4.1 Business Functions Overview

Figure 15.4 shows the potential logical functions for counting Function Points.
Since different but unique cases arise fairly often in practice, we present

some hints for interpreting the functional user requirements in the next sec-
tions.

Fig. 15.4. Typical counting situations

15.4.2 Internal Logical Files (ILF)

The standalone, persistent, maintained entities of the relational data model are
counted, as well as other user-mandated data stores (e.g., legislated sequential
files). Combined or linked entities that have their own attributes need to be
taken into account and analyzed. Questions such as the following emerge: “Are
person and task separately administered? Does a many-to-many relationship
exist between these entities?” If so, then both the entities are counted each as
its own ILF, as long as there are attributes on each entity.

Backup files are only counted if explicitly mandated by the user due to legal
or regulatory requirements. If the only reason for them to exist is to satisfy IT
technical or security reasons, then the data store is not counted. Note that code
tables (i.e., with code, description, and other space-saving attributes) are not
counted as ILF, nor is their maintenance (i.e., cannot count EI, EO, or EQ for
their maintenance or retrieval) or retrieval counted (i.e., cannot be counted as
FTR on any elementary process). (Note that this is a difference in the “almost
identical” NESMA method, whereby NESMA counts a single ILF and its

15.4 Typical Function Point Counting Experiences

File 2

Function 1
PIf 1

Function 2 Function 3

Function 4 Function 5

Function 8
Function 7

PIf 2

PIf 3

PIf 4

File x1
UIf 2

UIf 3

UIf 1

File

EQ:
EIF: ILF:EO:

EI:

Function 10 Function 11

Function 9

File 1

File x2

PIf: Program Interface
UIf: User Interface

422

maintenance to account for “code” tables no matter how many. The three other
ISO/IEC FSM methods: FiSMA, COSMIC and Mark II recognize and count a
single systems entity. See the chapter on FSMMs or consult specific FSMM
websites for further details.)

15.4.3 External Interface Files (EIF)

The I/O parameters (only used input and output data fields) of the EIF from
the requirements concept (relational data model) are counted as EIFs if they
are provided read-only access (if maintained, the entity is likely a shared ILF).

EIFs are either data read from outside of the system boundary, or data
extracted/input and stored (but never updated) within the application bound-
ary. Internal interfaces (i.e., no data crosses the application boundary) of the
projects are not counted, nor are interfaces defined during the design phase.
EIFs help to define the application boundary and are read-only entities. An
EIF is counted for each externally administered file that is referenced or read
(e.g., error, security, help, edit, reference, transactional data file) with the ex-
ception of code tables as described earlier.

The file read by function 11 in Fig. 15.4 is counted as 1 EIF from the appli-
cation being counted as long as the information is only read and not updated
on the file. Function 11 will count the reading of the EIF as a FTR (File Type
Referenced) as part of the determination of its complexity (low, average, or
high).

15.4.4 External Input (EI)

Error processing messages, confirmation messages, and messages that ask
whether processing should continue together count as a total of 1 DET for the
according external input.

Dialogue Start, Dialogue Integration

Starting a dialogue from outside the system boundary via an interface is counted
as 1 EI, e.g., if the first process is started via a standard dialogue-concept start
screen. Strict navigation or menu functions (that do not launch data retrieval
for display on a follow-up screen) are not counted.

Interfaces Between Client/Server Platform and Host Mainframe

Migration of data by the application to be counted (e.g., PC application) from an
external application (e.g., host): 1 EI for the application to be counted, 1 EO
for the host application. (Note that strictly speaking, IFPUG rules necessitate

 15 Using Functional Size Measurement Methods

423

evaluating whether the output is an EO or EQ depending on the particular
processing, but based on the fact that there is only 1 FP difference between an
EO and EQ, this corporation chose to simplify the FP process by stating all
outputs of this type will be counted as EO’s.)

If the functionality additionally presents data to the host application screen
(retrieved from the application to be counted), then 1 EO is also counted for
the sending application (the application to be counted) and 1 EI is counted for
the host application if the retrieved data is stored. (Authors’ note: again these
are simplified rule conventions for the insurance corporation. Strict IFPUG
rule adherence would involve ascertaining the output to be an EO or EQ, and
determining whether data into the host application was stored simply dis-
played. These site-specific rule conventions eased the counting burden while
maintaining consistency and repeatability of counts.)

Log-On

A log-on function that invokes security control (validating the log-on ID/pass-
word combination) is usually counted as 1 EQ, unless the system behavior is
changed and/or if ILFs are changed by it, at which time it would instead be
counted as an EI.

Update

An update function that causes a data update of one of more ILF in batch or
interactive dialogue is counted as 1 EI. The files that are updated are in turn
counted as appropriate ILFs if they have not already been counted.

If the user can invoke identical functionality from multiple screens, then
such functionality counts only once. For example, if a customer addition can
be done from three separate screens with identical processing, it is counted as
an EI only once.

Multiple ways to initiate or launch the same function (e.g., Alt_+key, Add
+key, Key+enter) do not affect the fact that the function is counted only once.

Batch

1 EI is counted for each elementary process transaction that causes an update
to a data file and needs separate processing.

Migrations

Migrations are counted as 1 EI for each RET that it updates (internal rule).
Question for the counters: Are other outputs produced additionally, for example,
migration reports? If yes, Then they are each counted as 1 EO, too. (Strict

15.4 Typical Function Point Counting Experiences

424

IFPUG rules again would require determination of EO versus EQ for each re-
port. This counting convention simplified things be counting all migration re-
ports as EO.)

Screens

Radio buttons
Radio buttons typically represent data elements (DETs) as part of EI func-

tions or the input (selection) side of EO or EQ functions. Radio buttons in a
data group are counted as 1 DET since there can be only one field chosen.

Fig. 15.5. Radio buttons

Check boxes
Contrary to radio buttons, check boxes allow for multiple values to be checked

at the same time. Thus, each check box (as long as each is a unique, nonrecur-
sive, nonrepeating field) is counted as 1 DET. For example, the two check
boxes in Fig. 15.6 are counted as 2 DETs.

Fig. 15.6. Check boxes

Input and Output Fields
Input and output fields that cross into or out of the application boundary are

regarded (and counted) as data elements with the elementary process to which
they apply. The input and output fields for customer, street, postal ZIP code, city,
and date of last order in Fig. 15.7 are thus counted as 1 DET each as applicable
with one of more associated EI, EO, or EQ to which they are a part.

The input and output fields on screens are counted as DETs, ignoring literals,
and counting only once any field that is both an input and an output field.

If there is error handling (messages), confirmation messages, and/or mes-
sages asking if processing should continue in relation to an EI, EO, or EQ, then
that functionality is counted as 1 DET whether one or more of the message
types occur.

 15 Using Functional Size Measurement Methods

Both option fields in Fig. 15.5 are thus only counted (together) as 1DET.

425

For noncode tables (i.e., reference tables, rules tables, master files, etc.), the
unique, nonrepeated, nonrecursive columns are each counted as a separate
DET, without literals.

Enter or OK button(s) or PF keys (the total for all command/initiator but-
tons or keys) are counted as 1 DET together for the applicable function to which
they apply (trigger).

1 EO or 1 EQ is, e.g., counted for each of the following coherent processes
(as long as it meets the definition of IFPUG’s “elementary process”):

Retrieval of data displayed on a called screen or report (see the chap-
ter on IFPUG Function Points for details of how to discern an EO
from an EQ function)
When an elementary function is separated into several follow-up
screens, the function(s) must be counted as elementary functions (self-
contained) including the data elements from all follow-on screens to-
gether
If the same screen is used for the three elementary functions add,
change, and delete, then it is counted as 3 EI.

15.4.5 External Output (EO)

Are data transferred in batch transactions from the application to be counted to
an external application or user? If so, then this transaction is counted as 1 EO
or EQ in the sending application, and potentially as one or more EIs in the
receiving application.

EOs are also counted for elementary processes that create derived data or
involve calculations if the primary intent of the process is to present data to
a user (or another application). A process whose primary intent is to present
data outside the application boundary is either counted as an EO or an EQ –
but not both. (It is a binary choice between EO and EQ – see the chapter on
IFPUG rules.)
An elementary process designed to produce output, which purely retrieves
data from one or more ILF/EIF for display or presentation to a user is counted
as an EQ (not as an EO)
With EOs and EQs, all logical files (ILF/EIF) that are read or changed dur-
ing processing of the EO are counted as FTRs
With a delete, the implicit EQ (for showing the data to be deleted) is not
counted. (Note: Under IFPUG rules, an implicit query that displays data for the
user prior to a change or delete is counted once as an EQ as long as it is unique
functionality not counted elsewhere. NESMA rules differ in this area and do
not count any implicit EQ associated with change or delete functionality).

15.4 Typical Function Point Counting Experiences

426

Online Reports

Typical external outputs of applications with GUI are often online reports with
text and/or graphics. The same information can often be shown as follows:

Text
Pie chart
Bar chart, etc.

Each of these presentations is counted as 1 EO. The same holds if the reports
are printed on different media (online, paper, microfiche, etc.).

Author’s note: The question of how to officially count multimedia function-
ality according to strict IFPUG rules is currently under debate by a task force
within IFPUG. At the time of printing, there has been no definitive guidance
published. This corporation chose to again simplify things by counting all as
EO rather than having counters go through the process of determining whether
they were strictly an EO or an EQ.

Two reports with identical formatting, one on a detailed level, and one as
summary are each counted as separate functionality. The summary report (due
to calculations) is 1 EO, and the detailed report (depending on its processing and
whether it derives new data or contains calculations of its own) will be an EO
or an EQ.

A statement or parameter (unique) in a report generator required by the user
for flexible reporting is counted as 1 DET per parameter in the according report.

In graphic output there is only 1 DET counted for a text field and its numeri-
cal equivalent (note that to count 2 DET would incorrectly reflect the IT tech-
nical view rather than the user view).

An export file is counted as 1 EO or 1 EQ depending on the processing
involved.

Interfaces Client/Server Host

Export of data by the application to be counted (e.g., PC application) to an ex-
ternal application (e.g., host): typically 1 EO for the application to be counted, 1
EI for the host application. Are there any selection parameters delivered from
the host to request specific data as part of the transaction? If yes, then those
parameters (if unique from the output fields) will increase the DET count for the
EO or EQ that is output.

One EI is counted for each function and also for add, change, and delete
functions sent to the PC from the other host application.

 15 Using Functional Size Measurement Methods

427

15.4.6 External Inquiries (EQ)

Requests for data retrieval that come from outside the system boundary that
require delivery of data from the application to be counted, with the prerequi-
site that no processing (other than data retrieval) is done with the data in the
application being counted, are counted as EQ. This includes branching in the
dialogue of the other application (but the interface is not typically counted as
an EIF in this case).

EQs may be pairs of information flows that only read stored data, or may be
one-way data that goes out of the application where only data retrieval (and no
other processing) is performed (e.g., monthly data listing).

One update and one inquiry are counted as 1 EI and 1 EQ.
A screen with, e.g., 23 fields in the output part and 1 field in the input part
would be counted as an EQ – do not count the screen more than once!
For input parts of EQs or EOs, count as FTR only the file types that are used
in the transaction (normally zero), or more if they are additionally required.
Make sure you count the input part together with the output (display, file,
report) part that goes with it. (Note: NESMA also differs in this particular
area. See the chapter on FSMM’s for more details.)
Help is 1 EQ per level of help, not per screen and not counted as EO. Thus
for help functionality there is counted 1 EQ for each kind of help (system
help, dialogue help, field help) to a maximum of 3 EQs per application if all
three levels are present.
For output parts of EQs or EOs, count as FTR only files that are used in the
transaction (normally many).
Log on with security (password demand) counts maximally 2 FTR and 4
DET (user name, password, error, trigger).
An EQ with printed answer is counted as 1 EQ, not as EO.
List boxes or tables for choice are counted as EQ if they dynamically de-
liver data back from EIFs or ILFs. (i.e., lists of static values such as yes or
no do not count).
No EQ is counted for derived data (i.e., retrieval of data that are used for
calculation) – count an EO in that case.
Identical EQs shall not be counted multiple times (e.g., the same browse/
data retrieval before update and change would count as an EQ only once.
Identical queries invoked from different screens with identical processing
would count as an EQ only once).

Conversion

If there are no calculations for conversions, then 1 EQ is counted for inquiries.
Loading of data from an old application master file to update (convert) into the
new file counts as 1 EI.

15.4 Typical Function Point Counting Experiences

428

Branching

Branching into the dialogue of another application is counted as 1 EQ as long
as data is passed out to the other application (e.g., when branching into a cen-
tral customer dialogue for retrieval of a customer, the originating application
sends the customer identifier) and returned to the application to be counted.

Drop-Down Lists

Dropdown lists are typical for GUI interfaces. One has to distinguish between
dynamic and static list fields. Dynamic lists deliver the content retrieved from
an ILF/EIF at the moment when the user opens the list, which is counted as an
EQ. The static list fields deliver the content of the list field already at the ini-
tialization of the according dialogue or screen. Only the dynamic dropdown
lists are counted as EQ; the static ones are not counted at all.

Note that code tables create a unique sort of situation: even if code tables
are maintained by a user, they are not to be counted according to strict IFPUG
4.2 rules – this means not as ILF or EIF, not for maintenance (i.e., not as EI, EO,
EQ), not when its data is displayed in a list box (i.e., not as a drop-down EQ).

Often there can be found several follow-up inquiries combined with drop-
down list fields. As an example: A dialogue for showing customer information
contains a dynamic drop-down list for different customers along with display
fields of different customer information. When the user chooses a customer
from the list field, the display fields are filled with the additional customer in-
formation of the according customer (see Figs. 15.7 and 15.8). In this case, we
have two follow-up inquiries (2 EQs). The first is the choice of the customer
and the second is the display of the additional customer information.

Fig. 15.7. Drop-down list fields

 15 Using Functional Size Measurement Methods

429

Fig. 15.8. Example of dialogue customer data

15.5 Management Summary

One of the most challenging tasks is that estimates are required as early as
possible from both the customer (acquirer) and supplier (contractor) point of
view.

Early estimation requires good documentation of both the assumptions sup-
porting the FP estimating, and subsequently the estimates of work effort.

Ultimately, the counting and estimation data should serve as a treasure for
measurement programs.

Experiences show that valuable information can be gained from appropriate
analysis of collected data.

There is strong evidence that different environments lead to different results.
This means that each organization should develop its own heuristic solution(s).
Nevertheless, comparisons with other organizations are valuable for the enter-
prise.

Since Function Point counts use the requirements documents as a prerequi-
site, the so-called Function Point Prognosis or resultant estimates are valuable.

Experiences in the IT department of an international insurance company show
that the necessary high-level information required to even do a FP estimate can be
established early in discussions with the project leader.

Of course, planning based on relatively undocumented user requirements is
prone to high risk and margins of error due to the uncertainty of preliminary
estimates.

Another approach is to estimate the Function Points from the proportions of
the EIs, EOs, EQs, ILFs, EIFs.

15.5 Management Summary

430

This demonstrates how valuable it can be to collect Function Point count data
centrally so that organizational learning can occur and to be able to improve the
quality of estimates. Furthermore, the data demonstrate that the Function Point
Prognoses are specifically related to the development environment. They are
only to be used as rules of thumb for quality assurance of their practitioners’
own counts and estimates.

As interesting as this is the benchmarking of average Function Points, that is,
the answer to the question: “how many Function Points have an EI, EO, EQ,
ILF, or EIF typically?”

The average Function Points are said to be stable ratios in similar environ-
ments, and thus are appreciated as a rule of thumb for quick Function Point
Prognosis.

Early collection of the information about interfaces, component parts of the
project, and formal documentation of the same, along with a diagram of the appli-
cation boundary (later used for the organizational architecture atlas) are all pre-
requisites to establish early Function Point Prognosis. When accompanied by a
counting log (simple Word document with notes about special FP counting
decisions), the project gains a valuable overview about the application portfo-
lio and projects within. In general, these also might include reference numbers
(key figures) for quality assurance (percentages, rules of thumb).

Another well-known consequence of careful measurement and documenta-
tion of the Function Point counts is a higher level quality of the requirements
documents, since they are used, checked, and typically revised.

Note that it is always better to use your own organization’s functional com-
ponent average Function Point values rather than the IFPUG averages.

These findings, compared with those from other organizations, show that
such data collection can be used to find heuristic solutions for FP prognosis,
by using either Function Point proportions (typical FP), function ratios, reg-
ression formulae, or rules of thumb.

There is evidence that different environments demand tailored solutions; this
leads to our recommendation that each organization develops its own know-
ledge base (experience database) of heuristic solutions, and should distinguish
between different development platforms, etc., when doing so.

Function Points can provide valuable an input for work effort estimates.
Formulae are always only valid in the corresponding environment. Thus,

they cannot be used reliably as a 1:1 relationship with other organizations.
In multivariate analyses it is always found that more than one parameter (such

as functional size) influences the effort for system development.

 15 Using Functional Size Measurement Methods

431

The Function Point Method is well suited to be a part of calculating project
productivity. However, it must be stressed that productivity is not a personnel
metric, but rather a process metric influenced by tools, techniques, skills, pro-
gramming language, etc. As such, it should never be used to attempt to com-
pare persons or their productivity.

Organizations that make the mistake of ignoring this advance and attempt-
ing to measure people find themselves in a position of having to backtrack and
perform major damage control. Just do not do it!

The result of misusing productivity results in skepticism and mistrust of the
entire measurement initiative. Such a malpractice can destroy years of success-
ful nurturing of a metrics program in record time.

When comparing the productivity of projects and organizations, one always
has to regard that no two IT projects or organizations are exactly equal or com-
parable in the many parameters relevant to estimation and work effort.

Using the ISBSG Repository Data Disc R10 (ISBSG, 2007) with its research
tool “Early Estimate Checker V5.0,” it is possible to perform customized data
analysis with any subset of the more than 4,000 projects in the database.

15.5 Management Summary

16 Estimation of Data Warehouses, Web-Based
Applications: Software Reuse and Redevelopment

Data Warehouse and Web-based application development are an increasing
part of modern software development, but are different from conventional soft-
ware development in that they typically involve considerations of software reuse
and redevelopment.

These topics give rise to questions of how to measure the software size
on data warehouse developments and how to estimate effort when reuse and
redevelopment is involved. That is why this chapter deals with the special
aspects of sizing Data Warehouses and Web-based application development,
as well as work effort estimating with special consideration to software reuse
and redevelopment.

16.1 Function Point Counts of Data Warehouse Projects

Luca Santillo, a certified Function Point specialist (CFPS) in Rome, Italy, pre-
sented in 2001 in the international FESMA conference in Heidelberg, Germany,
his experiences with effort estimation of Data Warehouse projects. The follow-
ing is excerpted from his report.

The requirements of Data Warehouse projects are significantly different
from requirements of transaction oriented systems (see Table 16.1).

A Data Warehouse System consists of three parts: data collection, system
administration, and data retrieval (OLAP: Online Analytical Processing).

The system processes:

Should be consistent with the organizational structure (e.g., each organiza-
tional unit has its own Data Warehouse).
Should preserve the autonomy.

o Of the Data Warehouse regarding each data mart.
o Of each data mart regarding other data mart(s).

434

Table 16.1. Comparison of transaction oriented systems vs. data warehouse systems
(Santillo 2001)

Transaction oriented
systems

Data warehouse systems

Task Perform daily operations Retrieval and analysis
of Information

Structure RDBMS optimized for
transaction processing

RDBMS optimized for queries

Data model Normalized Multidimensional
Retrieval SQL SQL plus advanced analysis

Tools
Data type Operational data Data for analysis of business
Data characteristic Detailed Summarized and detailed
Data indexes Few Many
Data joins Many Some
Duplicated data Normalized DBMS Denormalized DBMS
Aggregates and derived
data

Rare Often

There are many users of a Data Warehouse System:

Data Warehouse administrator
Database administrator
Data retrieval (OLAP) Administrator
End-user
Each interface system.

Peter Hill, the executive director of ISBSG reports in the ISBSG Software
Project Estimation Workbook (1999) on page 19 the following information about
Data Warehouse Systems: “Many information systems are characterized by
code and reference-tables for checking the validity, consistency, and integrity
of other data, and for data selection. In Data Warehouse Systems the propor-
tion of code and reference-tables compared to functional size is about 60%
where “normal” MIS often have a proportion of 30–40%.”

For the measurement of the functional size of Data Warehouse projects,
many special aspects have to be taken into account for Function Point coun-
ting. In particular, the definition of the system boundary is of importance since
it strongly influences the measurement results. If misplaced, the system boun-
dary may give rise to improbable estimates.

16.1.1 Experiences of Star Schema Design Function Point Counts

Using a Star Schema design (see Fig. 16.1), Luca Santillo reported his findings
in function point counting.

16 Estimation of Data Warehouses, Web-Based Applications

435

Fig. 16.1. Star schema for a data warehouse system

Classification of Files

There is a special case of data collection when the Data Warehouse System
delivers the extracted information to the Data Warehouse (or the independent
data mart) by its own procedures (extraction, transformation, and filling). The
extracted information is not counted as EIFs because the system of origin (the
operational application) formats and sends the extracted information out of its
application boundary as an EO (if there are calculations or derived data as part
of the process) or an EQ (if there is not). The target system does not collect
this data and read it, instead it process into its boundary the extracted data –
this would count as one or more EIs in the receiving (target) application.

The data in a Data Warehouse System are organized in a new design, the so-
called Star Schema or multidimensional file model (which may be a snowflake
schema). Each star point of the schema would be counted as an ILF of the Data
Warehouse System.

Each existing and dimensional table is a RET of this ILF. Analogous to this
is each logical cube (an ILF) with N + 1 RETs, where N is the number of
dimensions (axes of the cube).

In case of the snowflake schema where the hierarchical dimensions are split
into their levels (e.g., month, quarter, year), the tables of the second order do
not count as additional RETs, because the already counted RET is valid for the
whole dimension (“time” in this example).

Each hierarchy consists of two DETs: the dimensions level and the value (e.g.,
time scale: month, quarter, year; and the time value: Jan, Feb,...QI, QII, 2007,
2008,...).

Other attributes in the tables (except attributes that implement an additional
hierarchy) are counted as additional DETs for the ILF (logical data).

16.1 Function Point Counts of Data Warehouse Projects

Sales

(Number, Price)

Customers

Dimensions
Table

Sales Channel

Dimensions
Table

Facts Table

Products Time

436

Technical metadata are generally not counted as independent ILFs. Ex-
ceptions (where the Data Warehouse administrator is the user) include the
following:

User profiles
Privileges
Processing rules
User statistics.

Some organizational metadata may be candidates for ILFs, for example:

Data dictionary (what is the meaning of the attributes?)
Historical data (when was a specific value given to an attribute?)
Data about persons responsible for data (who delivered a value to an attri-
bute?).

Classification of Transactions

Since reading the external data is from the Data Warehouse perspective, only
one logically completed process, there is only one EI counted for each identified
goal. Data administration of the Data Warehouse include the standard main-
tenance processes to update/change, delete, and view (browse) the metadata.

Use of the data warehouse data by end users is counted as an EO or an EQ
depending on the kind of usage. Thus, there is at least one EO or one EQ counted
per logical star of the Data Warehouse.

Drill down or pull up functions read the same logical files at different hier-
archy levels. These are all DETs of the same logical star. The different levels
of views are counted only once since they belong to the same EO or EQ.

The drill down trigger is usually delivered from OLAP tools in the form of a
list box for each drillable attribute. These functions are counted as 1 L EQ (drop
down) for each different attribute of each individual star.

16.1.2 Recommendations for Function Point Counting of OLAP
Cube Design

The competence center and its data warehouse developers at an international
insurance company in Germany built on Santillo’s approach and documented
the following ideas for counting OLAP Design Data Warehouses according to
the IFPUG Method. These are presented after a short description of some OLAP
specific concepts. The application in question has 3,173 unadjusted Function
Points with the following functional mix: 36% of uFP are ILF, 55% EI, 9%
EO, and 1% EIF and EQ (together). The IFPUG Value Adjustment Factor
(VAF) for the application was 1.07.

16 Estimation of Data Warehouses, Web-Based Applications

437

OLAP-Specific Concepts

OLAP (Online Analytical Processing) enables multidimensional representation
and evaluation of data, for use in controlling, accountancy, sales, etc. These data
are stored in an OLAP Cube where there are hierarchy and attribute dimensions.
Figure 16.2 depicts OLAP specific technical terms.

Fig. 16.2. OLAP specific concepts

Dimensions are structural components of multidimensional data cubes. Each
dimension consists of elements that can be aggregated to a certain type or con-
cept. The names of subsidiary organizations can be, for example, elements of a
dimension subsidiary (in case of an insurance these subsidiaries can include
life, health, auto, etc.). Dimensions represent an index to identify values in a
data cube.

Hierarchy is defined as the representation of levels in a dimension, which may
be composed of multiple hierarchy levels. In the insurance example above, the
dimension organization could have two hierarchy levels: the upper level with
the insurance holding, the lower with the subsidiaries.

Attribute dimensions are additional one- or multilevel hierarchies that des-
cribe or group elements (input-elements) of an existing (base-) dimension.

For navigation in the multidimensional hierarchic structures, drill downs
are used. This is done to decompose aggregated values. Within one dimension,
the aggregated value of a higher hierarchy can be decomposed into its compo-
nents (at a lower hierarchy level) by drilling down into the data.

The opposite situation is called roll up, where data are aggregated into
higher hierarchy level.

Aggregation or Consolidation is the aggregation of “deeper” values (i.e.,
from a lower level) to a higher hierarchy value, for example, by summing up.

16.1 Function Point Counts of Data Warehouse Projects

Time

Dimension

Measures

Basis Variable

Computed Variable

Virtual Variable

438

Measures or variables are the coefficients that exist in an OLAP cube. Nor-
mally there are a number of different types of variables, for example, base
variables, computed, and virtual variables. Virtual variables are computed on-
line at runtime.

All coefficients (measures or variables) are filled from a central fact file. This
fact file contains the content of the dimensions as well as the according values
per coefficient that are stored then in an OLAP cube.

All dimensions including time periods and coefficients (measures or vari-
ables) of an OLAP cube are listed as System files and count files, and are
counted as ILFs or parts thereof.

Classification of Data Function Types of OLAP Cubes

An OLAP cube is counted as a logical ILF, which can have several RETs.
Each base and computed coefficient (measures or variables) within an OLAP

cube is an ILF with at least one RET. In addition, each dimension is an ILF with
at least one RET. Computed coefficients (measures or variables) are, in this
context, variables that are computed based on existing base variables and are
physically stored in the cube.

Each user dimension coefficient (measure or variable) is counted as an ILF
with several DETs, which in this case are the number of dimensions and the
value. Virtual variables that are computed online are only counted as DETs in
reports or queries. The dimension “time” is also counted as an ILF, with its
values (e.g., month and year) each counted as a DET.

In each hierarchy level of a dimension there are two DETs: the hierarchy
level and the value.

The attribute dimensions and the time variable are additional RETs of the
according dimension. Each attribute dimension is, in this case, counted as one
RET.

Classification of Transactions of OLAP Cubes

The retrieval (read) of external data for batch processing from an OLAP cube
perspective represents a unique, logically self-contained, process. Each dimen-
sion file and each file per variable are counted as one EI. The use of the data
(sent outside the application boundary) by the end user is counted as either
an EO or an EQ, depending on whether the elementary process meets the
requirements for an EO (calculation, derived data, updating ILF, or changing
system behavior) or an EQ. When counting a report it will be either an EO or
an EQ multiplied by the number of dimensions and multiplied by the number
of logical media required by the user.

16 Estimation of Data Warehouses, Web-Based Applications

439

Note: At the time of this printing, the International Function Point Users
Group (IFPUG) was still debating how to resolve the issue of Function Point
counting of multiple output media. The international insurance corporation made
the independent decision to count each logical output media as a separate EO
or EQ as the user requested. For example, if a report was required online and
on paper according to the user requirements, the EO or EQ would be counted
twice. The FTR (file types referenced) to be counted in this case are the num-
ber of dimensions and the number of computed variables. DETs are counted in
the same way as reports in any other type of application and include all the user-
required, unique, nonrepetitive, and nonrecursive fields on the report and all
computed variables.

Drill down and drill up are two opposite ways to read the same data at dif-
ferent hierarchy levels. Thus, different levels of user-views are counted only
once since they belong to the same logical function.

The drill down trigger is, in OLAP tools, usually a list box for every drill-
able attribute. This mechanism is counted only as a low complexity EQ for each
attribute of each different logical dimension. For example, these are counted in
the same manner as drop down list boxes – low EQ – as they are in traditional
applications.

Virtual variables, which are computed online, are Eos.
The aforementioned approach clearly demonstrates that the Function Point

Method can be used for Data Warehouse counting, using the star schema,
snowflake schema, and OLAP Design. The American author instructs a one
day Function Points for Data Warehouses workshop with ample case studies
and practice. The workshop is taught as an onsite workshop, a public class, or
in conjunction with IFPUG events. See www.qualityplustech.com for further
details.

16.2 Estimating Web Development

Web development is different from conventional software development because
of its use of n-tier component-based architectures (often four or five tiers).
Often, existing applications are integrated. The implementation of component
based software is encapsulated. This functional orientation and independence
of implementation does not change the counting of Function Points, but sup-
ports the usage of the Function Point Method as part of the estimation appro-
ach for web development.

According to Magiera, the architecture and topology of web developments
is a challenge and hierarchically complex. These observations were reported
at the 2004 SMEF conference in Rome, and included an experience report in
using the COSMIC method for a web development.

16.2 Estimating Web Development

440

Web development can be categorized as follows:

Enhancement of existing applications by adding with “web front-ends” or
portals to the application
New development of complete web-based applications
Static web pages.

To perform the functional size measurement of new development or enhance-
ments, any of the five ISO/IEC conformant functional size measurement methods
(IFPUG, FiSMA, NESMA, COSMIC, or Mark II) can be used. Nevertheless,
web-based development will typically result in counting “peculiarities” or
challenges. The IFPUG New Environments Committee published a white paper
in the IFPUG homepage http://www.ifpug.org, with hints for counting an E-
commerce application with n-tier component based architecture. (In addition,
Quality Plus Technologies conducts a targeted one day knowledge transfer
workshop titled Function Point Analysis for Web-based Development. See
www.qualityplustech.com for further details.)

C. Jones wrote in the IFPUG IT Measurement: Practical Advice from the
Experts that there is a lack of empirical data for web development. He theorizes
that most of these applications are so small (less than 500 Function Points) that
organizations do not bother to function point count them. Albeit, there was mea-
sured high productivity for web development (more than 25 Function Points per
person month). The quality in these cases is not worse than a typical main-
frame application; however, it is observed that defects are found much earlier
because they are more visible if a website does not function correctly.

According to the peculiarities of the new environment there is one para-
graph in this chapter devoted to each of the following:

Estimation of web developments
Function Point counting of web developments
Software reuse and redevelopment.

In Practical Project Estimation, 2nd edition (ISBSG, 2005), Chap. 15 is dedi-
cated to estimating Web-based software development projects.

16.2.1 Enhancement of Existing Applications with Web Front-Ends

The rationale behind enhancing existing applications with web front-ends is
often the desire to present functionality of existing applications to a higher
volume and greater variety of users. Since web browsers are readily available
to most users in an organization, front-ends present themselves as cost-efficient
and quick-to-market solutions. The goal is often to save time and effort formerly
dedicated to software distribution and installation. Web-based applications
(especially portals or simple web-front end panels) can be much simpler in

16 Estimation of Data Warehouses, Web-Based Applications

441

structure and quicker to market with small teams than traditional application
development.

Front-ends are usually implemented using HTML-based forms, embedded
scripts, and dynamically generated HTML pages that communicate with exist-
ing applications or databases.

Estimates can, in this case, be done in the same way using expert estimation
as when estimating software development using other technologies. In addition,
performing an estimate based on Functional Size Measurement can also be ef-
ficient and expedient. This demonstrates again that the independence of func-
tional size measurement from the technology is a huge benefit.

The enhancement of an existing application with an inquiry dialogue imple-
mented using web technology is, for example, counted with Function Points as
an enhancement. In IFPUG terminology, the inquiries coded in the web front-
end are counted as EQs or EOs, and updated or otherwise altered master files
are counted as ILF or EIF according to the Function Point rules. Other peculi-
arities of the Function Point counts of web applications are dealt with at the
end of this chapter.

After the functional size of an enhancement is done, the effort can be esti-
mated using productivity ratios from experience data.

Important: Since the productivity of web applications varies greatly from
developments built with other technologies, it is critical to develop special
experience databases.

The rapid time-to-market demanded for web-based development (rapid pro-
totyping, agile programming) mostly imply unstable, poor, or evolving require-
ment concepts. This can challenge functional size measurement, especially when
the project team does not yet know what the requirements will be. The rapid
adoption of new technologies in an organization can lead to the result that
collected measures, and measurement processes can quickly become outdated
at the time of implementation.

16.2.2 New Development of Complete Web-Based Applications

Web-based applications are principally classic client/server applications with
front-end web technology. Usually the user logic is represented in an applica-
tion server and the data in a database server. Together with the client this
constitutes the so-called classical three-tier architecture (see Fig. 16.3). For
functional size measurement the same rules hold as for regular applications.

16.2 Estimating Web Development

442

Fig. 16.3. Three-tier architecture for a web-based application

Frallicciardi proposed four usability measures for web-based applications:

End-user efficiency to be measured on the basis of the following:
o Highlighting of mandatory fields
o Drop-down lists
o Navigational help
o Online help files

Completeness:
o Number of user accesses to online help functions
o Number of quickly exited web pages
o Number of error messages occurring during a session
o Required time to navigate to another web page

Effectiveness based on the following:
o Daily number of transactions cancelled by the end-user
o Daily number of sessions cancelled without completing a transaction

Efficiency based on the following:
o Necessary time to successfully complete a transaction
o Number of transactions successfully completed during a certain time

period (e.g., 1 h).

16.2.3 Static Web Pages

Static web pages present different challenges to the estimation of effort for the
development of static web pages. Static web pages are different hard-coded,
HTML pages linked to each other. Web pages can contain both textual and
multimedia objects (movies, sounds, etc.). The layout and linking of the pages
is done with special development tools (HTML editors), code generators such
as MS Frontpage, or directly with an integrated text editor.

Effort to complete this kind of web-based development is not contained in the
implementation of user functionality, but rather in programming and linking the

16 Estimation of Data Warehouses, Web-Based Applications

CLIENT APPLICATION-
SERVER

DATABASE-
SERVER

Presentation
Logic

Application Logic,
Business Rules

Data Access
Logic

L
A
N

L
A
N

443

content elements. Because of the interpretations of the IFPUG rules (see www.
ifpug.org), there are typically zero FP associated with software developed for
static web pages. As such, the IFPUG method is not well suited to count static
web pages or menu linked pages.

The ISO/IEC conformant FSM method: FiSMA 1.1, identifies and counts
function lists and function designators as logical user functionality. These two
types of functions are required by the users and FiSMA 1.1 can be applied to
provide counts for the functions, some of which may physically manifest
themselves as menus or icons in the final implementation. Refer to the chapter
on FSMMs for further details.

This leaves the estimator to do an expert estimate on the basis of the num-
ber and size of pages, complexity of links, etc.

16.2.4 Function Point Counts of Web Applications

Since web applications are a relatively new application area for Function Point
counting, a collection of FAQs (Frequently Asked Questions) from daily coun-
ting and some handy examples have been collected. These hints for handling
daily questions should be an aid from the experiences of other organizations
and should not be misunderstood as a new standard.

It can be difficult to define the system boundary since web applications are
often embedded in n-tier architecture and often combined with ERP (Enter-
prise Resource Planning, e.g., SAP or People soft) systems. The ERP systems
must be customized and reconfigured in these cases. The ERP programmable
business objects and remote function calls (RFCs) of these systems are usually
counted as EIs along with associated ILFs that they maintain. There may also
be EIFs. Often MIS software are combined with web applications. The inter-
actions with other applications can be a challenge for identification of EIFs
and ILFs, as well for the definition of the boundary.

Often the number of end-users cannot be estimated and potentially can be
extremely large. There are also a number of new kinds of end-users: webmas-
ters and application administrators.

Besides this, the determination of the elementary process transactions (EI,
EO, EQ) can be sometimes troublesome as there can be many more transac-
tions as compared to traditional development.

It is important to recognize the elementary processes beyond a single web
page, since logical business functions often require many physical web screens
with embedded navigation and end-user efficient (technical) GUI oriented imple-
mentations.

16.2 Estimating Web Development

444

Beyer and Tolomei described their experiences with measuring the func-
tional size of a B2B (Business-to-Business) E-Commerce project. The system
comprised a web-based marketplace processing real-time transactions. The
authors present the problem that web-GUIs were built dynamically. Hence DETs
and FTRs from EIs, EOs, and EQs change during runtime. There exist also
more drill downs and combo boxes with more complex and dynamic queries
than are found in common, non-web based environments. Thus, the proportions
of EQs to EIs and EOs are typically higher than in host or Client/Server appli-
cations.

J. Jones reported in the IFPUG IT Measurement – Practical Advice from
the Experts an example of the Function Point count of the Java Pet Store (JPS).
This example can be recommended to readers who want a first exposure to web-
based application functional sizing.

An international insurance company made the following experiences
with Function Point counting during the development of a B2C (Business-
to-Customer) web application.

Classification of Data Function Types of Web Applications

ILF: ILF are counted for Resource Property Files with user relevant entries. If
there is the functionality to define text paragraphs (user maintained) for use in
automatic letter assembly or generation, then an ILF should be counted for those
standard paragraphs (also the maintenance functions of add, change, delete, and
a query function would be counted as appropriate if they are used with this ILF).

For all XSL-scripts, one ILF in total is counted, where each recognizable
different script is a DET. Content pages are also counted as ILF with each
content page representing a RET. An event log file is also counted as an ILF.

EIF: The PDF documents are counted as one EIF for all content together, with
one RET for each functional requirement and as many DETs as there are pages.

Classification of Transactions in Web-Based Applications

EI: Login is typically an EI because of the event login writing that updates an
ILF, with one DET for each event. The business functions password forgotten
and change password are counted as 1 EQ (retrieval of password for display)
and 1 EI (update password), respectively.

EO: Letter writing is one or more EO or EQ.
EQ: Links to other systems are counted as 1 EQ low each as long as data is

passed (e.g., userid, product description, sending system, etc). Links to navi-
gation functions only are not counted.

16 Estimation of Data Warehouses, Web-Based Applications

445

Each business function that uses a content page is counted as 1 EQ. Static
pages (HTML or JSP – Java Server Pages) are counted as 1 EQ if they repre-
sent a business function. The input part is 1 DET for the trigger. The output part
has 0 FTR and 1 DET for the content of the page. Each function referencing
an XSL-script is counted as an additional FTR. If a JSP contains static content
as well as input and output fields then it is not counted. Each call to a PDF form
is counted as 1 EQ with the number of pages equal to the number of DETs.

Important: Other organizations often use the following standard for counting
PDF documents: if it is a system that creates PDF documents from operative
data then the stored document data are counted as an ILF, and creation and
storage of the PDF document are counted as EI functions (create and store is a
single elementary EI together). If the document is not stored it is 1 EQ or EO
instead. Viewing a stored PDF (if counted as an ILF or EIF) is then 1 EQ.

DET: Comments and error messages created by Java Script or JSP (Java
Server Pages) are only counted as 1 DET for each business function. Each entry
of events in the user-requested events log file is counted as 1 DET.

IFPUG General System Characteristic (GSC) Values for Web Applications

There is an essential difference from classical host applications for the adjusted
function points of web-based applications. Web applications are similar to
Client/Server applications in that they typically score high on half of the char-
acteristics. GSCs are part of the IFPUG Function Point Method that attempt
to evaluate nonfunctional requirements, for example,

1. Data communication:
 TP systems with multiple protocols, classified as 5

2. Distributed processing:
 Online and in both directions, classified 4 or 5

3. Performance:
 No particular score, but if 24 × 7 access is required and sub-second res-

ponse time is essential in the application, then this is typically 3 or 4 or 5
4. Heavily used configuration:

 May or may not be applicable
5. Transaction rate:

 If application is similar to high volume site such as Amazon.com with
constantly high transaction volume, then this is typically going to be 3
or higher

6. Online data entry:
 More than 30% of EIs are interactive data entries, classified 5

7. End-user efficiency:
 Prototyping with many user efficient functions, classified 4 or 5

16.2 Estimating Web Development

446

 Maybe applicable, depends on what the functionality of the application
includes

9. Complex processing:
 Password control (security), complex logic, multimedia, classified as a
minimum of 3

10.Reusability:
Reuse of code on multiple levels can typically score as high as 4 or 5

11. Installation easy:
May or may not be applicable

12.Operational ease:
May or may not be applicable

13.Multiple sites:
Implementation across many different unknown sites or browser soft-
wares, often scores 2 or higher

14.Facilitate change:
May or may not be applicable.

Thus the VAF of web applications sums up to 0.98 for only a subset of the
GSCs and is higher in total.

For the example count of the Java Pet Store (JPS), the VAF was 1.22; and
the IIC for a B2C application scored a VAF of 1.07.

The IFPUG Practices Committee has studied the relevance of the 14 GSCs
for new development. With the exclusion of the GSCs from the ISO/IEC stan-
dard (IFPUG Vs. 4.1), the GSCs have waned in overall industry adoption – even
among IFPUG users. The current IFPUG Counting Practices Manual (CPM)
release 4.2 includes the GSCs (and new textual guidance words). However, to
be an ISO/IEC standard, the GSCs must not be part of the functional sizing
process. This does not mean that an organization must abandon the GSCs,
quite the contrary. It means that the VAF is outside the ISO definition of what
constitutes functional size measurement.

16.2.5 Estimating Web Development with the CoBRA Method

The CoBRA method (Cost, Benchmarking, and Risk Assessment) was deve-
loped at the end of the nineties by the Fraunhofer Institute for Experimental
Software Engineering (IESE). It was used in 1998 by a large German software
development organization in a pilot project (using SLOC as size measure) for
a small Australian software development organization developing web appli-
cations. Melanie Ruhe (winner of the DASMA students’ thesis award 2003)
reported in her thesis about this project and the applicability of the CoBRA
method.

16 Estimation of Data Warehouses, Web-Based Applications

8. Online update:

447

The following cost drivers (similar to those used in COCOMO II and in the
ISBSG reports) were identified by the experts in Ruhe’s research:

1. Degree of innovation of the requirements (rank 1.3)
2. Speed of change in requirements (rank 1.8)
3. Quality of project management (rank 2.6)
4. Participation of end users (rank 2.6)
5. Quality of specification methods (rank 2.9)
6. Project team communication skills (rank 3.4)
7. Software reliability (rank 4.5)
8. Technical skills of the developers (rank 4.7)
9. Technological experience of the project team (rank 4.7)
10. Degree of innovation of the technology (rank 4.8)
11. Maintainability (rank 5.1).

Sensitivity analysis showed that the cost drivers 2 and 3 had the most influ-
ence on work effort. Ruhe investigated 12 projects in her thesis, and sized them
using the WEBMO method (see following chapter) and the COSMIC method
as suitable. Measurement improvements were reported in the range of a 20%
on average to estimating accuracy.

16.2.6 The WEBMO Estimation Method

The WEBMO estimation method was developed in 2000 by Donald J. Reifer
(USC) on the basis of 64 software projects. It is an enhancement of the
COCOMO II Early Design Model. It measures software size using Web Objects,
and is a modification of Function Point counting tailored for Intranet and Inter-
net environments. The Web Objects are then used to estimate KSLOCs and,
from these, the effort. The Web Objects measure the five Function Point com-
ponents, plus the following four components (see also Fig. 16.4):

1. Multimedia files
2. Web components
3. Scripts
4. Links (XML, HTML, and code lines of query languages).

16.2 Estimating Web Development

Using the CoBRA method, a causal model is developed with expert knowl-
edge and factors influencing effort. For this reason, the size of completed pro-
jects, together with the size of the new software (the project), are measured.
The influencing factors are evaluated, and then the effort and cost drivers
of the completed projects are taken into account. With this data, Monte Carlo
Simulations are performed leading to a “likelihood distribution” of effort. In
this way, the effort can be estimated followed by the discussion of risks.

448

Operands and operators must be distinguished and the classification is done
with tables similar to those used in the IFPUG Function Point Method. There
is a table for SLOC per Web Object depending on the programming language.
Together with nine cost drivers (similar to the COCOMO II Early Design
Model) the project effort and duration can then be estimated using the for-
mulae provided.

Similar to Sneed’s Object Points, the WEBMO method documentation leaves
the reader with outstanding questions (especially for recognition of Web
Objects).

16.3 Software Reuse and Redevelopment

Many IT projects today use existing (legacy) software and then add new func-
tionality. This can be more cost effective than total replacement or redevelop-
ment. Adding new functionality to existing software seems to generate less
effort than new development, and the budget is often lower and easier to approve.
Software project effort, however, depends on many factors and this idea has
still to be verified.

16 Estimation of Data Warehouses, Web-Based Applications

e

System Boundary

Input
(EI)

Output
(EO)

Internal
File

(ILF)

Inquiry
(EQ)

External
File

(EIF)

Web Building
Blocks

Multi-
media-
Dateien

Scripts

Links

Fig. 16.4. Counting components for the web objects method (Refer, 2000)

449

One of the most important factors of software development is the development
of new components for reuse. This has the advantage that existing function-
nality (and often the associated function point count of the component func-
tions) can be reused. The result should be an increase in the productivity of the
IT department, and also in the efficiency of Function Point counts. Thus the
proverb holds:

Reuse can be a key success strategy. Reuse is especially utilized for hori-
zontal services such as support and connection of components and platforms
with functionalities, like, for example, security, transaction management, view
into directories, data management, and others.

Reusability saves development costs and therefore can influence the ROI of the
project. Thus, the effort dedicated to the implementation of reused components
should be measured separately in order that the correct ROI can be calculated.
This means that effective reuse depends on the existence of a data dictionary
and richly documented components.

The decision about which components should be developed as reusable is
one of the most important decision to be made at the beginning of a project.
Therefore, we recommend that a special workshop be organized with the pro-
ject team. Of course this does not preclude the need for the regular estimation
conference as outlined previously.

Functionality that is reused should not be function point counted more than
once if it was already counted in the application. Design for reuse is often be-
comes an issue when measurement and estimating using functional size meas-
urement are initiated. Reuse can have a positive effect on work effort (design,
coding, and testing of components is already done) or a negative effect on work
effort (if additional project teams and stakeholders must be interviewed and
involved in the project). As such, the Finnish Software Measurement Associa-
tion (FiSMA) has developed a reuse multiplier that is used together with Func-
tional Size, Situation Analysis, and an appropriate delivery rate from ISBSG
or based on a reliable Experience database, to estimate work effort. Their
FiSMA Reuse Analysis is outlined in a paper available for download in English

Pro software from 4SUM Partners (www.4SUMPartners.com).
Santillo recommends the following activities when sizing a project where

reuse of existing software packages is involved:

Re-design can evolve if adaptations for the new objective cannot be inte-
grated in the existing design. This requires adding an adaptation of already
developed functionality (reword) to this project.
Re-implementation is necessary in the form of new code.

16.3 Software Reuse and Redevelopment

®from www.fisma.fi/in-english/methods and it is also included in Experience

450

Re-test is required when neither redesign nor reimplementation occur. This
is a necessary prerequisite to guarantee the usability of the software func-
tionality in the new environment.
Besides the reuse of existing software, redevelopment of existing software

may be done instead of new development. For such projects, there is often only
a technical design necessary and only minor and few changes, if any, to hard-
ware and software. For this type of project, automatic tools for code genera-
tion can be used.

The ISBSG benchmarking database (release 8) contains 55 redevelopment
projects (3%) out of a total of 2,027 projects (56% of the total are enhance-
ments and 41% new development). Out of the 55 redevelopment projects,
there are two with a size of more than 2,300 Function Points, six larger than
2,000 FP, eleven larger than 1,000 FP, and the remaining thirty projects are
less than 500 FP. The median for the size of the redevelopment projects is
close to 1,000 FP. Of the total number of 2,027 projects, 99 had a goal to cus-
tomize standard software (3 were redevelopment projects, 36 were new devel-
opments, and 59 were enhancement projects).

Seventeen of the redevelopment projects delivered detailed information
about the Function Point components (see Table 16.2).

Table 16.2. Proportions of FP components in redevelopment projects

Percentage EI EO EQ ILF EIF
Median 32.7 24.9 9.2 24.1 9.1
Average 32.5 23.8 9.2 25.0 9.5

The FP proportions for redevelopment projects are similar to new develop-
ment projects, with slightly higher percentage of EIs and EIFs and slightly lower
EQs.

Phase proportions of the redevelopment projects compared to new develop-
ments and enhancements are shown in Table 16.3 (reference ISBSG, CD r8).

Table 16.3. Phase proportions for the various types of software development

Phase All projects New development Redevelopment Enhancement
N % N % N % N %

Planning 4 6 7 3
Specification 23 20 9 27
Programming 41 48 29 37
Test 22 17 14 26
Installation 10 9 41 7
Sum 363 151 22 190

16 Estimation of Data Warehouses, Web-Based Applications

451

Furthermore, ISBSG also published the defect density (see Table 16.4) and
Project Delivery Rate (PDR, see Table 16.5) for the same data.

Table 16.4. Defect density expressed as defects per FP

Defect density N Median (defects/FP) ISBSG release 8
New development 165 (52%) 0.0179 1 defect per 56 FP
Redevelopment 8 (3%) 0.0203 1 defect per 49 FP
Enhancement 142 (45%) 0.0182 1 defect per 55 FP
Total number of
projects

 315

Table 16.5. Project Delivery Rate (PDR) in hours per FP for various types of software
development

PDR (hours/FP) N Median (hr/FP) Average (hr/FP)
New development 173 8.8 12.9
Redevelopment 8 23.6 19.6
Enhancement 303 13.3 17.0
Total or average 484 11.4 15.5
Note: in Table 16.5 - a higher PDR indicates a lower productivity.

16.4 Management Summary

The requirements of Data Warehouse projects are significantly different from
requirements of transaction oriented systems.

In Data Warehouse Systems the proportion of code and reference-tables com-
pared to functional size is about 60%, where “normal” MIS often have a propor-
tion of 30–40%.

The data in a Data Warehouse System are organized in a new design, the so-
called Star Schema or multidimensional file model (which may be a snowflake
schema).

OLAP (Online Analytical Processing) enables multidimensional representa-
tion and evaluation of data for use in controlling, accountancy, sales, etc.
These data are stored in an OLAP Cube where there are hierarchy and attribute
dimensions.

The aforementioned approach clearly demonstrates that the Function Point
Method can be used for Data Warehouse counting, using the star schema,
snowflake schema, and OLAP Design.

Web development is different from conventional software development
because of its use of n-tier component-based architectures (often four or five
tiers). Often, existing applications are integrated. The implementation of com-
ponent-based software is encapsulated.

16.4 Management Summary

452

The rationale behind enhancing existing applications with web front-ends is
often the desire to present functionality of existing applications to a higher
volume and greater variety of users.

The rapid time-to-market demanded for web-based development (rapid pro-
totyping, agile programming) mostly imply unstable, poor, or evolving require-
ment concepts.

The rapid adoption of new technologies in an organization can lead to the
result that collected measures and measurement processes can quickly become
outdated at the time of implementation.

Web-based applications are principally classic client/server applications with
front-end web technology. Usually the user logic is represented in an appli-
cation server and the data in a database server.

There is an essential difference from classical host applications for the ad-
justed function points of web-based applications. Web applications are similar
to Client/Server applications in that they typically score high on half of the
characteristics.

Reuse can be a key success strategy.
Reusability saves development costs and therefore can influence the ROI of

the project.
Functionality that is reused should not be function point counted more than

once if it was already counted in the application.
Besides the reuse of existing software, redevelopment of existing software

may be done instead of new development.

16 Estimation of Data Warehouses, Web-Based Applications

17 IFPUG Function Point Counting Rules

This chapter comprises the most important definitions and rules (without the
hints, examples and further explanations) of the Counting Practices Manual
(CPM) of the IFPUG Release 4.2, for example, the definitions for type of count
and system boundary, the counting rules for the files (ILF, EIF) and transactions
(EI, EO, EQ), as well as for the 14 GSCs. There is intentionally some redun-
dancy with the chapter about “The IFPUG Function Point Counting Method”
in order to increase readability. This chapter focuses more on the technical rule
details, while Chap. 11 is aimed to provide an overview.

Note that while IFPUG infrequently produces updated releases to its CPM,
the core rules have not changed since release 4.0 in 1994. In addition, the com-
plexity matrices for each counted function (i.e., what constitutes Low, Aver-
age, or High for each function) and the FP values of each have not changed
since their introduction in 1984. It is not anticipated that IFPUG will modify
any of the core rules in the counting practices manual for many years to come,
however, guidance on how to apply the rules in emerging technologies will
continue to be published. Readers who are using IFPUG as their FSM stan-
dard are recommended to stay current with the guidance documents by visiting
www.ifpug.org.

As of 2009, IFPUG plans to publish its core manual of counting rules in
conjunction with ISO/IECs routine 5 year maintenance cycle for all ISO/IEC
international standards, and publish a separate document that includes the rule
interpretations and examples of how to apply them in practice. IFPUG 4.2 and
earlier releases of the CPM were published as an all-inclusive document (some-
times supplemented by interim white papers) and the size was an unwieldy 300+
pages of rules, rule interpretations, examples, exceptions, etc., all interspersed
in a single tome. The new strategy of publishing the Function Point Counting
rules as an independent and standalone document (which will also be the ISO/
IEC standard) of less than 50 pages will streamline the understanding and, hope-
fully, the dissemination and widespread use of the IFPUG method.

17.1 Overview of IFPUG CPM Release 4.2 (Also known
as IFPUG 4.2)

The following Table 17.1 summarizes the major process steps involved in
performing an IFPUG FP count.

454

Table 17.1. IFPUG FP counting steps overview

1. Determine the type of count
2. Determine the purpose and scope of the count, and the application boundary
3. Identify and classify the files (data function types) and logical transactions (trans-
actional function types):

ILF (Internal Logical Files): Internal logi-
cal files with their logical record types and
data elements; data that are maintained
within the application boundary. These are
persistent logical entities maintained within
the application boundary.

(3a) Data
Function Types

EIF (External Logical Files): External
interface files with their logical record types
and data elements; data that are maintained
by users in another application outside the
application boundary (i.e., from other appli-
cations). These are persistent logical entities
referenced (only) but not maintained by the
application being counted.
EI (External Inputs): External input
functions with their logical data groups
and data elements.
EO (External Outputs): External output
functions with their logical data groups and
data elements.

(3b) Transaction
function types

EQ (External Inquiries): External inquiry
functions with their logical data groups and
data elements.
1. Data communications
2. Distributed data processing
3. Performance
4. Heavily used configuration
5. Transaction rate
6. Online data entry
7. End-user efficiency
8. Online update
9. Complex processing
10. Reusability
11. Installation ease
12. Operational ease
13. Multiple sites

4. Determine the
value adjustment
factora

Determine the
value adjustment
factor (VAF) by
scoring 14 general
system character-
istics (GSCs)
according to their
degree of influ-
ence [DI, on a
scale from 0 (no
influence) to 5
(strong influence)]

14. Facilitate change
5. Calculate the
adjusted FP
counta

Multiply the unad-
justed FP from 3
by the VAF in 4

Result is adjusted FP

aNote that steps 4 and 5 go beyond the ISO/IEC definition of “Functional Size Measurement” because
it considers the impact of nonfunctional factors (the GSCs). As such, these steps are optional and not
mandatory in the ISO/IEC 20926 IFPUG 4.1 unadjusted FP method. The authors recommend that 2
additional steps be done for implementation of any FSM Method: 6. Document the count; and 7. Per-
form Quality Assurance on the count. Further details are included in previous chapters.

17 IFPUG Function Point Counting Rules

455

17.2 Determine the Type of Count

The IFPUG Function Point Method distinguishes three types of counts, two of
them for IT projects:

Note that the word “project” in the context of Function Point (FP) counting
refers to the new development or enhancement of a single software application.
As such, if the business or user defines a project and groups several FP “pro-
jects” together for accounting or other purposes, there must be several FP counts
done - one for each of the applications involved. Further details follow.

1. New development (project)
2. Enhancement (project)
3. Application (baseline).
The relationships between these types of counts are shown in Fig. 17.1.
A new development project is the first build of an application. This means that

all of the functionality is new (added) and we count the added (=delivered) and
conversion Function Points as applicable. Consider this similar to a new con-
struction project.

Fig. 17.1. Types of IFPUG FP counts and their relationships to each other

An enhancement project can add functionality to an existing application, as
well as change or delete it. Accordingly for the enhancement project count, only
the added, changed, deleted, and conversion (as applicable) Function Points are
counted. Consider this similar to a renovation project.

At the completion of an enhancement project, the application baseline Func-
tion Points (after the enhancements have been applied) must be evaluated.
This is similar to updating the square foot size of a building after a renovation
is complete.

17.2 Determine the Type of Count

Project B
Enhancement

FP Count after
requirements (1')

Project B
Enhancement

FP Count at install (2')
-update of count 1'

Project
Post

Mortem

Project A
New Development

FP Count after
requirements (1)

Project A
New Development

FP Count at install (2)-
update of count 1

Project
Post

Mortem
FP‘s of the installed

Application (FP
Baseline)

initializes

updates

New Functionality (ADD) and
Conversion Functionality (CFP)

New (ADD), Deleted (DEL) and Changed
Functionality after Change (CHGA) and Conversion

Functionality (CFP)

Functionality of the
Application after New

Development or Enhancement
(FP-APPS)

456

17.3 Determine the Purpose and Scope of the Count
and the Application (System) Boundary

Note: In the following text, the word application is often used interchangeably
with the word system to mean a piece of software.

The Function Point Method according to IFPUG 4.2 (IFPUG 2004) distin-
guishes between the size of a piece of software under development (Counting
scope) and the size of an installed application. To quote Frank Mazzucco, past-
president of IFPUG, project FP (development or enhancement projects) are FP
“in motion” (i.e., being worked on), while application FP are FP “at rest” (i.e.,
the base size of the installed application).

Another way of looking at the project vs. application FP is to consider that
the project size is the size of the floor plan being worked on (new construction
or renovation area), while the application size is the size of the floor plan as
it exists after the new construction is done, or at the end of a renovation (i.e.,
application count is a point-in-time functional size).

The FP count of an enhancement or development project can involve new
development and changes to several applications (each having its own set of

cation boundaries.
The definition application boundary for an application to be counted

determines what functionality is contained within the application and what func-
tionality belongs to other application(s).

The application boundary is to be positioned based on the user view. As can
be seen from Fig. 17.2, the user is outside the system. After determining the
boundary, the logical data files (entities) maintained by the application (create,

referenced by the application but maintained externally (entities in other
applications) are considered to be EIFs. In enhancement projects, the system
boundary for the enhancement must be consistent with the boundary of the
base system.

Because the application boundary significantly affects the application
functionality (i.e., what functions are performed by the software vs. what func-
tions are outside the scope of the software), it is important for it to be docu-
mented clearly. This includes the description of assumptions that were used to
position the application boundary.

Practically this system diagram can easily be reused in, or as, architecture
diagrams in the applications atlas of the organization.

Figure 17.3 presents one company’s standard to define an application.

17 IFPUG Function Point Counting Rules

functionality from the “user view”), and thus involving several different appli-

add, change, delete, merge, etc.) are counted as ILFs, and that data which is

457

Fig. 17.2. Defining the application boundary

Fig. 17.3. Example of a company standard for definition of application system (AS)

17.4 Count Unadjusted FPs

To count the unadjusted FPs, the data function types and transaction function
types must be identified and classified according to their complexity (see
Fig. 17.4).

17.4 Count Unadjusted FPs

There exists at least one user.
Business cases of the AS are processed until the case is fully
elaborated (excluded are central interfaces and follow-up
processes).

Additional Hints for Determination of AS:

organizational units.
The borders of the AS should be defined from
the user view and not from technical view.
Define the AS boundaries consistently as you will want
to measure and compute your metrics to be comparable.

Attributes for Definition of Application Software (AS)
according to IFPUG 4.2 Rules (IFPUG 2004)

Application Boundary Other
Application Boundary

User (any person, thing, other software or
hardware that has the need

to intract with the system or application)

Input
(EI)

Output
(EO)

Inquiry
(EQ)

Internal
Logical File

(ILF)

External
Logical File

(EIF)

EI

EO

EQ

AS may be administered by different

458

Fig. 17.4. IFPUG method base functional components: data function types and transaction
function types

17.4.1 Classification of the Data Function Types

It has always to be regarded that all of the function types (also called Base
Functional Components or BFC in ISO terminology) are based on the logical
perspective of the user.

This holds true for the data function types – they are regarded only from the
user viewpoint.

ILF: (internal logical file) persistent logical data groups (entities) that are
maintained by the software within the application boundary
EIF: (external interface file) persistent logical data groups (entities) that are
maintained by another application outside the system boundary and only
referenced by the application being counted.

The IFPUG definition of the term maintain pertains to elementary, logical
processes that cause the data within an ILF to change – as in creating the file,
adding or inserting new data, changing or updating data, and deleting data. For a
logical data grouping to be considered as an ILF, at least one variation of these
four types of data manipulation must be identified as a function of the software.
If the logical data grouping is maintained by another application and refer-
enced or read (but not maintained) by the system being counted, then the data
grouping is considered to be an EIF.

The complexity of internal and external files depends from two factors:

The number of data elements (DET, Data Element Types)
The number of logical subgroups or record element types (RET).

17 IFPUG Function Point Counting Rules

Data Function Types

External Query
(EQ)

External
Output
(EO)

External
Input
(EI)

External Interface
File

(EIF)

Internal Logical
File

(ILF)

Number of data-element types(DET),
Number of referenced files: File Types Referenced (FTR).

Number of data-element types (DET),
Number of logical record element types (RET).

Complexity of function type
measured by:

Transactiona Function Types

459

IFPUG defines these terms as follows:

DET: A Data Element Type is a unique, user recognizable, nonrecursive field
(in an ILF or EIF).

RET: A Record Element Type is a user recognizable subgroup of data elements
within an ILF or EIF.

Note: All of the text that follows in the Sects. 17.4 and 17.5, unless other-
wise noted, were taken from the IFPUG CPM release 4.2 (2004). To obtain a
copy of the current CPM, refer to the IFPUG website at http://www.ifpug.org.

Rules for Determination of RETs

A RET is a user recognizable subgroup of data elements within an ILF or EIF.
There are two types of subgroups:

Optional subgroups are those that the user has the option of using one or
none of the subgroups during an elementary process that adds or creates an
instance of the data

Mandatory subgroups are subgroups where the user must use at least one.

One of the following two rules applies when counting RETs:

Count a RET for each optional or mandatory subgroup of the ILF or EIF
If there are no subgroups, count the ILF or EIF as one RET.

Rules for Determination of DETs

A DET is a unique user recognizable, nonrepeated field.

1. Count a DET for each unique user recognizable, nonrepeated field main-
tained in or retrieved from the ILF or EIF through the execution of an
elementary process. For example, an insurance number separated and
stored in several physical fields is counted as 1 DET

2. When two applications maintain and/or reference the same ILF/EIF, but
each maintains/references separate DETs, count only the DETs being
used by each application to size that ILF/EIF

3. Count a DET for each piece of data required by the user to establish a
relationship with another ILF or EIF.

ILF Identification Rules

An ILF is a user identifiable group of logically related data or control infor-
mation maintained within the boundary of the application. The primary intent
of an ILF is to hold data maintained through one or more elementary processes
of the application being counted.

17.4 Count Unadjusted FPs

460

All of the following counting rules must apply for the information to be
counted as an ILF:

1. The group of data or control information is logical and user identifiable
2. The group of data is maintained through an elementary process within

the application boundary being counted.

EIF Identification Rules

An EIF is a user identifiable group of logically related data or control infor-
mation referenced by the application, but maintained within the boundary of
another application. The primary intent of an EIF is to hold data referenced
through one or more elementary processes within the boundary of the appli-
cation counted. This means an EIF counted for an application must be an ILF
in another application.

All the following counting rules must apply for the information to be counted
as an EIF:

1. The group of data or control information is logical and user identifiable
2. The group of data is referenced by, and external to, the application being

counted
3. The group of data is not maintained by the application being counted
4. The group of data is maintained in an ILF of another application.

Tables 17.2 and 17.3 show the complexity and unadjusted Function Point
definitions of the data function types.

ILF and EIF Classification Rules

Table 17.2. Complexity of data (IFPUG CPM)

DETsRETs
1–19 DETs 20–50 DETs >50 DETs

1 RET Low Low Average
2–5 RETs Low Average High
>5 RETs Average High High

Table 17.3. Unadjusted Function Points for files (IFPUG CPM)

Complexity ILF EIF
Low 7 5
Average 10 7
High 15 10

17 IFPUG Function Point Counting Rules

461

17.4.2 Classification of the Transaction Function Types

External Input (EI)

An EI is an elementary process that processes data or control information that
comes from outside the application boundary. The primary intent of an EI is to
maintain one or more ILFs and/or to alter the behavior of the system.

Counted are all inputs with different processing logic. Figure 17.5 shows a
company standard with rules of thumb to distinguish EIF and EI.

Fig. 17.5. Rules of thumb to distinguish EIF and EI

External Output (EO)

An EO is an elementary process that sends data or control information outside
the application boundary. The primary intent of an EO is to present information
to a user through processing logic other than, or in addition to, the retrieval
of data or control information. The processing logic must contain at least one
mathematical formula or calculation, create derived data, maintain one or more
ILFs, or alter the behavior of the system.

External Inquiry (EQ)

An EQ is an elementary process that sends data or control information outside
the application boundary. The primary intent of an EQ is to present infor-
mation to a user through the retrieval of data or control information from an

17.4 Count Unadjusted FPs

EI

EIF

User data are “only”
referenced by processes of the
application, (i.e., not to change

the data in an ILF)

Application
to be counted

Other
Application

User data are imported into the
application to change the data
in one or more ILFs, and/or to

control a process.

Counting of Interfaces:
Rule of thumb for distinguishing EIF and EI

462

ILF or EIF. The processing logic contains no mathematical formulae or cal-
culations, and creates no derived data. No ILF is maintained during the proc-
essing, nor is the behavior of the system altered.

This comprises online inputs that generate outputs and do not change ILFs.
Figure 17.6 shows a company standard with rules of thumb to distinguish EO
and EQ.

The Primary Intent of a Transaction

The main difference between the transactional function types is their primary
intent (see Table 17.4).

EO

EQ

User data are retrieved from ILF‘s and/or
EIF‘s, and there are no calculations, derived

system behavior

Application to be counted Other Application

User data are read, prepared for output
and sent externally. Process must contain a
calculation(s), derive data, update ILF(s)
or alter the behavior of the applciation

Counting of Interfaces and
processes that send data externally

Rule of thumb for distinguishing EO and EQ

Fig. 17.6. Rules of thumb to distinguish EO and EQ

Table 17.4. The primary intent of a transaction (IFPUG CPM)

Transactional
function type

Function

EI EO EQ
Alter the behavior of the system PI F N/A
Maintain one or more ILFs PI F N/A
Present information to a user F PI PI

Abbreviations: PI = the primary intent of the transactional function type, F = a function of the transac-
tional function type, but is not the primary intent and is sometimes present, N/A = the function is
not allowed by the transactional function type

17 IFPUG Function Point Counting Rules

data, updates of ILF(s) and no altering of

463

Processing Logic

The processing logic is defined as requirements specifically requested by the
user to complete an elementary process.

The following Table 17.5 summarizes which forms of processing logic may
be performed by the transactions.

Beyond Pure IFPUG Defined Situations

Table 17.5 covers most but not all possible counting situations that can occur.
Thus several organizations tried to standardize the counting decisions for these
situations with a decision table. Since beginners with the Function Point Method
sometimes have problems when they happen to encounter one of these situa-
tions, a company standard was defined in the IT department of an international
insurance company in Germany (abbreviated here neutralized as IIC) as shown
in decision Table 17.6.

Table 17.5. Forms of processing logic (IFPUG CPM)

Transaction type Form of processing logic
EI EO EQ

1. Validations are performed C C C
2. Mathematical formulae and calculations are performed C M* N
3. Equivalent values are converted C C C
4. Data are filtered and selected by using specified criteria to

compare multiple sets of data
C C C

5. Conditions are analyzed to determine which are applicable C C C
6. At least one ILF is updated M* M* N
7. At least one ILF or EIF is referenced C C M
8. Data or control information is retrieved C C M
9. Derived data is created C M* N
10. Behavior of the system is altered M* M* N
11. Prepare und present information outside the boundary C M M
12. Capability to accept data or control information that enters

the application boundary
M C C

13. Resorting or rearranging a set of data C C C
M = it is mandatory that the function type perform the form of processing logic, M* = it is mandatory
that the function type perform at least one of these (M*) forms of logic, C = the function type can per-
form the form of processing logic, but it is not mandatory, N = function type cannot perform the form
of processing logic

Table 17.6. Decision table for undefined cases with IIC internal company standard

 Counting situation
IFPUG
rule 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Primary
intent:
input

Y Y Y Y Y Y N N N N N N N N N N N N N N N

17.4 Count Unadjusted FPs

(Continued)

464

Primary
intent:
output

Y N N N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y N

Data
received
from
outside
boundary

– Y Y Y Y N – – – – – – – – – – – Y N – –

ILF is
updated – Y N N N – – – Y N N Y N N Y N N – – – –

Change
system
behavior

– – Y N N – – – – Y N – J N – Y N – – – –

Present
data
outside
boundary

– – – Y N – Y Y Y Y Y Y Y Y Y Y Y Y Y N –

Derived
data
produced
as part of
function

– – – – – – Y N N N N N N N N N N N N – –

Calcula-
tion(s) part
of function
(e.g., Use
math.
Formula)

– – – – – – – Y N N N N N N N N N N N – –

Retrieval
of data
from
ILF/EIF

– – – – – – – – Y Y Y – – – – – – N N – –

Reference
to an ILF – – – – – – – – – – – Y Y Y – – – N N – –

Reference
to an EIF – – – – – – – – – – – – – – Y Y Y N N – –

EI X X
EO X X
EQ X X X
Undefined: X X X X X X X X
IIC internal
decision:
count as
EO

 X X X X X X

IIC internal
decision:
Count as
EQ

 X X

17 IFPUG Function Point Counting Rules

(Continued)

Table 17.6. (Cont.)

465

Impossible
(or not
countable)

 X X X X X

EI, EO, EQ
as Table
17.5

X

EI Identification Rules per IFPUG. 4.2

For an EI, the primary intent of an elementary process is to maintain an ILF
or alter the behavior of the system.

All the following rules must apply for the elementary process to be counted
as a unique occurrence of an EI:

The data or control information is received from outside the application
boundary
At least one ILF is maintained if the data entering the boundary is not con-
trol information that alters the behavior of the system
For the identified process, one of the following three statements must apply:

– Processing logic is unique from the processing logic performed by
other EIs for the application

– The set of data elements identified is different from the sets identified
for other EIs for the application

– The ILFs or EIFs referenced are different from the files referenced by
other EIs in the application.

FTR Identification Rules for EIs per IFPUG 4.2

A FTR is

An ILF read or maintained by a transactional function or
An EIF read by a transactional function.

The following rules apply when counting FTRs:

Count an FTR for each ILF maintained
Count an FTR for each ILF or EIF read during the processing of the EI
Count only one FTR for each ILF that is both maintained and read.

DET Identification Rules for EIs per IFPUG 4.2

A DET is a unique user recognizable, nonrepeated field.
The following rules apply when counting DETs:

1. Count a DET for each unique user recognizable, nonrepeated field that
enters or exits the application boundary and is required to complete the EI

17.4 Count Unadjusted FPs

466

2. Do not count fields that are retrieved or derived by the system and stored
on an ILF during the elementary process if the fields did not cross the
application boundary

3. Count a DET for the capability to send a system response message outside
the application boundary to indicate an error occurred during processing,
confirm the processing is complete, or verify that processing should
continue

4. Count one DET for the ability to specify an action to be taken even if there
are multiple methods for invoking the same logical process.

EO and EQ Shared Identification Rules per IFPUG 4.2

For an EO or EQ, the primary intent of the elementary process is to present in-
formation to a user.

All the following rules must apply for the elementary process to be counted
as a unique occurrence of an EO or EQ:

The function sends data or control information external to the application
boundary
For the identified process, one of the following three statements must apply:

– Processing logic is unique from the processing logic performed by
other EOs or EQs for the application

– The set of data elements identified is different from the sets identified
for other EOs or EQs in the application

– The ILFs or EIFs referenced are different from the files referenced by
other EOs or EQs in the application.

Additional EO Identification Rules per IFPUG 4.2

In addition to adhering to all shared EO and EQ rules, at least one of the
following rules must apply for the elementary process to be counted as a
unique EO:

The processing logic of the elementary process contains at least one mathe-
matical formula or calculation
The processing logic of the elementary process creates derived data
The processing logic of the elementary process maintains at least one ILF
The processing logic of the elementary process alters the behavior of the
system.

Additional EQ Identification Rules per IFPUG 4.2

In addition to adhering to all shared EO and EQ rules, all the following rules
must apply for the elementary process to be counted as a unique EQ:

17 IFPUG Function Point Counting Rules

467

The processing logic of the elementary process retrieves data or control
information from an ILF or EIF
The processing logic of the elementary process does not contain a mathe-
matical formula or calculation
The processing logic of the elementary process does not create derived data.
The processing logic of the elementary process does not maintain an ILF
The processing logic of the elementary process does not alter the behavior
of the system.

Shared FTR Identification Rules for EOs and EQs per IFPUG 4.2

A FTR is

An ILF read or maintained by a transactional function or
An EIF read by a transactional function.

The following rule applies when counting FTRs for both EOs and EQs:

Count an FTR for each ILF or EIF read during the processing of the elemen-
tary process.

Additional FTR Identification Rules for EOs per IFPUG 4.2

The following additional rules apply when counting FTRs for EOs:

Count an FTR for each ILF maintained during the processing of the elementary
process
Count only one FTR for each ILF that is both maintained and read during the
elementary process.

Shared DET Identification Rules for EOs and EQs per IFPUG 4.2

The following rules apply when counting DETs for both EOs and EQs:

Count a DET for each unique user recognizable, nonrepeated field that enters
the application boundary and is required to specify when, what, and/or how
the data is to be retrieved or generated by the elementary process
Count a DET for each unique user recognizable, nonrepeated field that enters
or exits the boundary
If a DET both enters and exits the boundary, count it only once for the elemen-
tary process
Count one DET for the capability to send a system response message outside
the application boundary to indicate an error occurred during processing, con-
firm the processing is complete, or verify that processing should continue

17.4 Count Unadjusted FPs

468

Count one DET for the ability to specify an action to be taken even if there
are multiple methods for invoking the same logical process
Do not count fields that are retrieved or derived by the system and stored on
an ILF during the elementary process if the fields did not cross the applica-
tion boundary
Do not count literals as DETs
Do not count paging variables or system-generated stamps.

Classification Rules for Transactional Functions per IFPUG 4.2

Tables 17.7–17.9 show the complexity and unadjusted Function Point defini-
tions of the transactional function types.

Table 17.7. Complexity of EIs (IFPUG CPM)

DETsFTRs
1–4 DETs 5–15 DETs >15 DETs

0–1 FTR Low Low Average
2 FTRs Low Average High
>2 FTRs Average High High

Table 17.8. Complexity of EOs and EQs (IFPUG CPM)

DETs FTRs
1–5 DETs 6–19 DETs >20 DETs

0–1 FTR Low Low Average
2–3 FTRs Low Average High
>3 FTRs Average High High

Note that the case FTR = 0 in Table 17.8 is only relevant for EOs.

Table 17.9. Unadjusted function points of EI, EO, or EQ (IFPUG CPM)

Complexity EI EO EQ
Low 3 4 3
Average 4 5 4
High 6 7 6

17.5 Calculate the Adjusted FPs

For calculation of the adjusted FPs the Value Adjustment Factor (VAF) has
to be determined. This is done by adding the Degrees of Influence (DI) of the
14 General System Characteristics (GSC) to the so-called Total Degree of
Influence (TDI).

It must always be regarded that this step does not belong to ISO/IEC con-
formant Functional Size Measurement, but is a step to include nonfunctional

17 IFPUG Function Point Counting Rules

469

(quality) requirements for the purposes of estimation. The functional size
by the VAF is based on the values of the 14 GSCs according to application
requirements and the environmental influences. Note that also the NESMA
and Mark II Function Point Methods maintain similar GSCs and in their ISO
conformant versions, these GSCs were dropped from the methods in order to
be ISO compliant.

17.5.1 Determining the VAF

The formula for calculation of the VAF is

VAF = (TDI 0.01) + 0.65,

where TDI (as outlined above) is the total of values of evaluating the 14 GSCs.
Hence, the VAF is maximally 1.35 and minimally 0.65, and therefore can

adjust the unadjusted Function Points by as much as +/– 35%.

17.5.2 The 14 GSCs

The 14 GSCs are a set of 14 “characteristics” that evaluate aspects of the
complexity of the application. Always evaluate the overall application on the
basis of these characteristics – never just a project:

1. Data communications
2. Distributed data processing
3. Performance
4. Heavily used configuration
5. Transaction rate
6. Online data entry
7. End-user efficiency
8. Online update
9. Complex processing
10. Reusability
11. Installation ease
12. Operational ease
13. Multiple sites
14. Facilitate change.

Degrees of Influence

Based on the stated user requirements, each GSC must be evaluated in terms of
its DI on a scale from zero to five as simplified in Table 17.10. IFPUG has
provided further guidance for each of the GSCs, which are presented individu-
ally in the subsections that follow.

17.5 Calculate the Adjusted FPs

470

Table 17.10. Degrees of Influence (DI) (IFPUG CPM)

Score as Influence of the particular GSC
0 Not present or no influence
1 Incidental influence
2 Moderate influence
3 Average influence
4 Significant influence
5 Strong influence throughout

Data Communications

Data Communications (see Table 17.11) describes the degree to which the appli-
cation communicates directly with the processor.

Table 17.11. Data communications

Score as Descriptions to determine the DI
0 Application is pure batch processing or standalone application
1 Application is batch but has remote data entry or remote printing
2 Application is batch but has remote data entry and remote printing
3 Application includes online data collection or TP (teleprocessing) front

end to a batch process or query system
4 Application is more than a front-end, but supports only one type of TP

communications
5 Application is more than a front-end and supports more than one type of

TP communications

The data and control information used in the application are sent or received
over communication facilities. Devices connected locally to the control unit
are considered to use communication facilities. Protocol is a set of conventions
that permit the transfer of or exchange of information between two systems or
devices. All data communication links require some type of protocol.

Distributed Data Processing

Distributed Data Processing describes the degree to which the application trans-
fers data among physical components of the application.

Distributed Data Processing (see Table 17.12) functions are a characteristic of
the application within the application boundary.

Performance

Performance (see Table 17.13) describes the degree to which the response time
and throughput performance considerations influenced the application deve-
lopment.

17 IFPUG Function Point Counting Rules

471

Application performance objectives, stated or approved (or implied) by the
user, in either response or throughput, influence (or will influence) the design,
development, installation, and support of the system.

Table 17.12. Distributed data processing

Score as Descriptions to determine the DI
0 Data is not transferred or processed on another component of the system
1 Data is prepared for transfer, then is transferred and processed on

another component of the system, for user processing
2 Data is prepared for transfer, then is transferred and processed on

another component of the system, not for user processing
3 Distributed processing and data transfer are online and in one direction

only
4 Distributed processing and data transfer are online and in both directions
5 Distributed processing and data transfer are online and are dynamically

performed on the most appropriate component of the system

Table 17.13. Performance
Score as Descriptions to determine the DI
0 No special performance requirements were stated by the user
1 Performance and design requirements were stated and reviewed but no

special actions were required
2 Response time or throughput is critical during peak hours. No special

design for CPU utilization was required. Processing deadline is for the
next business cycle

3 Response time or throughput is critical during all business hours. No
special design for CPU utilization was required. Processing deadline
requirements with interfacing systems are constraining

4 In addition, stated user performance requirements are stringent enough
to require performance analysis tasks in the design phase

5 In addition, performance analysis tools were used in the design,
development, and/or implementation phase to meet the stated user
performance requirements

Heavily Used Configuration

Heavily Used Configuration is the degree to which computer resource res-
trictions influenced the development of the application.

A heavily used operational configuration (see Table 17.14) may require special
considerations when designing the application. For example, the user wants to
run the application on existing or committed equipment that will be heavily used.

17.5 Calculate the Adjusted FPs

472

Table 17.14. Heavily used configuration
Score as Descriptions to determine the DI
0 No explicit or implicit operational restrictions are included
1 Operational restrictions do exist, but are less restrictive than a typical

application. No special effort is needed to meet the restrictions
2 Operational restrictions do exist, but are typical for an application.

Special effort through controllers or control programs is needed to
meet the restrictions

3 Stated operational restrictions require special constraints on one piece
of the application in the central processor or a dedicated processor

4 Stated operational restrictions require special constraints on the entire
application in the central processor or a dedicated processor

5 In addition, there are special constraints on the application in the
distributed components of the system

Transaction Rate

Transaction Rate describes the degree to which the rate of business transac-
tions influenced the development of the application.

The transaction rate (see Table 17.15) is high, and it influences the design,
development, installation, and support of the application. Users may require
what they regard as normal response time even during times of peak volume.

Table 17.15. Transaction rate

Score as Descriptions to determine the DI
0 No peak transaction period is anticipated
1 Low transaction rates have minimal effect on the design, development, and

installation phases
2 Average transaction rates have some effect on the design, development,

and installation phases
3 High transaction rates affect the design, development, and/or installation

phases
4 High transaction rate(s) stated by the user min the application requirements

or in the service level agreements are high enough to require performance
analysis tasks in the design, development, and/or installation phases

5 High transaction rate(s) stated by the user min the application requirements
or in the service level agreements are high enough to require performance
analysis tasks and, in addition, require the use of performance analysis
tools in the design, development, and/or installation phases

Online Data Entry

Online Data Entry describes the degree to which data is entered or retrieved
through interactive transactions.

17 IFPUG Function Point Counting Rules

473

Table 17.16. Online data entry

Score as Descriptions to determine the DI
0 All transactions are processed in batch mode
1 1–7% of transactions are interactive
2 8–15% of transactions are interactive
3 16–23% of transactions are interactive
4 24–30% of transactions are interactive
5 More than 30% of transactions are interactive

Online data entry (see Table 17.16) for data entry, control functions, reports,
and queries are provided in the application.

End-User Efficiency

User Efficiency (see Table 17.17) describes the degree of consideration for
human factors and ease of use for the user of the application measured.

Table 17.17. End-user efficiency

Score as Descriptions to determine the DI
0 None of the above
1 One to three of the above
2 Four to five of the above
3 Six or more of the above, but there are no specific user requirements

related to efficiency
4 Six or more of the above, and stated requirements for user efficiency are

strong enough to require design tasks for human factors to be included
5 Six or more of the above, and stated requirements for user efficiency are

strong enough to require the use of special tools and processes in order to
demonstrate that the objectives have been achieved

The online functions provided emphasize of a design for user efficiency
(human factor/user friendliness). The design includes the following:

Navigational aids (e.g., function keys, jumps, dynamically generated menus,
hyperlinks)
Menus
Online help and documents
Automated cursor movement
Scrolling
Remote printing (via online transmission)
Preassigned function keys (e.g., clear screen, request help, clone screen)
Batch jobs submitted from online transactions

17.5 Calculate the Adjusted FPs

474

Hardcopy documentation of online transactions (e.g., screen print)
Mouse interface
Pop-up windows
Templates and/or defaults
Bilingual support (supports two languages: count as four items)
Multilingual support (supports more than two languages: count as six items).

Online Update

Online Update describes the degree to which ILFs are updated online.

The application provides online update (see Table 17.18) for the ILFs.

Table 17.18. Online update

Score as Descriptions to determine the DI
0 None
1 Online update for one to control files is included. Volume of updating

is low and recovery is easy
2 Online update for four ore more control files is included. Volume of

updating is low and recovery is easy
3 Online of major ILFs is included
4 In addition, protection against data loss is essential and has been

specially designed and programmed in the system
5 In addition, high volumes bring cost considerations into the recovery

process. Highly automated recovery procedures with minimum human
intervention are included

Complex Processing

Complex Processing describes the degree to which processing logic influenced
the development of the application.

The following components are present:
Sensitive control and/or application-specific security processing
Extensive logical processing
Extensive mathematical processing
Much exception processing, resulting in incomplete transactions that must
be processed again
Complex processing (see Table 17.19) to handle multiple input/output possi-
bilities.

17 IFPUG Function Point Counting Rules

Drop down list box

cators
Heavy use of reverse video, highlighting, colors, underlining, and other indi-

475

Table 17.19. Complex processing

Score as Descriptions to determine the DI
0 None of the above
1 Any one of the above
2 Any two of the above
3 Any three of the above
4 Any four of the above
5 All five of the above

Reusability

Reusability (see Table 17.20) describes the degree to which the application and
the code in the application have been specifically designed, developed, and sup-
ported to be usable in other applications.

Installation Ease

Installation Ease describes the degree to which conversion from previous envi-
ronments influenced the development of the application.

Table 17.20. Reusability

Score as Descriptions to determine the DI
0 No reusable code
1 Reusable code is used within the application
2 Less of 10% of the application code developed is intended for use

in more than one application
3 10% or more of the application code developed is intended for use

in more than one application
4 The application was specifically packaged and/or documented to ease

reuse, and the application is customized at the source code level
5 The application was specifically packaged and/or documented to

ease reuse, and the application is customized for use by means of user
parameter maintenance

Conversion and installation ease (see Table 17.21) are characteristics of the
application. A conversion and installation plan and/or conversion tools were
provided and tested during the system test phase.

Operational Ease

Operational Ease describes the degree to which the application attends to
operational aspects, such as start-up, back-up, and recovery processes.

17.5 Calculate the Adjusted FPs

476

Table 17.21. Installation ease

Score as Descriptions to determine the DI
0 No special considerations were stated by the user, and no special setup

is required for installation
1 No special considerations were stated by the user, but special setup

is required for installation
2 Conversion and installation requirements were stated by the user, and

conversion and installation guides were provided and tested. The impact
of conversion on the project is not considered to be important

3 Conversion and installation requirements were stated by the user, and
conversion and installation guides were provided and tested. The impact
of conversion on the project is considered to be important

4 In addition, to 2 above, automated conversion and installation tools
were provided and tested

5 In addition, to 3 above, automated conversion and installation tools
were provided and tested

Table 17.22. Operational ease

Score as Descriptions to determine the DI
0 No special operational considerations other than the normal back-up

procedures were stated by the user
1–4 One, some, or all of the following items apply to the application. Select all

that apply. Each item has a point value of one, except as noted otherwise.
Start-up, back-up, and recovery processes were provided, but human
intervention is required
Start-up, back-up, and recovery processes were provided, but no human
intervention is required (count as two items)
The application minimizes the need for tape mounts and/or remote data
access requiring human intervention
The application minimizes the need for paper handling

5 The application is designed for unattended operation. Unattended opera-
tion means no human intervention is required to operate the system other
than to start up or shut down the application. Automatic error recovery is a
feature of the application

Operational Ease (see Table 17.22) is a characteristic of the application. Then
application minimizes the need for manual activities, such as tape mounts, paper
handling, and direct on-location manual intervention.

Multiple Sites

Multiple Sites (see Table 17.23) describes the degree to which the application
has been developed for different hardware and software environments.

17 IFPUG Function Point Counting Rules

477

Table 17.23. Multiple sites

Score as Descriptions to determine the DI
0 The needs of only one installation site were considered in the design
1 The needs of more than one installation site were considered in the design,

and the application is designed to operate only under identical hardware
and/or software environments

2 The needs of more than one installation site were considered in the design,
and the application is designed to operate only under similar hardware
and/or software environments

3 The needs of more than one installation site were considered in the design,
and the application is designed to operate only under different hardware
and/or software environments

4 Documentation and support plan are provided and tested to support the
application at multiple installation sites and the application is as described
by 2

5 Documentation and support plan are provided and tested to support the
application at multiple installation sites and the application is as described
by 3

Facilitate Change

Facilitate change (see Table 17.24) describes the degree to which the appli-
cation has been developed for easy modification of processing logic or data
structure.

Note: this characteristic is evaluated in 3 steps, 1. evaluate the Flexible
Query (A below) using the guidelines for 0, 1, 2, or 3; then 2. evaluate the
business control data (B) as 0, 1, or 2 using the guidelines; and finally 3. Add
the values from A) and B) together to get the score and use table 17.24 to de-
termine the ‘degree of influence’.

Table 17.24. Facilitate change

Score as Descriptions to determine the DI
0 Non of the above
1 A total of one item from above
2 A total of two items from above
3 A total of three items from above
4 A total of four items from above
5 A total of five items from above

17.5 Calculate the Adjusted FPs

478

1. Flexible Query and report facility is provided that can handle simple
requests (count as one item)

2. Flexible Query and report facility is provided that can handle requests of
average complexity (count as two items)

3. Flexible Query and report facility is provided that can handle complex
requests (count as three items).

B. Business Control Data
1. Business control data is kept in tables that are maintained by the user with

online interactive processes, but changes take effect only on the next busi-
ness cycle (count as one item)

2. Business control data is kept in tables that are maintained by the user with
online interactive processes, but changes take effect immediately (count as
two items).

17.5.3 Calculation of the Adjusted Function Points

Adjusted FPs for New Development Projects

A new development project adds functionality. Further functionality can evolve
by conversion (migration) of historic data that have to be integrated into the
new system. Figure 17.7 shows the effect on the FP count.

From both parts (UFP + CFP), the adjusted FPs of a new development pro-
ject are calculated according the formula

DFP = (UFP + CFP) VAF, with

DFP: Development FP = New Functionality (ADD)
UFP: Unadjusted FPs
CFP: Conversion FPs
VAF: Value Adjustment Factor
Note that Fig. 17.7 shows that the FPs for conversion functionality do not

become part of the base application count.

Adjusted FPs for Enhancement Projects

An enhancement changes the functionality of an application. This comprises the
following:

Addition of new functionality (ADD)
Change of existing functionality (CHG)
Deletion of existing functionality (DEL)
Conversion functionality (CFP)

Figure 17.8 visualizes the FP counting of an enhancement project.

17 IFPUG Function Point Counting Rules

The following characteristics can apply for the application:
A. Flexible Query

479

Fig. 17.7. Function Points for new development projects

Fig. 17.8. Function Points of enhancement projects

EFP = [(ADD + CHGA + CFP)VAFA] + (DEL VAFB), with

EFP: FPs of the enhancement project
ADD: unadjusted FPs of the added functionality
CHGA: FPs for changed existing functionality, after the change
CFP: FPs of the conversion

17.5 Calculate the Adjusted FPs

New Development Project Application System

Conversion-
Functionality

(CFP)

New
Functionality

(UFP) Application System afterwards

(UFP)

FP AWSA = UFP

1. Add New
Functionality

2. Don‘t regard
Conversion
Functionality

Application System
Before (FP-ASB)

Enhancement Project
Application System

Changed
Functionality,
evaluated after

Change
(CHGA)

Deleted
Functionality

(DEL)

Conversion
Functionality

(CFP)

Added,
resp. new

Functionality
(ADD)

Application System
Afterwards (FP-ASA)

Difference *)
between changed

Functionality
before / after

(CHGA-CHGB)

(ADD)

Deleted
Functionality

(DEL)
„eliminated“

FP-ASA = FP-ASB + ADD – DEL + (CHGA-CHGB)

*) Example:
CHGA = 1 EO high = 7 FP
CHGB = 1 EO low = 4 FP
Difference = +3 FP for the Application System

1. Evaluate Changed
Functionality

2. Add new
Functionality

3. Eliminate deleted
Functionality

4. Neglect
Functionality for
Conversion

For an adjusted FP count the VAF of the base application must be evaluated
on a before and after basis. Since the VAF of the enhanced application differs
from the application beforehand, there have to be distinguished two VAFs
(VAFB, VAFA). The adjusted FPs of an enhancement are thus calculated by
following formula:

(FP AWSA)

480

VAFB: VAF of the application before enhancement functionality
Examples for enhancements are, for example, the following:
A batch set of processes for data transfer with another application is obso-
lete and all functionality is removed (DEL).
The user requires additional reports from the system (ADD).
An existing report should be enhanced by two additional fields (CHG).

Adjusted FPs for Applications

The first step for FP counting an application base size is to determine if it is
an initial FP count of an application or the results following the enhancement
of an existing application. In both cases, any conversion FPs that were part
of the development or enhancement project do not belong to the size of the
application.

Thus, the FPs for an initial application count are calculated with the formula

AFP = ADD VAF, with

AFP: initial application adjusted FP count
ADD: unadjusted FPs installed by the development project
VAF: VAF of the application
In case the application is enhanced the FPs are calculated with the formula

AFP = [(UFPB + ADD + CHGA) – (CHGB + DEL)]VAFA, with

AFP: application adjusted FP count
UFPB: unadjusted application FP count before enhancement
ADD: unadjusted FPs added by the enhancement project
CHGA: unadjusted FP count of changed functionality after enhancement
CHGB: unadjusted FP count of changed functionality before enhancement
DEL: unadjusted FP count of deleted functionality
VAFA: VAF of the application after enhancement

Maintenance projects:

Maintenance effort is a necessary part of an application life cycle. It has to
be regarded that a pure maintenance project does not change the functionality
of an application. If a so-called maintenance project does cause changes to
application functionality, then in FP terminology, it is an enhancement and
not maintenance! (And vice versa, if a so-called enhancement project does not
add/change/delete the functionality of an application, then in FP terminology it
is considered to be a maintenance project not an enhancement project no mat-
ter what others may label it to be!)

17 IFPUG Function Point Counting Rules

VAFA: VAF of the application after enhancement
DEL: unadjusted FPs for deleted functionality

481

17.6 Management Summary

The IFPUG 4.2 Function Point Method distinguishes three types of counts,
two of them for IT projects: New development (project), Enhancement (pro-
ject), Application (baseline).

A new development project is the first build of an application. This means
that all the functionality is new (added) and we count the added (=delivered)
and conversion Function Points as applicable. Consider this similar to a new
construction project.

An enhancement project can add functionality to an existing application, as
well as change or delete it. Accordingly for the enhancement project count, only
the added, changed, deleted, and conversion (as applicable) Function Points are
counted.

At the completion of an enhancement project, the application baseline Func-
tion Points (after the enhancements have been applied) must be evaluated.

The Function Point Method according to IFPUG 4.2 (IFPUG 2004) distin-
guishes between the size of a piece of software under development (Counting
scope) and the size of an installed application.

The FP count of an enhancement project can involve changes to several
applications (each having its own set of functionality from the “user view,”
but not from the technical or physical view), and thus involving several differ-
ent system boundaries.

The definition application boundary for an application to be counted de-
termines what functionality is contained within the application and what func-
tionality belongs to other application(s).

The application boundary is to be positioned based on the user view.
Because the application boundary significantly affects the application func-

tionality (i.e., what functions are performed by the software vs. what functions
are outside the scope of the software), it is important for it to be documented
clearly. This includes the description of assumptions that were used to position
the application boundary.

Practically this system diagram can easily be reused in, or as, architecture
diagrams in the applications atlas of the organization.

To count the unadjusted FPs, the data function types and transaction func-
tion types must be identified and classified according to their complexity.

It has always to be regarded that all of the function types (also called Base
Functional Components or BFC in ISO terminology) are based on the logical
perspective of the user.

17.6 Management Summary

482

The IFPUG definition of the term maintain pertains to elementary, logical
processes that cause the data within an ILF to change – as in creating the file,
adding or inserting new data, changing or updating data, and deleting data in
the file.

The complexity of internal and external files depends from two factors: the
number of DET and the number of logical subgroups or RET.

A RET is a user recognizable subgroup of data elements within an ILF or EIF.
A DET is a unique user recognizable, nonrepeated field.
An EI is an elementary process that processes data or control information that

comes from outside the application boundary.
Counted are all inputs with different processing logic.
An EO is an elementary process that processes data or control information

that comes from outside the application boundary.
An EQ is an elementary process that sends data or control information outside

the application boundary.
The main difference between the transactional function types is their primary

intent.
The processing logic is defined as requirements specifically requested by

the user to complete an elementary process.
For an EI, the primary intent of an elementary process is to maintain an ILF

or alter the behavior of the system.
For an EO or EQ, the primary intent of the elementary process is to present

information to a user.

A new development project adds functionality. Further functionality can
evolve by conversion (migration) of historic data that have to be integrated
into the new system.

For calculation of the adjusted Function Points the VAF has to be determined.
The 14 GSCs are a set of 14 characteristics that evaluate aspects of the

complexity of the application. Always evaluate the overall application on the
basis of these characteristics – never just a project.

Maintenance effort is a necessary part of an application life cycle. It has to
be regarded that a pure maintenance project does not change the functionality
of an application. If a so-called maintenance project does cause changes to appli-
cation functionality, then in FP terminology, it is an enhancement and not
maintenance!

17 IFPUG Function Point Counting Rules

18 Functional Size Measurement Case Studies

This chapter presents a set of functional user requirements, together with the
results of applying the five ISO/IEC-conformant Functional Size Measurement
Methods (FSMMs) to determine the functional size of the software.

The following case study was adapted from the Course Registration case
study available from the Common Software Metrics International Consortium
(COSMIC) website (www.cosmicon.com), where you can find the link for
COSMIC publications.

This chapter starts with the presentation of the functional requirements of
the Course Registration case study and the according use case diagram in the
first two sections, followed by functional size measurement of the require-
ments in the following order: COSMIC, FiSMA, IFPUG, Mark II, NESMA,
and a concluding comparison.

18.1 Case Study Description: Course Registration System

The functional requirements given later describe a project to develop software
to replace the front end of the existing Course Registration System with a new
system. The new Course Registration System will allow students and profes-
sors to access the system through personal computers (PCs). The current regis-
tration system, used since 1985, lacks the capacity to handle the current and
future student and course load projections. In addition, the current system is an
outdated mainframe technology, and only supports access through Registra-
tion Office clerks. The new system will enable all professors and students to
access the system through PCs connected to the college computer network and
through any personal computer connected to the Internet. The new system will
bring the college to the leading edge in course registration systems and im-
prove the image of the college, attract more students, and streamline adminis-
trative functions.

Table 18.1 identifies the main use cases for the functions required by the
user stakeholders for the Course Registration System. The use case descrip-
tions follow in the next section.

Table 18.1. Use case requirements for the new Course Registration System

Use case
number

Use case for Course Registration System

1 Logon (by all users)
2 Maintain professor information (by the registrar)
3 Select courses to teach (by professors)
4 Maintain student information (by the registrar)
5 Register for courses (by students)
6 Monitor for course full (by the application)
7 Close registration (by the registrar)
8 Submit grades (by professors)
9 View report card (by students)

18.1.1 Logon

Brief Description:
This use case describes how a user logs into the Course Registration System.

The actors starting this use case are Student, Professor, and Registrar.
Flow of Events:
The use case begins when the actor types his/her name and password on the

Logon form.
Basic Flow – Logon:
The system validates the actor’s password and logs him/her into the system.

The system displays the Main Form and the use case ends.
Alternate Flows – An Invalid Name/Password:
If in the basic flow the system cannot find the name or the password is invalid,

an error message is displayed. The actor can type in a new name or password or
choose to cancel the operation, at which point the use case ends.

18.1.2 Maintain Professor Information

Brief Description:
This use case allows the Registrar to maintain professor information in the

registration system. This includes adding, modifying, and deleting professors
from the system. The actor of this use case is the Registrar.

Flow of Events:
The use case begins when the Registrar selects the maintain professor

activity from the Main Form.

18 Functional Size Measurement Case Studies 484

485

1. The Registrar selects add a professor.
2. The system displays a blank professor form.
3. The Registrar enters the following information for the professor: name,

date of birth, social security number, status, and department. The system
validates the data to insure the proper data format and searches for an
existing professor with the specified name. If the data is valid the system
creates a new professor and assigns a unique system-generated id number.

4. This number is displayed, so that it can be used for subsequent uses of the
system.
Steps 2–4 are repeated for each professor added to the system. When the

Registrar has finished adding professors to the system the use case ends.
Alternate Flows – a. Modify a Professor:
1. The Registrar selects Modify a professor.
2. The system displays a blank professor form.
3. The Registrar types in the professor id number he/she wishes to modify.
4. The system retrieves the professor information and displays it in the form.
5. The Registrar modifies one or more of the professor information fields:

name, date of birth, social security number, status, and department.
6. When changes are complete, the Registrar selects save.
7. The system updates the professor information.

Steps 2–7 are repeated for each professor the Registrar wants to modify.
When edits are complete, the use case ends.
Alternate Flows – b. Delete a Professor:
1. The Registrar selects delete a Professor.
2. The system displays a blank professor form.
3. The Registrar types in the id number of the professor whose information

is to be deleted.
4. The system retrieves the professor information and displays it in the form.
5. The Registrar selects delete.
6. The system displays a delete verification dialog confirming the deletion.
7. The Registrar selects yes.
8. The professor is deleted from the system.

Steps 2–8 are repeated for each professor the Registrar wants to modify.
When the Registrar has finished deleting professors from the system, the
use case ends.
Alternate Flows – c. Professor Already Exists:
If in the Add a Professor basic flow, a professor already exists with the

specified name, an error message, Professor Already Exists is displayed.
The Registrar can either change the name, choose to create another professor
with the same name, or cancel the operation at which point the use case ends.

18.1 Case Study Description: Course Registration System

Basic Flow – Add a Professor:

486

Alternate Flows – d. Professor Not Found:
If in the Modify a Professor subflow or Delete a Professor subflow, a pro-

fessor with the specified id number does not exist, the system displays an error
message, Professor not found. Then the Registrar can type in a different id
number or cancel the operation at which point the use case ends

18.1.3. Select/Deselect Courses to Teach

Brief Description:
This use case allows a professor to select the course offerings (date- and

time-specific courses will be given) from the course catalog for the courses
that he/she is eligible for and wishes to teach in the upcoming semester. The
actor starting this use case is the Professor. The Course Catalog System is an
actor within the use case.

Flow of Events:
The use case begins when the professor selects the select courses to teach

activity from the Main Form.
Basic Flow – Select Courses to Teach:
1. The system retrieves and displays the list of course offerings the profes-

sor is eligible to teach for the current (upcoming) semester.
2. The system also retrieves and displays the list of courses the professor

has previously selected to teach.
3. The professor selects and/or deselects the course offerings that he/she

wishes to teach for the upcoming semester.
4. The system removes the professor from teaching the deselected course

offerings.
5. The system verifies that the selected offerings do not conflict (i.e., have

the same dates and times) with each other or any offerings the professor
has previously signed up to teach.

6. If there is no conflict, the system updates the course offering information
for each offering the professor selects.

Alternate Flows – a. No Courses Available:
1. If in the basic flow the professor is not eligible to teach any courses in

the upcoming semester the system will display an error message.
2. The professor acknowledges the message and the use case ends.
Alternate Flows – b. Schedule Conflict:
1. If the system finds a schedule conflict when trying to establish the course

offerings the Professor should take, the system will display an error message
indicating that a schedule conflict has occurred. The system will also in-
dicate which the conflicting courses are.

18 Functional Size Measurement Case Studies

487

2. The professor can either resolve the schedule conflict (i.e., by cancelling
his selection to teach one of the course offerings) or cancel the operation,
in which case any selections will be lost and the use case ends.

Alternate Flows – c. Course Registration Closed:
1. If, when the Professor selects select courses to teach, registration for the

current semester has been closed, a message is displayed to the Professor
and the use case terminates.

2. Professors cannot change the course offerings they teach after registra-
tion for the current semester has been closed. If a professor change is
needed after registration has been closed, it is handled outside the scope
of this system.

18.1.4 Maintain Student Information

Brief Description:
This use case allows the Registrar to maintain student information in the

registration system. This includes adding, modifying, and deleting students from
the system. The actor for this use case is the Registrar.

Flow of Events:
The use case begins when the Registrar selects the maintain student activity

from the Main Form.
Basic Flow – Add Student:
1. The Registrar selects add student.
2. The system displays a blank student form.
3. The Registrar enters the following information for the student: name,

date of birth, social security number, status, and graduation date.
4. The system validates the data to insure the proper format and searches

for an existing student with the specified name.
5. If the data is valid the system creates a new student and assigns a unique

system-generated id number.
Steps 2–5 are repeated for each student added to the system. When the

Registrar has finished adding students to the system the use case ends.
Alternative Flows – a. Modify a Student:
1. The Registrar selects modify student.
2. The system displays a blank student form.
3. The Registrar types in the student id number he/she wishes to modify.
4. The system retrieves the student information and displays it on the screen.

18.1 Case Study Description: Course Registration System

488

5. The Registrar modifies one or more of the student information fields:
name, date of birth, social security number, student id number, status, and
graduation date.

6. When changes are complete, the Registrar selects save.
7. The system updates the student information.

Steps 2–7 are repeated for each student the Registrar wants to modify.
When edits are complete, the use case ends.

Alternate Flows – b. Delete a Student:
1. The Registrar selects delete student.
2. The system displays a blank student form.
3. The Registrar types in the student id number for the student information

that is to be deleted.
4. The system retrieves the student information and displays it in the form.
5. The Registrar selects delete.
6. The system displays a delete verification dialog confirming the deletion.
7. The Registrar selects yes.
8. The student is deleted from the system.

Steps 2–8 are repeated for each student deleted from the system. When the
Registrar has finished deleting students to the system the use case ends.

Alternate Flow – c. Student Already Exists:
1. If in the Add a Student subflow the system finds an existing student with

the same name, an error message is displayed Student Already Exists.
2. The Registrar can change the name, create a new student with the same

name, or cancel the operation at which point the use case ends.
Alternate Flow – d. Student Not Found:
If in the Modify a Student or Delete a Student subflows the student name is

not located, the system displays an error message, Student Not Found. The
Registrar can then type in a different id number or cancel the operation at which
point the use case ends.

18.1.5. Register for Courses

Brief Description:
This use case allows a Student to register for course offerings in the current

semester. The Student can also modify or delete course selections if changes
are made within the add/drop period at the beginning of the semester. The
Course Catalog System provides a list of all the course offerings for the
current semester. The main actor of this use case is the Student. The Course
Catalog System is an actor within the use case.

18 Functional Size Measurement Case Studies

489

Flow of Events: The use case begins when the Student selects the maintain
schedule activity from the Main Form.

Basic Flow – Create a Schedule:
1. The Student selects create schedule.
2. The system displays a blank schedule form.
3. The system retrieves a list of available course offerings from the Course

Catalog System.
4. The Student selects four primary course offerings and two alternate course

offerings from the list of available offerings.
5. Once the selections are complete the Student selects submit.
6. The Add Course Offering subflow is performed at this step for each se-

lected course offering.
7. The system saves the schedule.
Alternate Flows – a. Modify a Schedule:
1. The Student selects modify schedule.
2. The system retrieves and displays the Student’s current schedule (e.g.,

the schedule for the current semester).
3. The system retrieves a list of all the course offerings available for the

current semester from the Course Catalog System.
4. The system displays the list to the Student.
5. The Student can then modify the course selections by deleting and add-

ing new courses.
6. The Student selects the courses to add from the list of available courses.

The Student also selects any course offerings to delete from the existing
schedule.

7. Once the edits are complete the Student selects submit.
8. The Add Course Offering subflow is performed at this step for each

selected course offering.
9. The system saves the schedule.
Alternate Flows – b. Delete a Schedule:
1. The Student selects the delete schedule activity.
2. The system retrieves and displays the Student current schedule.
3. The Student selects delete.
4. The system prompts the Student to verify the deletion.
5. The Student verifies the deletion.
6. The system deletes the schedule.
Alternate Flows – c. Save a Schedule:
At any point, the Student may choose to save a schedule without submitting

it by selecting save. The current schedule is saved, but the student is not added
to any of the selected course offerings. The course offerings are marked as
selected in the schedule.

18.1 Case Study Description: Course Registration System

490

Alternate Flows – d. Add Course Offering:
1. The system verifies that the Student has the necessary prerequisites and

that the course offering is open.
2. The course offering is marked as enrolled in in the schedule.

Alternate Flows – e. Unfulfilled Prerequisites or Course Full:
If in the Add Course subflow the system determines that the Student has not

satisfied the necessary prerequisites or that the selected course offering is full,
an error message is displayed. The Student can either select a different course
offering or cancel the operation, at which point the use case is restarted.

Alternate Flows – f. No Schedule Found:
If in the Modify a Schedule or Delete a Schedule subflows the system is un-

able to retrieve the Student’s schedule, an error message is displayed. The
Student acknowledges the error, and the use case is restarted.

Alternate Flows – g. Course Catalog System Unavailable:
If the system is unable to communicate with the Course Catalog System after

a specified number of tries, the system will display an error message to the Stu-
dent. The Student acknowledges the error message and the use case terminates.

Alternate Flows – h. Course Registration Closed:
If when the student selects maintain schedule, registration for the current

semester has been closed, a message is displayed to the Student and the use
case terminates. Students cannot register for courses after registration for the
current semester has been closed.

18.1.6. Monitor for Course Full

The system shall ensure that no course is filled beyond the limit of 10 students.

18.1.7 Close Registration

Brief Description:
This use case allows a Registrar to close the registration process. Course

offerings that do not have enough students are cancelled. Course offerings
must have a minimum of three students in them. The billing system is notified
for each student in each course offering that is not cancelled, so that the
student can be billed for the course offering. The main actor of this use case is
the Registrar. The Billing System is an actor involved within this use case.

18 Functional Size Measurement Case Studies

491

Flow of Events:

The use case begins when the Registrar selects the close registration activ-
ity from the Main Form.

Basic Flow – Successful Close Registration:

1. The system checks to see if a Registration is in progress. If it is, then a
message is displayed to the Registrar and the use case terminates.

2. The Close Registration processing cannot be performed if registration is
in progress.

3. For each open course offering, the system checks to make sure that at
least three students have registered, and that a Professor has signed up to
teach the course offering. If so, the system closes the course offering and
sends a transaction to the billing system for each student enrolled in the
course offering.

Alternate Flows – a. Less than Three Students in the Course Offering:

If in the basic flow less than three students signed up for the course offering,
the system will cancel the course offering. The Cancel Course Offering sub-
flow is executed at this point.

Alternate Flows – b. Cancel Course Offering:
1. The system cancels the course offering.
2. For each student enrolled in the cancelled course offering, the system

will modify the student’s schedule.
3. The first available alternate course selection will be substituted for the

cancelled course offering. If no alternates are available, then no substitu-
tion will be made.

4. Control returns to the Main flow to process the next course offering for
the semester.

5. Once all schedules have been processed for the current semester, the sys-
tem will notify all students, by mail, of any changes to their schedule
(e.g., cancellation or substitution).

Alternate Flows – c. No Professor for the Course Offering:

If in the basic flow there is no professor signed up to teach the course offer-
ing, the system will cancel the course offering. The Cancel Course Offering
subflow is executed at this point.

Alternate Flows – d. Billing System Unavailable:

If the system is unable to communicate with the Billing System, the system
will attempt to resend the request after a specified period. The system will
continue to attempt to resend until the Billing System becomes available.

18.1 Case Study Description: Course Registration System

492

18.1.8 Submit Grades

Brief Description:

This use case allows a Professor to submit student grades for one or more
classes completed in the previous semester. The actor in this use case is the
Professor.

Flow of Events:

The use case begins when the Professor selects the submit grades activity
from the Main Form.

Basic Flow – Submit Grades:

1. The system displays a list of course offerings the Professor taught in the
previous semester.

2. The Professor selects a course offering.
3. The system retrieves a list of all students who were registered for the

course offering.
4. The system also retrieves the grade information for each student in the

offering. The system displays each student’s information and any grade
that was previously assigned for the offering. For each student on the list,
the Professor enters a grade: A, B, C, D, F, or I.

5. The system records the student’s grade for the course offering. If the Pro-
fessor wishes to skip a particular student, the grade information can be
left blank and filled in at a later time. The Professor may also change the
grade for a student by entering a new grade.

Alternative Flows – a. No Courses Taught:

If in the basic flow, the Professor did not teach any course offerings in the
previous semester the system displays an error message and the use case ends.

Alternate Flows – b. Course Cancelled:

If too many students withdrew from the course during the add/drop period
and the course was cancelled after the beginning of the semester, the system
displays an error message. If the Professor chooses to cancel the operation the
use case terminates, otherwise is restarted at step 2 of the basic flow.

18.1.9 View Report Card

Brief Description:

This use case allows a Student to view his/her report card for the previously
completed semester. The Student is the actor of this use case.

18 Functional Size Measurement Case Studies

493

Flow of Events:

The use case begins when the Student selects the view report card activity
from the Main Form.

Basic Flow – View Report Card:

1. The system retrieves the grade information for each of the courses the
Student completed during the previous semester.

2. The system prepares, formats, and displays the grade information.
3. When the Student has finished viewing the grade information the Student

selects close.

Alternative Flows – a. No Grade Information Available:

If in the basic flow the system cannot find any grade information from the
previous semester for the Student, a message is displayed. Once the Student
acknowledges the message the use case terminates.

18.2 Use Case Diagram

See Fig. 18.1 for the use case diagram.

Fig. 18.1. Use case diagram for the Count Registration System

18.2 Use Case Diagram

Login

User

Student

Professor

Registrar

Billing System

Course Catalog

View Report Card

Register for Course

Select Courses to Teach

Submit Grades

Maintain Professor Information

Maintain Student
Information

Close Registration

Course Registration
System Use Case
Diagram

494

18.2.1 Assumptions regarding the Use Cases

The following notes were made by the COSMIC core team as part of the
evaluation of this case study. Because these notes pertain to the functionality
of the use cases and not to any particular functional size measurement method,
we have applied them equally to all of the FSMM’s in this chapter:

Maintain Professor:

“We assume that the result of selecting maintain professor is that the
suboptions to add professor, modify a professor, and delete a professor are
displayed for selection. Similarly, we assume that selecting any of the other
options on the Main Form, as described later, results in displaying correspond-
ing suboptions for selection.”

Modify professor alternate use case: “Note that this step of Save is men-
tioned only in this Modify a Professor use case, except for the use case 5 Save
a Schedule, which has a specific effect.”

 Select Courses to Teach.

Basic flow: “This sentence could be interpreted as either the courses selec-
ted over all semesters, or courses selected within the current semester, where
we assume current = upcoming. For this case study, the following clarification
is made for measurement purposes: courses selected to teach for the upcoming
semester.”

“It is not clear from the specification where the updated course offering in-
formation with the assigned professor is saved – on the Course Catalog or on
the CRS. We assume that it is important for the students to know which pro-
fessor has signed up for each course, and so the updated course information
must be sent back to the Course Catalog so that the information is available
when a student creates or modifies his/her schedule. Note that in this use case,
unlike the others, no clear distinction is made between a Create, Modify, or
Delete for the link between a course offering and a professor. The later para-
graph implies that a Professor may change the initial selection of courses to
teach as long as registration for the current semester has not closed.”

Maintain Student Information:
Add student basic flow: Step 5. If the data is valid, the system creates a new

student and assigns a unique system-generated id number. “Note that the sys-
tem-generated student id number is apparently not required to be displayed,
unlike that of the Professor in the earlier use case.”

Alternate flow – b. Delete student: “Apparently a student can be deleted
without any checks on whether he/she has a Student/Course Registration and
without deleting any associated Schedule(s) or Report Card(s).”

18 Functional Size Measurement Case Studies

495

 Maintain Schedules – c. Save a Schedule:
At any point, the Student may choose to save a schedule without submitting

it by selecting Save. The current schedule is saved, but the student is not added
to any of the selected course offerings. The course offerings are marked as
selected in the schedule. “We assume that at any point means that this Save
action can occur while performing a Create or Modify functional process. A
Save cannot be performed unless a Schedule already exists and is displayed to
the Student. So a Save is not a separate functional process, but an optional step
in a Create or Modify functional process. It makes no sense for a Save to be
needed during a Delete functional process. Note that this Save action by a
Student is not the same action as the Save of a Schedule by the System.”

Alternate Flows – d. Add Course Offering 1:
The system verifies that the Student has the necessary prerequisites and that

the course offering is open. “The detailed rules, and corresponding data groups
for checking that the student has the necessary prerequisites, are not described
in the specifications; for this measurement scope, it is taken as a given that the
rule is simple and involves reading a single data group; we have called this a
‘Schedule history record’ and assumed that it is held in the Course Registra-
tion system. The system then adds the Student to the selected course offering
(assuming both tests are passed successfully). The course offering is marked
as enrolled in in the schedule. Note also that the distinction between when a
course is available and when it is open is not clear in the Specification. We
have assumed for simplicity that these are synonyms.”

 Monitor for Course Full:
The system shall ensure that no course is filled beyond the limit of 10 stu-

dents. “In the specifications it is not clear whether the requirement is to do this
once at the closure of registration, or that this is done every time a student
adds a course to his schedule. For this case study, we have assumed that the
requirement is to verify this condition every time a student adds/modifies a
course to his schedule. Otherwise, many students could sign up for courses
that were already overbooked, which would not be the best way to proceed.
For this to be possible, the Course Registration System must communicate
back to the Course Catalogue every time a student adds, modifies, or deletes a
course offering on his schedule, so that the Course Catalog record for each
course offering always contains the latest data on the number of students en-
rolled. We have assumed this requirement. With these assumptions, this moni-
toring occurs as part of the create, modify, and delete Schedule functional
processes and is not itself a separate functional process.”

18.2 Use Case Diagram

496

Close Registration:
The Close Registration processing cannot be performed if registration is in

progress. “It is not clear how the check on whether a registration is in progress
can be carried out. If it is performed by the Course Registration application,
then there must be communication between the Register for Courses use cases
and this Close Registration use case. But this functionality is not described, so
we have ignored it in this analysis.”

“As with previous use cases, we assume that the count of the number of
students signed up for each course is maintained on the Course Catalog system.”

Alternate Flows – b. Cancel Course Offering:
“The way in which the system deals with students’ alternative course selec-

tions is unclear in this specification. The specification appears to state that
courses with less than three students enrolled are cancelled and only then are
alternatives examined – which might reveal that many students have chosen
the course as an alternative but, too late, it has already been cancelled. Fortu-
nately for the functional sizing the sequence of the logic is immaterial.”

Alternate Flows – d. Billing System Unavailable:
If the system is unable to communicate with the Billing System, the system

will attempt to resend the request after a specified period. The system will
continue to attempt to resend until the Billing System becomes available.
“There is another functional process implied <here>, which has been ignored.
Logically, the functionality of sending a transaction to the billing system for
each student enrolled in the course offering as described earlier cannot take
place until the processing of all selections of all students for all courses has
been completed. So the Close Registration process must create a file of billing
data, and a separate functional process must send the data to the Billing System,
triggered either by the end of the Close Registration process or, if previous
attempts to transit have failed because the Billing System is unavailable, by a
try again time signal in the Course Registration system.”

Submit Grades, Brief Description:
This use case allows a Professor to submit student grades for one or more

classes completed in the previous semester. “We assume this means the semes-
ter just ended.”

Basic Flow – Submit Grades: 4.
The system also retrieves the grade information for each student in the of-

fering “i.e., that was previously assigned for the offering. Note that the specifi-
cation for this use case does not distinguish clearly the Add and Modify cases.”

18 Functional Size Measurement Case Studies

497

18.3. COSMIC (Cfp) Count of Course Registration system

18.3.1 Identification of Layers

There is a single software layer for this set of requirements.

18.3.2 Identification of Users

The users who interact with this software are as follows:

a. Users who send information to the software:
College Users: Students, Professors, Course Registrar

b. Users who receive information from the software:
College Users: Students, Professors, Course Registrar
Course Catalog System
Billing System

18.3.3 Application Boundary

The application boundary for the Course Registration System is shown in
Fig. 18.2.

Fig. 18.2. The Application Boundary for the Course Registration System

18.3 COSMIC (Cfp) Count of Course Registration system

College users
(Students,
Professors,

Course registrar)

Course Catalog
System

Mail system

Billing system

Course Registration
System

Student Schedule

Application Boundary

Mail subsystem.

498

18.3.4 Identification of Triggering Events – Step 1

From the textual descriptions of the requirements, 14 candidate triggering event(s)
are identified as listed in Table 18.2.

Table 18.2. List of candidate triggering events – step 1

No. Main Form menu selection 14 Triggering events
1 Actor accesses the Logon form 1. Actor types his/her name and

password on the Logon form
2 Registrar selects the maintain professor

activity from the Main Form
2. Add a Professor
3. Modify a Professor
4. Delete a Professor

3 Professor selects the select courses to
teach activity from the Main Form

5. Professor selects his/her
courses to teach

4 Registrar selects the maintain student
activity from the Main Form

6. Add a Student
7. Modify a Student
8. Delete a Student

5 Register for course: Student selects the
maintain schedule activity from the
Main Form

9. Create a Schedule
10. Modify a Schedule
11. Delete a Schedule

6 Registrar selects the activity close
registration from the Main Form

12. Registrar starts the Close
Registration functional process

7 The Professor selects the submit grades
activity from the Main Form

13. Professor submits grades

8 The Student selects the view report card
activity from the Main Form

14. Student Views Report Card

18.3.5 Identification of Data Groups – Step 1

From the documented requirements, seven objects of interest are identified.
These are listed in Table 18.3 together with their most significant data groups.
Note that an accurate data analysis is not possible given some uncertainties in
the documentation of the FUR. No Entity-Relationship model or Third Normal
Form model analysis is available in the available documentation. Table 18.3
does not show any data groups corresponding to exchanges between the PC
client and the mainframe server because these exchanges are invisible to End
Users when the Scope of the measurement is defined as the whole Course
Registration System.

Note 1:
It might be that the Course Catalog System distinguishes data held about each
Course from data held about each Course offered in the current seminar, i.e.,
there are two objects of interest. The former would have time-independent

18 Functional Size Measurement Case Studies

499

Table 18.3. List of objects of interest and data groups – step 1

Source/
destination
of data

Object
of interest

Data
groups

Data attributes Comments

Users User User data User ID, User name, password
Registrar Professor* Professor

data
Prof. ID, name, date of birth,
social security number, status,
department

Registrar Student* Student
data

Student’s ID, name, date of
birth, social security number,
status, graduation date

Course
Catalog
System

Course Course
data

All information relevant to a
course registered in the Course
Catalog

See note 1 later

Course
Catalog
System

Course
offering

Course
offering
data

Course offering ID, no. of
students signed up, professor
ID signed up

This data re-
lates to the cur-
rent semester

Student Schedule
item*

Schedule
item data

Student ID, course offering
ID, primary/alternate course
preference indicator,
selected/enrolled status

Professor Schedule
item*

Student
grade

Student ID, course
offering ID, grade

Note that
Student grade
is another data
group of the
object of inter-
est Schedule
item

Previous
cycles of the
Registration
System

Schedule
history
item*

Schedule
history
record

Student ID, course offering
ID, date of course grade
(for previous courses)

Mail System Schedule
item*

Student
schedule
changes
message

Student’s schedule; not all data
attributes are specified in the
documentation

Billing
System

Schedule
item*

Invoice
item

Student ID, course offering ID,
fee payable (for each course
offering that the student has
been accepted for)

Not all data
attributes are
specified in the
documentation

Registry
System

System Error
message

 See note 4

*From the requirements, we conclude that data about the asterisked objects of interest are stored
persistently on the Course Registration System. Data about the Course and Course offering ob-
jects of interest are stored persistently on the Course Catalog System. [User is assumed to be main-
tained elsewhere.]

18.3 COSMIC (Cfp) Count of Course Registration system

500

data about the course, e.g., course description, prerequisites, etc. The latter
would have, for example, attributes such as the ID of the professor signed up
to teach the course this semester, the total number of students signed up so far,
etc. We have no information in the specification on whether the Course Cata-
log System makes this distinction, but it seems more logical that it does than
that it does not.

So we have assumed that two objects of interest exist, namely the Course
and the Course offering, where the latter has data about the course for the cur-
rent semester. But an assumption that there is only one object of interest
(course offering) would also be valid. This assumption affects the measured
size because we have assumed that some functional processes need only
Course-offering data (e.g., when a student creates a Schedule) whereas other
functional processes need Course attributes as well (e.g., to check the prereq-
uisites for a particular course). But these assumptions might be wrong. For ex-
ample, it might be that a student needs to see the Course data as well as
Course-offering data when creating a Schedule.

Note 2:
The Student Schedule is not a separate object of interest. There is no data

held about a Student Schedule. It is a collection of up to six occurrences of a
data group for each student showing the course offerings that he/she has
signed up for as primary or alternate and as selected or enrolled. We have
named each of these data groups schedule item data, to distinguish it from the
name of the object of interest (schedule item) of the group. The complete Stu-
dent Schedule appears, for example, when a student displays the collection of
up to six courses that he/she has signed up for.

Note 3:
The ‘List of professors’ is not a separate object of interest of data group.

See note 2: No data are held about the list.
Note 4:
The System is not really an object of interest. All we know is that the soft-

ware produces error messages. There is no need to identify an object of inter-
est, just as there is no value in identifying the object of interest of a pure
command data movement.

Definitions of the seven objects of interest (in alphabetic order)

Course: A standard series of lectures, etc., on a specific subject from the
College Course Catalogue

Key: Course ID. Other attributes (assumed): Course name, description,
Prerequisite Course ID. Note: Registration by a Student for a particular
Course offering may depend on successful attendance at (i.e., passing)
a prerequisite course.

18 Functional Size Measurement Case Studies

501

Course Offering: A Course that is available for students to enrol during a
particular Semester

Key: Course ID, Semester ID. Other attributes: dates, times, locations
of the lectures, etc., availability indicator (open/closed/canceled), as-
signed Professor, number of students enrolled

Professor: A person who may register to deliver a Course offering in the
current Semester, for a Course that he is eligible to teach.

Key: Professor ID. Other attributes: name, address, date of birth, SSN,
status, Department, phone, fax, e-mail

Student: A person who can register to attend a Course offering
Key: Student ID. Other attributes: name, DOB, status, graduation date

Schedule item: One of the maximum of six entries in a Student Schedule
when a Student selects or enrols in a Course offering

Key: Student ID, Course-offering ID. Other attributes: Student prefer-
ence status (primary, alternate), registration status (selected, enrolled
in), grade awarded, fee payable, etc.

Schedule history item: An instance of a specific student having attended a
specific Course offering during a previous semester

Key: Student ID, Course-offering ID, Semester date. Other attributes:
Grade awarded

User: Any person (Registrar, Professor, or Student) who is authorized to
use the Course Registration system

Key: User ID. Other attributes: User name, password.

From the documented requirements with each triggering event, there are 14
candidate functional processes.

1. User Logon
2. Add a Professor
3. Modify a Professor
4. Delete a Professor
5. Professor selects/deselects his/her courses to teach
6. Add a Student
7. Modify a Student
8. Delete a Student
9. Create a Schedule
10.Modify a Schedule
11.Delete a Schedule
12.Registrar starts the Close Registration functional process
13.Professor submits grades

18.3 COSMIC (Cfp) Count of Course Registration system

18.3.6 Identification of Functional Processes – Step 1

14.Student Views Report Card.

502

Processes – Step 1

For all functional processes in the previous steps, all data movements of a data
group must be identified. Important: the reader is reminded of <the previous>
paragraph where it is stated that in this step 1, the requirements are interpreted
literally and analyzed assuming that each explicitly identified event triggers
only one functional process.

The detailed analysis in step 2 identifies, however, that in some cases there
should almost certainly be more than one functional process from what would
have initially appeared to be a single triggering event. When this happens, this
will be noted in Table 18.4 by using a dashed line to indicate where one func-
tional process might end and the next start. These dashed lines are only rele-
vant to the discussion in step 2. In Table 18.4, the numbers in the ID Process
column refer to the numbers in the Requirements section of this document.

Table 18.4. COSMIC count summary for Course Registration System project (COSMIC,
2007)

Subprocess description Data group Type of data
movement

Cfp Sum
Cfp

Use case 1: Logon
Process 1: Logon
Triggering event: Actor types name and password on the logon form
Actor enters name and password System E 1
Read name and password User data R 1
Display error message Messages X 1

3
Use case 2: Maintain professor information

Process 2: Add a professor
Triggering event: Registrar selects the add a professor activity
Registrar enters information for the Pro-
fessor Professor data

E 1

The system validates the entered data
and checks if a professor of the same
name exists already

Professor data R 1

The system creates a new Professor Professor data W 1

Display the system generated
Professor ID number

Professor data X 1

Display error message Messages X 1
5

 (Continued)

18 Functional Size Measurement Case Studies

18.3.7 Identify Data Movements – Candidate Functional

503

Subprocess description Data group Type of data
movement

Cfp Sum
Cfp

Process 3: Modify a professor
Triggering event: Registrar selects the modify a Professor activity
Registrar enters Professor ID Professor ID E 1

The system retrieves the Professor
information

Professor data R 1

The system displays the Professor
information

Professor data X 1

The Registrar enters the modified
Professor data

Professor data E 1

When changes are complete, the
Registrar selects Save

This is not a
distinct data
movement. It
only indicates
that the Entry
of the data
(see earlier) is
completed

This will be
omitted from
now on in all
other use
cases

0

The system updates the Professor
information

Professor data W 1

Display error message Messages X 1
6

Process 4: Delete a professor
Triggering event: Registrar selects the delete a Professor activity
Registrar enters Professor ID Professor ID E 1
The system retrieves the Professor
information

Professor data R 1

The system displays the Professor
information

Professor data X 1

Registrar enters the delete command for
the selected Professor

Professor ID E 1

The system prompts the Registrar
to confirm the deletion System prompt

command

N/A not a
data group
movement

0

The Registrar confirms the deletion Professor ID N/A repeti-
tion of earlier
Delete Entry

0

Professor is deleted from the system Professor data W 1
Display error message Message X 1

6
Use case 3: Select/deselect courses to teach

Process 5: Select/deselect Courses to teach
Triggering event: Professor selects/deselects the select courses to teach activity from
the Main Form

(Continued)

18.3 COSMIC (Cfp) Count of Course Registration system

504

Subprocess description Data group Type of data
movement

Cfp Sum
Cfp

Start the select courses to teach
process

Select courses
to teach
command

E 1

The system requests (from the
Course Catalog database) the list of
courses the professor has previously
selected to teach and others that he is
eligible to teach

Course-offering
data

X 1

The system receives the requested
data

Course-
offering data

E 1

The system displays the requested
data

Course-
offering data

X 1

The Professor selects and/or
de-selects the course offerings that
he/she wishes to teach for the
upcoming semester

Course-
offering data

E 1

The system sends the Professor’s
selected or deselected course
offerings to the Course Catalog
system

Course-
offering data

X 1

The Course Catalog system verifies
that the selected offerings do not
conflict and returns any conflicting
pairs

Course-
offering data

E 1

Conflicting pairs of courses are
displayed

Course-
offering data

X 1

Display error message Messages X 1
9

Use case 4: Maintain student information
Process 6: Add a student
Triggering event: Registrar selects add student
Registrar enters student data Student data E 1
The system validates the data and
checks if a student of the same name
already exists

Student data R 1

The system creates a new student Student data W 1
Display error message Messages X 1

4
Process 7: Modify a student
Triggering event: Registrar selects modify student
Registrar enters student ID Student ID E 1
The system retrieves the student
information

Student data
R

1

The system displays student
information

Student data X 1

(Continued)

18 Functional Size Measurement Case Studies

Table 18.4. (Cont.)

505

Subprocess description Data group Type of data
movement

Cfp Sum
Cfp

Registrar modifies one or more
of the student information fields

Student data E 1

The system stores the modified data Student data W 1
Display error message Messages X 1

6
Process 8: Delete a student
Triggering event: Registrar selects delete student
Registrar enters student ID Student ID E 1
The system retrieves the student
information

Student data R 1

The system displays student
information

Student data X 1

Registrar enters delete command Student id E 1
The system prompts the Registrar
to confirm the deletion

System prompt
command

N/A not a
data group
movement

0

The Registrar confirms the deletion Confirmation
message

N/A repeti-
tion of earlier
Delete Entry)

0

Student is deleted from the system Student data W 1
Display error message Messages X 1

6
Use case 5: Register for courses

Process 9: Create a schedule
Triggering event: Student selects create a schedule
Student enters create schedule Start create

schedule
command

E 1

Request the course offerings from
the Course Catalog System

Course-
offering data

X 1

Receive the available course offerings
from the Course Catalog System for
the current semester

Course-
offering data

E 1

The system displays the list
of available course offerings

Course-
offering data

X 1

The student selects 4 primary
courses and 2 alternate courses
and submits them to this application

Schedule item
data

E 1

The system verifies with the Course
Catalog system what prerequisites are
needed

Course data 1 × X
1 × E

1
1

The system verifies whether the
Student has satisfied the necessary
prerequisites

Schedule
history record

R 1

(Continued)

18.3 COSMIC (Cfp) Count of Course Registration system

506

Subprocess description Data group Type of data
movement

Cfp Sum
Cfp

Validated Schedule items are
returned to the Course Catalog
system so that it can maintain the
student count for each course

Schedule item
data

X 1

The Course Catalog system verifies
that the course offering is still open
and that less than 10 students are
enrolled

N/A not part
of the Course
Registration
System

0

Schedule items are marked as
enrolled in and are made persistent
in the Student’s schedule on the
Course Registration System

Schedule item
data

W 1

The system saves the schedule (this
happens when the Schedule items are
made persistent by the earlier Write)

N/A 0

Student may choose to save a
schedule without submitting it by
selecting save

Schedule item
data

E 1

The course offerings are marked as
selected in the schedule and are saved

Schedule item
data

W 1

Display error message Messages X 1
13

Process 10: Modify a schedule
Triggering event: Student selects the modify schedule activity from the Main Form
Student enters a modify a schedule
command

Modify a
schedule
command

E 1

The system retrieves the Student’s
current schedule

Schedule item
data

R 1

The system displays the Student’s
current schedule

Schedule item
data

X 1

The system retrieves all the course
offerings available for the current
semester from the Course Catalog
System

Course-
offering data

1 × X
1 × E

2

The system displays the list
of available course offerings

Course-
offering data

X 1

The student enters the modifications
to his Schedule item(s)

Schedule item
data

E 1

The system verifies with the Course
Catalog system what prerequisites are
needed

Course data 1 × X
1 × E

1
1

The system verifies whether the
Student has the necessary prerequisites

Schedule
history record

1 × R 1

(Continued)

18 Functional Size Measurement Case Studies

Table 18.4. (Cont.)

507

Subprocess description Data group Type of data
movement

Cfp Sum
Cfp

Validated Schedule items are returned
to the Course Catalog so that it can
maintain the student count for each
course

Schedule item
data

X 1

The Course Catalog system verifies
that there are less than 10 students
enrolled and that the course offering
is still open

N/A 0

Schedule items are marked as
enrolled in and are made persistent
in the Student’s schedule on the
Course Registration System when
saved by the system

Schedule item
data

W 1

Student may choose to save a schedule
without submitting it by selecting save

Schedule item
data

E 1

The course offerings are marked as
selected in the schedule and are saved

Schedule item
data

W 1

Display error message Messages X 1
15

Process 11: Delete a schedule
Triggering event: Student selects the delete schedule activity from the Main Form
Student enters delete schedule
command

Delete Sched-
ule command

E 1

The system retrieves the student’s
current schedule

Schedule item
data

R 1

The system displays the student’s
current schedule

Schedule item
data

X 1

The student enters the deletion
command for the schedule

Delete Sched-
ule command

E 1

The system prompts the Student to
verify the deletion

System Prompt
command

N/A 0

The student confirms the deletion Schedule item
data

N/A repeat
of Entry data

0

The system updates the student’s
schedule

Schedule item
data

W 1

The system sends the deleted schedule
items to the Course Catalog system so
that the latter can update the number
of students enrolled for each course

Schedule item
data

X 1

Display error message Messages X 1
7

Use case 6: Monitor for course full
Use case 7: Close registration

Process 12: Close Registration
Triggering event: Registrar selects the close registration activity from the Main Form

(Continued)

18.3 COSMIC (Cfp) Count of Course Registration system

508

Subprocess description Data group Type of data
movement

Cfp Sum
Cfp

Registrar enters Close Registration Close registra-
tion command

E 1

Read if a Registration is in progress System N/A; see
Sect. 2: Not
enough
details for
measurement
purposes

0

Display error message Messages X 1
Obtain Course offering data (with no.
of students enrolled, etc.) from the
Course Catalog

Course-
offering data

1 × X
1 × E

2

Read Schedule items to obtain the
enrolled and alternate course selection

Schedule item
data

R 1

Check that at least three students are
signed up: if not, cancel course and
examine student’s alternatives

Data manipula-
tion

N/A

Send info for a billing transaction for
each student accepted for the course

Invoice item X 1

Update the course offerings on the
course catalog

Course-
offering data

X 1

Update each student’s schedule Schedule item
data

W 1

Send info on any schedule changes
to students through mail subsystem

Student sched-
ule changes
message

X 1

9
Use case 8: Submit grades

Process 13: Submit grades
Triggering event: The Professor selects the submit grades activity from the Main
Form
The Professor decides to submit
grades

Start process
submit grades

E 1

The system retrieves the courses the
Professor taught from the Course
Catalog

Course-
offering data

1 × X
1 × E

2

Course offerings are displayed Course-
offering data

X 1

The Professor selects a course
offering

Course-
offering
selection

E 1

For each course offering, selected in
turn, the system retrieves the schedule
items for all students who were regis-
tered for each course offering

Schedule item
data

R 1

(Continued)

18 Functional Size Measurement Case Studies

Table 18.4. (Cont.)

509

Subprocess description Data group Type of data
movement

Cfp Sum
Cfp

The system also retrieves the grade
information for each student in the
course offering that had been entered
previously (if any)

Grade is the
second data
group within
the Schedule
item data Ob-
ject of interest

R 1

The system displays each schedule
item for each student including any
grade that was previously assigned
for the offering

Schedule item
data and Grade

2X 2

The professor enters or changes the
student’s grade for the course offering

Schedule item
data

E 1

The system records the student’s
grade for the course offering

Schedule item
data

W 1

Display error message Messages X 1
12

Use case 9: View report card
Process 14: View Report Card
Triggering event: The student selects the view report card activity from the Main
Form
The Student selects the view report
card activity from the Main Form

Start view re-
port card proc-
ess

E 1

The system retrieves the grade
information for each of the courses
the Student completed during the
previous semester

Schedule item
data Grade

2R 2

The system prepares, formats, and
displays the grade information

Schedule item
data and Grade

2X 2

When Student has finished viewing
the grade information the Student
selects close

Student’s
Grades

A control
command,
not a separate
data move-
ment

0

Display error message Messages X 1
6

Total Functional Size in Cfp: 107

There are additional notes for interested readers who wish to formally apply
the COSMIC method and would like additional guidance (and justification for the
earlier counting details) from the COSMIC core team at http://www.lrgl.uqam.ca/
cosmic-ffp/casestudies_with_ISO_19761_2003.html.

18.3 COSMIC (Cfp) Count of Course Registration system

510

18.4 FiSMA (Ffp) Count of Course Registration System

The following is taken from the FiSMA (Finnish Software Measurement
Association) 1.1 functional size measurement method (FiSMA, 2008):

The FiSMA 1.1 measurement process consists of the following steps:
Gather documentation and software development artifacts to describe the

functional user requirements for the software (to be or already) developed.
These include any items such as use cases, preliminary user requirements, use
manuals, entity relationship diagrams, screen, report or database mock-ups, data
flow diagrams, etc. – anything that describe what the software will do in terms
of tasks or services, independently of any quality or technical requirements.

Determine the Scope of the FSM: The Scope of FiSMA 1.1 is determined
by the purpose for doing the FSM and includes the FUR to be developed or
enhanced in the project or application to be counted.

Determine which are the Functional User Requirements to be measured by
FiSMA 1.1 by determining the Scope as outlined in 1 and include only those
user requirements that describe what the software is to do in terms of tasks and
services.

1. Identify the BFCs within the Functional User Requirements from earlier
2 in two main parts: (1) measuring the end-user interface services, and
(2) measuring indirect services. If one of these two parts does not exist
for the piece of software, then the process consists only of measuring the
services that are present.

2. Classify the BFCs into the appropriate BFC type by mapping each BFC
identified to the descriptions of the BFC types in clause 4. Be cautious to
identify duplicate logical functionality so that it is counted only once per
instance of the FSM. Two BFC types are considered to be duplicate if
they have the same characteristics (i.e., identical BFC types with the
same values for each of the component parts for the BFC type, i.e., iden-
tical data elements, reading references, and/or writing references as ap-
propriate for the BFC type).

3. Assign the appropriate numeric value to each BFC using the calculations
outlined for each BFC type <see the chapter on Functional Size Meas-
urement Methods that contains the specific FiSMA rules>.

4. Calculate the Functional Size as outlined at the end of this section.

18.4.1 Step 1 and Step 2

Collect documentation and determine the scope of the measurement: Using the
Fig. 18.2, the scope is the Course Registration system and its functional user
requirements.

18 Functional Size Measurement Case Studies

511

18.4.2 Step 3

Determine which are the Functional User Requirements to be measured by
FiSMA 1.1: The functional user requirements are as described in the use cases
of Sect. 18.1 for the Course Registration System.

18.4.3 Step 4

Identify the BFC’s within the Functional User Requirements: This step identi-
fies the BFC’s within the Functional User Requirements from earlier 2 in two
main parts:

1. Measuring the end-user interface services
2. Measuring indirect services as outlined in Fig. 18.3

Fig. 18.3. FiSMA 1.1 process (FiSMA, 2008)

18.4.4 Steps 5–7

FiSMA provides for two levels of measurement to assess FiSMA function
points (Ffp):

1. KISS (keep it simple stupid) Quick
2. FiSMA 1.1 detailed measurement
The first approach called KISS Quick assigns an average number of func-

tion points (Ffp) to each identified function. This level is especially useful

18.4 FiSMA (Ffp) Count of Course Registration System

512

when the number of data elements and reading or writing references is un-
known.

The second level is called FiSMA 1.1, which is used to evaluate the func-
tional user requirements at a detailed level, and is appropriate for use once the
number of data elements and data entities are known.

The following sections present the Course Registration case study results
counted both using KISS Quick and FiSMA 1.1.

18.4.5 KISS Quick

The results of the KISS Quick method as applied to the Functional User Re-
quirements of the Course Registration System are shown in Table 18.5.

Table 18.5. KISS Quick results

A Interactive navigation
and query components

Description No. × Ffp

1 Start icons None found 1.0
2 Login and logoutscreens Logon 1 1.8 1.8
3 Menus Main form 1 1.8 1.8
4 Selection lists 0 1.0
5 Inquiry screens 3.4
6 Browsing screens 1. List of all students

registered for course;
2. List of courses to
teach; 3. Courses
available for student;
4.Student report card

4 2.3 9.2

7 Generating screens 1.Close registration 1 3.4 3.4
A= 16.2

B Interactive Input
Components

 No. × Ffp

8 3-functional
(add/modify/delete)
screens

1.Professor mainte-
nance; 2.Student
maintenance

2 16.8 33.6

9 2-functional input
screens

11.2

10 1-functional input
screens

1.Select/deselect
courses to teach; 2.
Student schedule; 3.
Student grades

3 5.6 16.8

B= 50.4

C Noninteractive Output
Components

 No. × Ffp

11 Output forms 4.9

18 Functional Size Measurement Case Studies

(Continued)

513

12 Reports 6.5
13 E-mails and text

messages
1. Mail to student (via
mail system)

1 3.0 3.0

14 Output monitor screens 6.5
 C= 3.0
D Interfaces from other

applications (or hw)
 No. × Ffp

15 Online message types in 1. Course and course
offerings retrieved; 2.
Userid/password vali-
dation result; 3.
Courses and number
of students registered;

3 5.5 16.5

16 Signals from devices 2.0
17 Batch record types in 5.5
 D= 16.5
E Interfaces to other

applications (or hw)
 No. × Ffp

18 Online message types
out

1. Cancel/close offer-
ing due to <3 students;
2. Billing system data;
3. Grades are updated;
4. User data (vali-
date); 5. Selection
data for courses

5 3.6 18

19 Signals to devices 1.4
20 Batch record types out 3.6
 E= 14.4
F Data storage services No. × Ffp
21 Entities or classes (oo) 1. Student, 2. Profes-

sor, 3. User
2 3.9 7.8

22 Other persistent records 3.9
 F= 7.8
G Independent algorithmic

and manipulation
services

 No. × Ffp

23 Security routines 5.1
24 Counting routines 1. Calculate/control

attendees
1 5.1 5.1

25 Simulation routines 5.1
26 Formatting routines 5.1
27 Database cleaning

routines
 5.1

28 Other algorithmic
routines

1. Automatic schedule
modify, 2. Add/drop
period control

2 5.1 10.2

 G= 15.3
KISS Quick early Size = A + B + C + D + E + F + G = (units = Ffp) 127.2

18.4 FiSMA (Ffp) Count of Course Registration System

514

18.4.6 FiSMA 1.1 Detailed Measurement

The results of applying the FiSMA 1.1 method to the functional user
requirements of the Course Registration System are shown in Table 18.6.

Table 18.6. FiSMA 1.1 results

BFC Type Name of FUR No. of
data

items

No. of
reading

refs.

No. of
writing

refs.

No. of
operations

Size
(Ffp)

Logon Logon form 5 1 1.4
Menu Main form 7 1 1.7
Browsing
screens

Report card 10 2 2.6

Browsing
screens

List of all
students regis-
tered for course

3 1 1.1

Browsing
screens

List of courses
to teach

3 2 1.6

Browsing
screens

Courses avail-
able for student

3 1 1.6

Generating
Screens

Close registra-
tion

4 2 1.8

3-functional
screens

Maintain
Professor
information

16 1 1 13.7

3-functional
screens

Maintain
Student
information

16 1 1 13.7

1- functional
screen

Select/deselect
courses to teach

11 1 1 3.6

1- functional
screen

Student
schedule update

 7 1 1 2.8

1- functional
screen

Student grade
update

8 2 1 3.6

E-mails
and text
messages

Mail to student
(via mail
system)

8 2 3.6

Online
message
types in

1. Validate
userid /password
combination

2 1 1 1.8

Online
message
types in

2. Course
offering data

5 1 2.4

Online
message
types in

3. Courses
and number
of students

4 1 1 2.2

 (Continued)

18 Functional Size Measurement Case Studies

515

Online
message
types out

1. Cancel/close
offering due to
<3 students (and
any registration
data)

5 1 1.7

Online
message
types out

2. Data to
Billing system

5 3 2.7

Online
message
types out

3. Grade update
info

8 2 2.6

Online
message
types out

 4. Course
selection data

5 1 1.7

Online
message
types out

5. User
information
(validate user)

2 1 1.3

Entities or
classes

Professor 10 3.5

Entities or
classes

Student 15 4.5

Counting
routines

Calculate/
control
attendees

3 3 1.7

Other
algorithmic
routines

Automatic
schedule
modify

15 10 6.4

Other
algorithmic
routines

Add/drop
period control

6 5 3.0

TOTAL Ffp 88.3

Notes:

1. FiSMA: Use case No. 1: Logon includes: 1 logon, 1 menu (Main Form)
2. FiSMA: Use case no. 3: Select/deselect courses to teach includes the following:

1 of the 1-input, 1 Browse screen, 1 Message out, 1 Message in
3. FiSMA: Use case no. 5: Maintain Schedule includes the following: 1 of the 1-input,

1 Browse, 1 Other Algorithm (add/drop), 1 Message out (duplicate message out is
not counted), 1 Message in (duplicate message in is not counted)

4. FiSMA: Use case no. 7: Close registration includes the following: 1 Genera-
tion dialog, 2 Messages out (message to billing system; course cancel message to
course catalog system), 1 Other Algorithm (automatic schedule modify)

5. FiSMA: Use case no. 8: Submit Grades includes the following: 1 of the 1-input,
1 Browse (course offerings duplicate is not counted), 1 Browse (students regis-
tered in course), 1 Message Out (Update grades).

18.4 FiSMA (Ffp) Count of Course Registration System

516

18.5 IFPUG (FP) Count of Course Registration System

Table 18.7 summarizes the IFPUG function point counting process. Note that
for purposes of illustration and comparison, this chapter is intended to illus-
trate how to count Functional Size using the ISO-conformant methods – which
means that the process of functional size ends with the completion of step 4 in
the table.

Note: In simple terms, this means that for functional size measurement,
IFPUG function points would be reported as unadjusted FP.

18.5.1 IFPUG Step 1: Determine the Type of Function Point Count

This function point count is for the new development project to replace the
original Course Registration System.

Table 18.7. IFPUG FP counting approach

IFPUG
Counting Step

Procedure

1 Determine the type of function point count
2 Identify the counting scope and application boundary
3 Count the data functions to determine their contribution to the

unadjusted function point count
4 Count the transactional functions to determine their contribution

to the unadjusted function point count
5 Determine the value adjustment factor
6 Calculate the adjusted function point count

Note that steps 5 and 6 go beyond ISO/IEC definition of functional size, and therefore
we perform only steps 1–4 for this case study

18.5.2 IFPUG Step 2: Identify the Counting Scope and Application
Boundary

The counting scope includes functional user requirements of the new Course
Registration as outlined in the use cases in Sect. 18.1. The application bound-
ary is shown in Fig. 18.4.

18.5.3 IFPUG Step 3: Count the Data Functions to Determine Their
Contribution to the Unadjusted Function Point Count

According to the IFPUG standard, the following definitions apply (IFPUG,
2004):

18 Functional Size Measurement Case Studies

517

Fig. 18.4. Application boundary for IFPUG counting of Course Registration System

Internal Logical Files:
An internal logical file (ILF) is a user identifiable group of logically related

data or control information maintained within the boundary of the application.
The primary intent of an ILF is to hold data maintained through one or more
elementary processes of the application being counted.

External Interface Files:
An external interface file (EIF) is a user identifiable group of logically re-

lated data or control information referenced by the application, but maintained
within the boundary of another application. The primary intent of an EIF is to
hold data referenced through one or more elementary processes within the
boundary of the application counted. This means an EIF counted for an appli-
cation must be in an ILF in another application.

There is no entity-relationship diagram, data model, or object model from
which to be sure of the data relationships and entities. However, the data
analysis used in the COSMIC determination of stand-alone data stores follows
sound analysis principles, and the data groupings are, therefore, also used here.

Table 18.8 shows the results of step 3: Count the data functions.

Table 18.8. Data function results for IFPUG FP count of Course Registration System

Entity/
data group

Description Primary
intent

Type DET RET Com-
plexity

Un-
adjusted

FP
Course A standard

series of
lectures, etc.

Reference
data from
an ILF in

EIF <19 1 Low 5

18.5 IFPUG (FP) Count of Course Registration System

College users
(Students,
Professors,

Course registrar)

Course Catalog
System

Mail system

Billing system

Course Registration
System

Student Schedule

Application Boundary

(Continued)

518

on a specific
subject from
the College
Course
Catalog

course
catalog
application

Course-
offering
(see note 1
immedi-
ately
following
Table 18.3)

A Course
that is avail-
able for
students to
enroll during
a particular
semester

Reference
data from
an ILF in
course
catalog
application

EIF <19 1 Low 5

Professor A person
who may
register to
deliver a
Course
offering in
the current
semester,
for a Course
that he is
eligible to
teach

Data
maintained
by Course
Registration
System

ILF <20 1 Low 7

Student +
schedule
item(s) +
schedule
item his-
tory (see
note 2 in
Sect. 18.3)

A person
who can
register to
attend a
Course
offering

Data
maintained
by Course
Registration
System

ILF Based on
assess-
ment in
18.3,
assumed
<20

3 (Student,
schedule
item, sched-
ule item
history –
different
DET from
Schedule
Item)

Low 7

User Any person
(Registrar,
Professor, or
Student) who
is authorized
to use the
Course
Registration
System

Data
Maintained
external to
Course Reg.
System –
assumed
that it is
maintained
in another
application
boundary

EIF 2 (user id,
password)

1 Low 5

Total EIF 3 Low 15
Total ILF 2 Low 14

18 Functional Size Measurement Case Studies

Table 18.8. (Cont.)

519

18.5.4 IFPUG Step 4: Count the Transactional Functions
to Determine Their Contribution to the Unadjusted
Function Point Count

According to the IFPUG standard, the following definitions apply (IFPUG,
2004):

External Input:
An external input (EI) is an elementary process that processes data or con-

trol information that comes from outside the application boundary. The pri-
mary intent of an EI is to maintain one or more ILFs and/or to alter the behav-
ior of the system.

External Output:
An external output (EO) is an elementary process that sends data or control

information outside the application boundary. The primary intent of an EO is
to present information to a user through processing logic other than, or in ad-
dition to, the retrieval of data or control information. The processing logic
must contain at least one mathematical formula or calculation, create derived
data, maintain one or more ILFs, or alter the behavior of the system.

External Inquiry:
An external inquiry (EQ) is an elementary process that sends data or control

information outside the application boundary. The primary intent of an EQ is
to present information to a user through the retrieval of data or control infor-
mation from an ILF of EIF. The processing logic contains no mathematical
formulas or calculations, and creates no derived data. No ILF is maintained
during the processing, nor is the behavior of the system altered.

Table 18.9 summarizes the list of use cases as originally presented in
Sect. 18.1. The results of applying IFPUG functional size measurement to the
Course Registration’s functional user requirements is shown in Table 18.10.

Table 18.9. Course Registration use cases

Use case Use case name for Course Registration System
1 Logon (by all users)
2 Maintain professor information (by the registrar)
3 Select courses to teach (by professors)
4 Maintain student information (by the registrar)
5 Register for courses (by students)
6 Monitor for course full (by the application)
7 Close registration (by the registrar)
8 Submit grades (by professors)
9 View report card (by students)

18.5 IFPUG (FP) Count of Course Registration System

520

Table 18.10. IFPUG FP transactional function type summary for Course Registration
System Project

Description Primary
intent

Type DET FTR/RET Com-
plexity

Unad-
justed

FP
Use case 1: Logon
Logon (validate
user id and
password)

Present data
retrieved to
users

EQ <19 1 (User) Low 3

Use case 2: Maintain Professor information
Registrar: add
professor

Maintain ILF EI <16 1 (Professor) Low 3

Registrar: retrieve
and display profes-
sor infor-mation
(implied query)

Present data
retrieved to
registrar

EQ <19 1 (Professor) Low 3

Registrar: modify
professor (includes
save)

Maintain ILF EI <16 1 (Professor) Low 3

Registrar: delete
professor (includes
confirming delete)

Maintain ILF EI <16 1 (Professor) Low 3

Use case 3: Select/Deselect courses to teach
Professor: Display
course offerings
available for this
professor for this
semester, plus those
already
selected

Present
retrieved data
to
professor

EQ 6–19 3 assumed
(professor,
course
offerings,
course)

Average 4

Professor: Select/
deselect courses and
save (update) course
offerings. Note:
conflicting pairs
display is part of
this function, not a
standalone process

 selections sent to
other system to up-
date course offering

Maintain ILF EI 5–15 2 assumed
(course
offering,
professor)

Average 4

Use case 4: Maintain student information
Registrar: add
student

Maintain ILF EI <15 1 (Student) Low 3

Registrar: display
student information
(implied query)

Present
retrieved data
to registrar

EQ <19 1 (Student) Low 3

18 Functional Size Measurement Case Studies

(Continued)

521

Registrar: update
student

Maintain ILF EI <15 1 (Student) Low 3

Registrar: delete
student

Maintain ILF EI <5 1 (Student) Low 3

Use case 5: Register for Courses
Student: display
available course
offerings (different
logic from professor
display of course
offerings)

Present
retrieved data
to Student

EQ 6–19 2 (course of-
fering, course,
student for
courses
already
selected)

Average 4

Student: Maintain
schedule (4 courses
+ 2 alternates) if
pre-requisites are
met) selections
sent to other system
to maintain student
count for each
course -- update
student schedule
records

Maintain ILF EI 5–15 3 assumed
(course
offering,
student,
course
catalog
(w/prerequisit
e info))

High 6

Student: display
schedule (implied
query)

Present
retrieved data
to student

EQ 6–19 2 (student,
course
offering)

Average 4

Use case 6: Monitor for Course Full
System sets busi-
ness rule for max.
attendees per course
offering = 10
(checks course
offerings to verify
level). No explicit
trigger (time or
anything else) and
no data crosses
boundary (either in
or out) to any user

Assumed to
be done as
part of other
functional
processes
(Internal
process)

N/A

Use case 7: Close Registration
Registrar: close
Registration
(includes cancella-
tion and student
schedule update)
update sent to other
system to update
course offering

Send updates
to other
application to
close/cancel
course offer-
ing, update
student ILF

EO 6–19 3 assumed
(student,
course offer-
ing, course)

Average 5

18.5 IFPUG (FP) Count of Course Registration System

(Continued)

522

System: send billing
system notice of
courses closed but
not cancelled (with
student info for
billing)

Present
retrieved data
to user
(assumed
no calc.)

EQ 6–19 2 assumed
(course
offering,
student)

Average 4

System: notify all
students by mail
of any changes to
their schedule

Present
retrieved data
to user

EQ 6–19 2 assumed
(course
offering,
student)

Average 4

Use case 8: Submit Grades
Professor: List
of course offerings
taught in previous
semester

Present
retrieved data
to user

EQ 6–19 1 assumed
(Course
offering)

Low 3

Professor: List of all
students registered
for selected course
offering and grades
for each

Present
retrieved data
to user

EQ 6–19 2 assumed
(student,
course
offering)

Average 4

Professor:
enter/update student
grades (one process
that updates record
that already exists)

Maintain ILF EI 5–15 1 assumed
(student)

Low 3

Use case 9: View Report Card
Student: view report
card for previous
semester

Present
retrieved data
to user

EQ 6–19 2 assumed
(Course
offering,
student)

Average 4

18.5.5 IFPUG Summary Unadjusted FP Count for Course
Registration System

Table 18.11 shows the result of the unadjusted FP count for the Course Regis-
tration System.

Table 18.11. IFPUG FSM results

Function
type

Functional
Complexity

Complexity
Totals

Function Type Totals
(unadjusted FP)

ILF 2 Low × 7 = 14
0 Average × 10 = 0
0 High × 15 = 0 14

EIF 3 Low × 5 = 15
0 Average × 7 = 0

18 Functional Size Measurement Case Studies

Table 18.10. (Cont.)

(Continued)

523

 0 High × 10 = 0
 15
EI 7 Low × 3 = 21
 1 Average × 4 = 4
 1 High × 6 = 6
 31
EO 0 Low × 4 = 0
 1 Average × 5 = 5
 0 High × 7 = 0
 5
EQ 4 Low × 3 = 12
 7 Average × 4 = 28
 0 High × 6 = 0
 40
IFPUG Function Point Count (uFP) 105

18.6 Mark II Function Point Count of Course Registration
System

This functional size measurement is based on the Mark II method from the
U.K. Software Measurement Association, UKSMA. Note that the details of
Mark II are outlined in the chapter on functional size measurement methods.
The steps in Mark II for determining the size of the Course Registration Sys-
tem are depicted in Fig. 18.5 later.

Every logical transaction consists of the three elements of input, process,
and output. MkII FPA makes the following basic assumptions regarding the
functional size of these three elements:

The size of the input element is proportional to the number of uniquely proc-
essed Data Element Types (DETs) composing the input side of the transaction
The size of the processing element is proportional to the number of Data Ent-
ity Types (or entities) referenced during the course of the logical transaction
The size of the output element is proportional to the number of uniquely
processed DETs composing the output side of the transaction The Func-
tional Size (Function Point Index) is the weighted sum over all Logical
Transactions, of the Input Data Element Types (Ni), the Data Entity Types
Referenced (Ne), and the Output Data Element Types (No).
So the Function Point Index (FPI) for an application is as follows:

 FPI = Wi × SNi + We × SNe + Wo × SNo,
where SN means the sum over all Logical Transactions, and the industry aver-
age weights per Input Data Element Type (Input DET), Data Entity Type Ref-
erence (ER), and Output Data Element Type (Output DET) are, respectively,
Wi = 0.58; We = 1.66; Wo = 0.26.

18.6 Mark II Function Point Count of Course Registration System

524

Fig. 18.5. Mark II steps for size measurement of the Course Registration System

Table 18.12 presents the Mark II results.

Table 18.12. Mark II FSM results

Transaction
name

Event or
query

No. of
input DET

Entity
types
referred to

No.
of
ER

Response No. of
output DET

Mark
II FP

Use case 1: Logon
Logon Query 2 User 1 Main

Form/error
1 3.08

Use case 2: Maintain professor information
Create Event 5: DOB,

name, SSN,
status, dept.

Professor 1 Ok/error 2: error msg,
Professor
no.

5.08

Update Event 5 Professor 1 Ok/error 2 5.08

Delete Event 1 Professor 1 Ok/error 2 2.76
Implied
query

Query 1 Professor 1 Professor
information

5 3.54

18 Functional Size Measurement Case Studies

Measure Functional Size
Start

1. Determine
purpose & type
of count

2. Determine
Boundary of
Count

3. Identify 4. Identify &
Logical Categorize
Transactions Entity Types

5. Count Input,
Process and
Output

6. Calculate
Functional
Size

End

Mark II
FP method

(Continued)

525

Transaction
name

Event or
query

No. of
input DET

Entity
types
referred to

No.
of
ER

Response No. of
output DET

Mark
II FP

Use case 3: Select/Deselect courses to teach
Select
courses to
teach (by
professors)

Query 1 Course
catalog,
course
offering

2 Course list 4: date,
name,
course time,
already
selected flag

4.94

Select
courses to
teach (by
professors)

Event 4: course
name, date,
time,
professor

Professor,
Course
catalog,
course
offering

3 Ok/error 1 7.56

Use case 4: Maintain student information
Create Event 5: name,

DOB, SSN,
status, dept.

Professor 1 Ok/error 2 (error msg,
professor
no.)

5.08

Update Event 5 Professor 1 Ok/error 2 5.08

Delete Event Professor 1 Ok/error 2 2.76

Implied
query?

Query 1 Professor 1 Professor
information

5 3.54

Use case 5: Register for Courses
Display
available
courses?

Query 1 Course,
Course
offering

2 Course
offering
information

3 name,
date, time

4.68

Register
for courses
(by
students)

Event 4: student,
course
name, date,
time

Student,
Course
offering

2 Ok/error 2 6.16

Display
schedule

Query 1 Student 1 Student
schedule
information

4 (Course
no. (1–6),
name, date,
time)

3.28

Use case 6: Monitor for Course Full
Courses
available

Query 1: Trigger Course
offering

1 Course no.,
name, date,
time, full
message

5 3.54

Use case 7: Close Registration
Close
registration
(by the reg-
istrar)

Event 3 Student,
Course
offering

2 Ok/error 8 7.14

18.6 Mark II Function Point Count of Course Registration System

526

Transaction
name

Event or
query

No. of
input DET

Entity
types
referred to

No.
of
ER

Response No. of
output DET

Mark
II FP

Use case 8: Submit grades

View
students
and grades

Query 1 Student,
Course
offering

2 Student
information

5 (Student,
grade,
course, date,
time)

5.2

Submit
grades (by
professors)

Event 3: student,
course,
grade

Student,
Course
offering

2 Ok/error 2 5.58

Use case 9: View Report Card

View
report card

Query 2: Student,
semester

Student 1 Report card
info

3 Student,
course grade

3.6

 Total MK II unadjusted FP 87.68

18.7 NESMA Count of Course Registration System

NESMA is a FSMM that is the most similar to the IFPUG method, but there
are still several differences between them. The NESMA website offers the pa-
per: FPA according to NESMA and IFPUG, the present situation (version 2.0,
8 June 2004) downloadable from www.nesma.nl. This paper outlines the re-
maining differences between NESMA and IFPUG. The following excerpt
provides a summary:

“Practically the same guidelines” as IFPUG (4.2): NESMA and IFPUG
both use the same terminology, albeit in a different language. The NESMA
maintains a list of English words related to FPA. This can be downloaded
from the NESMA site.

Both NESMA and IFPUG differentiate the same five types of user func-
tions: ILGV (ILF), KGV (EIF), IF (EI), UF (EO), OF (EQ).

The rules for determining the type and complexity of a function are the
same, with a few exceptions:

External Inquiry vs. External Output
multiple rows/occurrences within an output, -even without calculations-
constitutes an EO for NESMA. External queries must have a fixed size
of the output, e.g., number of records returned.

Complexity of an External Inquiry
the complexity is determined by evaluating the input side complexity
(low, average, high) using the EI matrix; then evaluating the output side
complexity (low, average, high) using the EO matrics; then the complex-
ity of the query is the side which has the highest complexity (input or

18 Functional Size Measurement Case Studies

Table 18.12. (Cont.)

527

output) and scoring it using the EQ values for low, average, or high.
(IFPUG uses the sum of DETs and FTRs found on the input and output
sides – eliminating duplicates – and evaluated the result against the EO/
EQ matrix to determine the complexity of the EQ)

Implicit Inquiry
counted as part of the originating EI for NESMA. (IFPUG counts implied
queries as standalone EQ)

Code data (Code tables)
are counted together as a single FPA-Table ILF or EIF (IFPUG does not
count these at all)

Physical media
Queries with multiple selections (and/or situations)

For further details, refer to the NESMA website (www.nesma.nl) for the
full paper.

18.7.1 NESMA FP Count of Data Functions

Based on the paper outlined earlier and a review of the IFPUG count of the
case study, the data entities and their functional size appear to be the same as
for the IFPUG count. Table 8.13 shows this summary.

Note that ILGV is the same as an ILF (internal logical file) in IFPUG termi-
nology, and KGV is the same as EIF (external interface file).

Table 18.13. Data functions for NESMA count of Course Registration System

Entity/data
Group

Description Type DET RET Com-
plexity

NESM
A FP

Course A standard
series of
lectures, etc.
on a specific
subject from
the College
Course Catalog

EIF
(KGV)

<19 1 Low 5

Course offering
(see note 1
immediately
following
Table 18.3)

A Course that
is available for
students to
enroll during a
particular
Semester

EIF
(KGV)

<19 1 Low 5

Professor A person who
may register to
deliver a
Course offering

ILF
(ILGV)

<20 1 Low 7

18.7 NESMA Count of Course Registration System

(Continued)

528

in the current
Semester, for a
Course that he
is eligible to
teach

Student+
schedule
item(s) +
schedule item
history (see
note 2 in
Sect. 18.3)

A person who
can register to
attend a Course
offering

ILF
(ILGV)

Based on
assess-
ment in
18.3,
assumed
<20

3 (Stu-
dent,
schedule
item,
schedule
item
history –
different
DET
from
Schedule
item)

Low 7

User Any person
(Registrar,
Professor, or
Student) who is
authorized to
use the Course
Registration
System

FPA-
Table
EIF
(KGV)

2 (user id,
password)

1 Low 5

 ILF
(ILGV)

 2 Low 14

 EIF
(KGV)

 3 Low 15

18.7.2 NESMA FP Count of Transactional Functions

The following table outlines the NESMA count for the use cases (Table 18.14).
Note that IF is an EI (external input) in IFPUG terminology, UF is an EO
(external output), and OF is an EQ (external query).

Table 18.14. NESMA FSM transactional function type summary for Course Registration
System Project

Description Type DET FTR/ RET Complex-
ity

NESMA
FP

1 Logon
Logon (validate userid and
password) with standard trigger
and output

Not
counted--

2 Maintain Professor
Registrar: add professor EI (IF) <16 1 Low 3

18 Functional Size Measurement Case Studies

Table 18.13. (Cont.)

(Conintued)

529

Registrar: modify professor
(includes save and inquiry DET
display)

EI (IF) <16 1 Low 3

Registrar: delete professor
(includes confirming delete
and inquiry DET display)

EI (IF) <16 1 Low 3

3 Deselect/Select courses to teach
Professor: Display course
offerings available for this
professor for this semester,
plus those already selected

Part of
EI (IF) -
implied
query not
counted

0

Professor: Select/de-select
courses and save (update) course
offerings. Note: conflicting pairs
display is part of this function,
not a standalone process

EI (IF) 5–15 3 assumed
(course
offering,
professor,
course)

High 6

4 Maintain student information
Registrar: add student EI (IF) <15 1 Low 3
Registrar: update student
(includes inquiry display DET)

EI (IF) <15 1 Low 3

Registrar: delete student
(includes inquiry display DET)

EI (IF) <15 1 Low 3

5 Maintain schedule
Student: Display available
course offerings (different
logic from professor display
of course offerings)

EO (UF)
due to
multiple
record
output

6–19 2 (course
offering,
course,
student for
courses
already
selected)

Average 5

Student: Maintain schedule
(4 courses + 2 alternates) if
prerequisites are met) all update
student records (includes inquiry
DETs)

EI (IF) 5–15 3 assumed
(course
offering,
student,
course
w/pre-
requisite
info)

High 6

Student: Save schedule in
progress not considered a
standalone elementary process

(Conintued)

18.7 NESMA Count of Course Registration System

530

6 Monitor course <10 attendees
System sets business rule for
max. attendees per course offer-
ing = 10. (Checks course offer-
ings to verify level). No explicit
trigger (time or anything else)
and no data crosses boundary
(either in or out) to any user

N/A

7 Close course
Registrar: Close Registration
(includes cancelation and stu-
dent schedule update) pri-
mary purpose: send update to
other system to update (close)
course offering

EO (UF)
Multiple
line output

6–19 3 assumed
(student,
course
offering,
course)

Average 5

System: Send billing system no-
tice of courses closed but not
canceled (with student info for
billing)

EQ (UF)
Multiple
line output

6–19 2 assumed
(course
offering,
student)

Average 5

System: Notify all students by
mail of any changes to their
schedule

EQ (UF)
Multiple
line output

6-19 2 assumed
(course
offering,
student)

Average 5

8 Maintain grades
Professor: Enter/update student
grades (one process that updates
record that already exists) in-
cludes querying of courses and
students

EI (IF) 16+ 2 assumed
(student,
course
offering)

High 6

9 View report card
Student: View Report Card: for
previous semester

EO (UF)
Multiple
line output

6–19 2 assumed
(Course
offering,
Student)

Avg 5

Table 18.15 shows the result of the unadjusted NESMA FP count for the
Course Registration System.

18.8 Comparison of Results of FSM Methods

Table 18.16 shows the results of the various ISO-conformant FSM Methods to
the Course Registration System’s functional user requirements. All results are
in unadjusted units of measure.

18 Functional Size Measurement Case Studies

Table 18.14. (Cont.)

531

Table 18.15. NESMA FSM count of Course Registration System

Function
Type

Functional
Complexity

Complexity
Totals

NESMA Function Type
Totals (unadjusted
NESMA FP)

ILF 2 Low × 7 = 14
 0 Average × 10 = 0
 0 High × 15 = 0
 14
EIF 3 Low × 5 = 15
 0 Average × 7 = 0
 0 High × 10 = 0
 15
EI 6 Low × 3 = 18
 Average × 4 = 0
 3 High × 6 = 18
 36
EO 0 Low × 4 = 0
 2 Average × 5 = 10
 0 High × 7 = 0
 10
EQ 0 Low × 3 = 0
 3 Average × 4 = 12
 0 High × 6 = 0
 12
NESMA Function Point Count (NESMA FP) 87

Table 18.16. Summary of FSM sizes of the Course Registration System using the 5 ISO/
IEC-conformant FSMMs

Use
Case
No.

FSM
Data entity

COSMIC
Cfp

FiSMA Ffp IFPU
G uFP

Mark II FP
unadjusted

NESMA
FP

1 Internal
entity:
professor

0 3.5 7 0 7

2 Internal
entity:
student

0 4.5 7 0 7

3 Internal
entity: user

0 2.5 7 0 7

4 External
entity:
course
catalog

0 Counted
w/messages

5 0 5

5 External
entity:
course
offering

0 Counted
w/messages

5 0 5

18.8 Comparison of Results of FSM Methods

(Continued)

532

Use
Case
No.

FSM
Use case

COSMIC
Cfp

FiSMA Ffp IFPU
G uFP

Mark II FP
unadjusted

NESMA
uFP

1 Logon 3 6.2 3 3.08 0
2 Maintain

professor
17 13.7 12 16.46 9

3 Deselect/
select
courses to
teach

9 9.31 8 12.5 6

4 Maintain
student in-
formation

16 13.7 15 16.46 9

5 Maintain
schedule

35 7.42 17 18.62 11

6 Monitor
course < 10
attendees

0 1.7 0 3.54 0

7 Close
course

9 18.42 13 7.14 13

8 Maintain
grades

12 7.32 10 10.78 6

9 View
report card

6 2.6 4 3.6 4

 Total count
(units
specific to
FSMM)

 88 Ffp 105
uFP

 87 Mk II
FP unadj.

87
NESMA
FP

FiSMA Notes:

1. Select/deselect courses to teach includes message out to request course list
from Course Catalog system, and message in containing the retrieved data.

2. The size of use case does not include the messages to/from Course Cata-
log system because they are duplicated from use case 3 (Select/deselect
courses to teach).

18 Functional Size Measurement Case Studies

Table 18.16. (Cont.)

19 Functional Size Measurement: Additional Case
Studies

This chapter provides three additional examples of Functional Size Measurement
applied to functional user requirements COSMIC (one case study: Valve
Control System); and IFPUG (two case studies: Function Point Calculator,
Training Administration Application).

19.1 COSMIC Case Study

The following case study (the real-time Valve Control System) is an excerpt
(only requirements and count result, no remarks) of one of the publicly
available COSMIC Case Studies. For further information visit http://www.
gelog.etsmtl.ca/cosmic-ffp/index.html.

19.1.1 Valve Control System

The Valve Control System used in this case study corresponds to the set of
Reference User Requirements (RUR) from annex B.9 of the ISO technical
report: ISO/IEC TR 14143-4.

19.1.2 Measurement Viewpoint, Purpose, and Scope

For the purposes of the case study, the following is given.
Measurement viewpoint:
The measurement viewpoint in this case study is that of the software devel-

oper who is interested in quantifying the functionality of the software he has
to develop.

Measurement purpose:
The measurement purpose is to measure all of the Functional User Requi-

rements (FUR) of the software requirements as documented in the set of
Reference User Requirements (RUR) and as selected for this case study using

the COSMIC functional sizing method. FUR are a subset of the RUR and
pertain only to what the application software will do.

Measurement scope:
The measurement scope is all of the Functional User Requirements within

the set RUR B.9 – and only these. The measurement scope is therefore a
subset of the reference user requirements documented in this ISO/IEC case
study, that is, only those related to software and not those related to the
hardware or technology.

19.1.3 Requirements

Context:
The requirements given here describe what functions are included in the

behavior of the control valve that controls a mechanical device to change gears
on an automatic transmission installed in a land vehicle.

The valve can be open or closed: it is open by default and closed to engage
the gear change mechanism. The process controls the amount of time the valve
is closed during an operating cycle of several thousand microseconds. A clock
supplying the operating cycle reference triggers the process.

INPUT – The process uses the following as input:

A sensor signal (Gc) indicating whether gear change is in progress (value 1)
or not (value 0)
A sensor signal (Su) indicating, during gear change, whether shifting to upper
gear (value 1) or lower gear (value 0)
A sensor signal (Idl) indicating whether the transmission is under stress
(value 0) or idling (value 1)
A binary flag A whose value is stored in the processor ROM memory or
A binary flag B whose value is stored in the processor ROM memory
Binary flags A and B describe some general configuration characteristics of
the automatic transmission.

OUTPUT – The process produces the following as output:
Time (T), during one operating cycle, during which the control valve must

be closed.
Requirements:
PART A – Determine general operating condition
Determine whether operating slowly or quickly from the closed state of the

hydraulic valve.

19 Functional Size Measurement: Additional Case Studies 534

IF (Gc = 1
AND Idl = 1
AND A = 0
AND B = 0)

THEN, operating under normal condition, perform PART B
IF (Gc = 1

AND Idl = 0
AND Su = 1
AND A = 0
AND B = 0)

THEN, operating during gear change, perform PART C.
PART B – Control to open hydraulic valve slowly from its closed state
Reset T to the smaller value of either INIT or the value of T during the last

process cycle, where INIT is a constant stored in the computer ROM memory,

Compute the new value of T: T = T (Cst_X × ET),
where Cst_X is a constant stored in the processor ROM memory and ET is the
elapsed time since an action that opens the hydraulic valve slowly from its
closed state has been activated.

Condition for completion:
If the following conditions are met then valve control is passed to another

process:

T is smaller or equal to LT
or
Slp is greater or equal to Uslp,

where LT is a lower threshold of time and Uslp is an upper threshold of
the amount of slip stored in the processor ROM memory. Slp is the current
amount of slip, which denotes the difference of number of revolutions between
the engine output shaft and the power train shaft. The value is computed and
updated according to the following formula and stored in the processor RAM
memory.

Slp = |Erev PSrev|,

where Erev is the engine’s output shaft revolutions and PSrev is the power train
shaft revolutions. Both variables’ values are supplied by concurent processes
using input from separate sensors and placing the calculated result in the
processor RAM memory.

PART C – Control to open the hydraulic valve quickly from its closed state
Reset T to the smaller value of either INITS(Vs) or the value of T during

the last processing cycle, where INITS is a table of initial values stored in the

19.1 COSMIC Case Study 535

processor ROM memory and Vs is the vehicle speed, which is computed and
updated by another process and stored in the computer RAM memory.

Compute the new value of T: T = T (INCR(Vs)) × ET,

where INCR is a table of increments, which depend on the speed of the vehicle
stored in the processor ROM memory, and ET is the elapsed time since an action
to close the hydraulic valve quickly from its closed state has been activated.

Condition for completion: if the following conditions are met then valve
control is passed to another process.

T is smaller or equal to LT where LT is a lower time threshold stored in the
processor ROM memory.

Note: From a functional size measurement perspective, the data attributes
and data structures preserved in the processor ROM and RAM memory are
considered to reside within the software boundary.

19.1.4 COSMIC Measurement Procedure

Identification of layers
There is a single software layer for this set of requirements.
Identification of users
The users that interact with this software are the following mechanical devices:

<L1>Send information to the software:
<sublist>Clock
<sublist>Sensors: GC, Su, and IDL

<L1>Receives information from the software:
<sublist>A control valve

From the requirements, as written, there are no human users, nor are there
other software applications interacting with this software.

Boundary
Based on the written requirements, we can identify the software boundary

as shown in Fig. 19.1. The data groups are listed in Table 19.1.

Identification of triggering events:
From the documented requirements, a single triggering event is identified:
A Clock supplying the operating cycle reference, which triggers the process.

Identification of data groups:
From the documented requirements, the following data groups are identified:
Note 1: Much data needed by the process must be obtained from ROM. We

assume that all these data are attributes of one Object of interest, namely
the fixed parameter set for the valve control process; this parameter set may

19 Functional Size Measurement: Additional Case Studies 536

be unique to this valve-type and even to this automatic transmission, perhaps
even to this vehicle. This assumption is justified as follows.

Physically, it is likely that the data needed for any one cycle is obtained at
one time from the ROM and not as a succession of Reads.

The COSMIC deduplication rule assumes that all data needed for any one
Object of interest is obtained in only one data movement.
N.B. This assumption may be incorrect. The ROM(s) may store other data for
other functional processes. If we had this wider knowledge, we might find
that the data is organized into groups for more than one Object of interest. But
we do not have this wider knowledge and so we make this simple assumption
(based on the RUR as documented).

Fig. 19.1. Valve control (case study) software boundary

Table 19.1. Valve control (case study) data groups
Data sources/
destinations

Objects of interest Data groups Data attributes

Clock Op. cycle trigger event Clock signal Clock signal
Sensors Gear-change status Gc Gc
 Shift direction Su Su
 Stress/idle status Idl Idl

ROM Valve-type X Valve-type X ’s
fixed parameter
set for the valve
control process

Flag A or Flag B, INIT,
Cst_X, LT, Uslp,
INITS 1, 2, 3, etc.,
INCR 1, 2, 3, etc.

RAM Engine Erev Erev
 Power train PSrev PSrev
 Vehicle Vs Vs
 Period since last action ET ET

Control valve Period valve-to-be-closed T T
Total of data
groups

 10

19.1 COSMIC Case Study 537

Time

Valve Control Software

Control Valve

Sensor Gc

Sensor Su

Sensor Idl

Clock

ROM RAM

Boundary

Note 2: It might be argued that by definition a ROM, whose contents cannot
be maintained by software, should be regarded as a User of the software being
measured, and hence it should be shown as outside the software Boundary,
rather than as memory within the Boundary.

We have adopted the view that the ROM is within the Boundary, as its
contents must have been written by some other process during the ROM manu-
facture, perhaps involving software. Hence, the functional process being mea-
sured obtains the data it needs from the ROM by a Read data movement.

If the alternative view had been adopted that the ROM is a User, then
the data required by the functional process being measured would be obtained
by an Entry, rather than by a Read. The size of the functional process in Cfp
given later would be unchanged.

Note 4: The requirements, as documented, do not specify whether the
Elapsed times (which are defined differently for Parts B and C) are given by
the hardware, or whether they are calculated by the software, nor do the require-
ments state where the ET is obtained from. For the purposes of this case study,
the following system decision was taken as an assumption: the ET is provided
by another process and the valve control process obtains it from the RAM.
Should another system decision be made, that is of allocating to the hardware
the calculation of elapsed time or to a function within this functional process,
another functional measurement would have to consider this added function
to be developed and integrated within the software.

Note 5: Slp is calculated on each cycle and is not made persistent between
cycles. It is therefore the result of data manipulation and is not involved in any
data movement according to the COSMIC method.
Identification of functional processes:

From the documented requirements with a single triggering event, there is
one candidate functional process, which is as follows:

The control of time during the operating cycle of the control valve.
The measurement procedure must assess whether a candidate functional

process is a COSMIC one or not.
Each candidate process must satisfy the following questions in order to be

validated as a COSMIC functional process:
Does it operate on a unique cohesive and independently executable set of
data movements performing a set of FURs?
Is it triggered by an event (triggering event)?
Does the triggering event occur outside the boundary of the software?
Does the process execute all that is required to be done in response to the
triggering event?

19 Functional Size Measurement: Additional Case Studies 538

These questions are investigated in Table 19.2: Time-based control of the valve.

The time-based control of the valve process is therefore a COSMIC func-
tional process.

Table 19.2. Valve control (case study): time-based control.

Question Answer Comments
Does it operate on a unique cohesive
and independently executable set of data
movements performing a set of FURs?

Yes

Is it triggered by an event? Yes Clock signal event
Does the triggering event occur outside
the boundary of the software?

Yes The clock is outside of the
software – see Fig. 19.1

Does the process execute all that is re-
quired to be done in response to the trig-
gering event?

Yes According to the given
requirements

Identify data movements:
For the single functional process in the previous steps, all data movements

of a data group must be identified.
In this case study, the Message Sequence Diagram (Fig. 19.2) has been

prepared to facilitate the identification of the data movements, and to ensure
that all data movements have been identified.
Message sequence diagram

List of data movements:
The detailed list of the data movements identified is presented in Table 19.3.

Fig. 19.2. Valve control (case study) message sequence diagram.

19.1 COSMIC Case Study 539

Clock E

Gc Sensor

SuSensor

Idl Sensor

E

E

E

Valve fixed
parameters

R

T

ET

R

R

Boundary Boundary

W T

R

R

R

Erev

PSrev

Vs

Users:

X T Valve (User)

Valve Control
Functional Process

Table 19.3. Valve control (case study) data movements.

 Functional

name

Triggering
event

Data movements
identification

Data
group

Data
movement
type

Cfp

 Time-based
control of
the valve

Clock
cycle
signal

Receive clock cycle
signal

Clock E
1

Receive signal of Gc
Sensor

Gc E 1

Receive signal of Su
gear change

Su E 1

Receive signal of Idl
Sensor

Idl E 1

Read valve fixed
parameters

Valve
fixed
parameters

R
1

Read of T from RAM T R 1
Read ET from RAM ET R 1
Read Erev from RAM Erev R 1
Read PSrev from RAM PSrev R 1
Read Vs from RAM Vs R 1
Send T to the control
valve

T X 1

Write T to RAM T W 1
Total functional size in Cfp Cfp 12

The following labeling convention is used: the functional process is assigned
an ID number with the following format: x.y where x is the layer ID and y is
the ID number of the functional process within the layer. Here, this is a single
layer and a single functional process that is 1.1.

19.2 IFPUG Function Point Case Studies

19.2.1 Function Point Calculator

Requirements

The Function Point Calculator application (see Fig. 19.3) has only one dia-
logue screen where the user can enter the number of EI, EO, EQ, ILF, and EIF
and can choose the corresponding complexity. After input of the 14 GSCs and
pushing the first of the three buttons (labeled Calculate) the results are com-
puted and displayed.

19 Functional Size Measurement: Additional Case Studies 540

process

Fig. 19.3. Function Point Calculator (case study) requirements

Pushing the second button (labeled Print) delivers a printout of the actual
count including the date of calculations, a descriptive text for EI (External
Input), EO (External Output), EQ (External Query), ILF (Internal Logical File),
EIF (External Interface File) together with a count (from internal memory)
of how many counts have been done to date, and message text at the bottom
stating that a FP count is the functional size of an application, and other input
parameters are necessary to produce reliable effort estimates. The entered data
is not stored, nor is there any error handling.

The third button (labeled Close) is to exit the calculator.
The Function Point Calculator (case study) count details are displayed in

Tables 19.4 and 19.5.

Results According to IFPUG

Table 19.4. Function Point Calculator (case study) result.

Description Type DET FTR/RET Complexity N Unadjusted FPs
Calculations EO 19 0 Low 1 4
Print output EO 20+ 0 Average 1 5
Sum of unadjusted
FPs

9

VAF 0.72
Adjusted FPs 6 adjusted FPs
Notes: Calculation output display: 19 DET: Name, #ILF, ILF FP, #EIF, EIF FP, #EI, EI FP, #EO, EO
FP, # EQ, EQ FP total unadjusted, total adjusted, GSC#, value (this is a multiple occurring group with
14 occurrences), TDI, VAF, command key (calculate), error/confirmation message. In addition, the
printed output includes the count, message, and date of calculations

19.2 IFPUG Function Point Case Studies 541

Print
N

Calculate

Close

FPComplexity

unadjusted FP

adjusted FP

Name of Count

VAF

1. Data Communic.
2. Distr. Processing
3. Performance
4. Heav. Used Config.
5. Transaction Rate
6. Online Data Entry
7. End-User Efficiency

Ext. Log. File EIF

GSC‘s

Function Points

Int. Log. File ILF

Ext. Inquiry EQ

Ext. Output EO

External Input EI

8. Online Update
9. Complex Process.
10. Reusability
11. Installation Ease
12. Operational Ease
13. Multiple Sites
14. Facilitate Change

TDI

FUNCTION POINT CALCULATOR

The VAF and GSCs are shown in Table 19.5.

Table 19.5. Function Point Calculator (case study) GSCs and VAF.

Function Point Calculator (case study) general system characteristics (GSCs)
and Value adjustment factor (VAF)
1. Data Communications 0 8. Online Update (Note: There are NO

ILFs; therefore, nothing is being
updated)

0

2. Distributed Data Processing 0 9. Complex Processing 0
3. Performance 0 10. Reusability 0
4. Heavily Used Configuration 0 11. Installation Ease 0
5. Transaction Rate 0 12. Operational Ease 0
6. Online User Interface 5 13. Multiple Sites 0
7. End-User Efficiency 2 14 Facilitate Change 0
Subtotal degrees of influence 7 Subtotal degrees of influence 0

Total degrees of influence (TDI) 7
VAF = 0.65 + (TDI × 0.01) = 0.65 + (7 × 0.01) = 0.72

Note: Adjusted FPs are always rounded. For this case study, there is no EI and no ILF, since data are
not stored. (Note that the internal memory of the number of counts done to date is not included as an
ILF because it is stored in flash memory and is not populated through an elementary process of the ap-
plication.)

Source: Example study adapted and translated from H. Balzert, Lehrbuch der
Softwaretechnik (originally in German).

Requirements

Goals: The organization Teachware Inc. shall get support from the product
for administration of their training courses.

Application areas: The product is used for customer and course administra-
tion. Several inquiries should be answered by the users who are the staff of
Teachware Inc.

Product data:

LD10 Relevant data about the customers are to be stored.
LD20 If a customer belongs to an organization then relevant data about the

organization must also be stored.
LD30 Relevant data about courses, course types, and trainers are to be

stored.

19 Functional Size Measurement: Additional Case Studies 542

19.2.2 Training Administration Application

LD40 If a customer books a course then the according booking data are to
be stored.

Product functions:

LF10 Create, change, and delete of customers (may or may not include
organization). Customers who are currently booked for a course cannot
be deleted (reference checking required).

LF20 Report summary information for the customer: booking confirmation
summary, withdrawal summary information trend report, customer
registration history.

LF30 Create, change, and delete of courses and course types.
LF40 Create, change, and delete of trainers, as well as maintaining relation-

ship with courses and course types.
LF50 Create, change, and delete of bookings.
LF60 Invoice production.
LF70 Summary Reports production: participants, turnover, participants’ certi-

ficates (each of which is a separate user requirement).

Product restrictions:

IL10 Function L10 must not need more than 5-s response time. All other
response times must be less than 0.9 s.

IL20 Requirements for processor performance are constrained.

For quality restrictions: see Table 19.6.

Table 19.6. Training Administration (case study) quality restrictions.

Product quality Very good Good Average Mediocre Irrelevant
Functionality X
Reusability X (GSC

no. 10 = 1)
User interface X (GSC no.

7 = 3)

Installation ease X (GSC
no. 12 = 1)

Facilitate change X (GSC
no. 14 = 1)

For result see Table 19.7.

19.2 IFPUG Function Point Case Studies 543

Table 19.7. Training Administration (case study) result using IFPUG FSM

Description Type DET FTR/
RET

Complexity Number of
functions

Unadjusted
FPs

LD10 – customer data
(including organization)

ILF 20–50 2 Average 1 10

LD20 – no unique ILF;
these data are the second
RET of LD10

– – – – – –

LD30 – 3 logical files
(course, course type –
not a code table, trainer)

ILF <50 1 Low 3 21

LD40 – booking data
(independent entity
used for invoicing
and scheduling)

ILF <50 1 Low 1 7

LF10 – create EI >15 1 Average 1 4
EI >15 1 Average 1 4 LF10 – change (with

implicit browse
display) EQ <20 1 Low 1 3
LF10 – delete EI <5 2 Low 1 3
LF 20 – 4 different EO
(all with calculations),
suggest average

EO – – Average 4 20

EI 5–15 2 Average 4 16
EQ <20 1 Low 2 6

LF30 – like LF10: Add,
change course (5–15,2),
query course (<20,1),
delete course (<15,1);
add, change course type
(5–15,2), query course
type (<20,1), delete
course type (<15,1)

EI <15 1 Low 2 6

EI 5–15 2 Average 4 16
EQ <20 1 Low 1 3
EI <15 1 Low 1 3

LF40 – add, change
trainer (5–15,2), query
trainer (<20,1), delete
trainer (<15,1),
link/unlink trainer and
course (5–15,2),
link/unlink trainer and
course type (5–15,2),
query trainer with
course and type rela-
tionships (6–19,3)

EQ 6–19 3 Average 1 4

LF50 – relate customer
and course: create, view,
delete (low)

EI <16 3 High 2 12

EQ <19 1 Low 1 3
EI <16 1 Low 1 3

LF60 – invoice (data EO 15 3 Average 1 5

19 Functional Size Measurement: Additional Case Studies 544

(Continued)

from customer, booking
and course)
LF 70 – like LF60 EO 15 3 Average 3 15

Sum unadjusted FP 164
unadjusted

FP
VAF (see later) 0.91

Adjusted FP 149
adjusted

FP

Training Administration (case study) general system characteristics (GSCs)
and value adjustment factor (VAF)
1. Data communications 4 8. Online update (major ILF) 3
2. Distributed data processing 0 9. Complex processing 0
3. Performance (constrained) 4 10. Reusability (Table 19.6) 1
4. Heavily used configuration 0 11. Installation ease (Table 19.6) 1
5. Transaction rate (high stated) 4 12. Operational ease 0
6. Online data entry (all online) 5 13. Multiple sites 0
7. End-user efficiency 3 14. Facilitate change (Table 19.6) 1
Subtotal degrees of influence 20 Subtotal degrees of influence 6

Total degrees of influence (TDI) 26
VAF = 0.65 + (TDI × 0.01) = 0.65 + (26 × 0.01) = 0.91

19.2 IFPUG Function Point Case Studies 545

20 Tools for Estimation

A science is as mature as its measurement tools. (Louis Pasteur)

extra resistance for widespread use. The investment in the right tool suited for
estimation for your organization can bring benefit for the organization without
any doubt, even if the benefit cannot be measured exactly. But, first a warning:

“A fool with a tool is still a fool!”
This proverb teaches us that information and training in estimation are a

necessary prerequisite for the success of a metrics initiative. The first lesson to
be imparted in training for the project leaders is that the tool does not do their
job of estimation. The same premise holds true with estimation tools as it is
with project management tools: estimating tools must be “fed” with good esti-
mating parameters in order to generate realistic estimates; project management
tools do not replace the planning process (which has to be done in the head of
a project leader) – it only supports the outcome once the planning parameters
have been entered. In the same manner as school children must learn their
times tables before they can make effective use of a calculator (especially to
be able to detect a wrong answer), project leaders must understand the con-
cepts of software estimation before using a tool for its support.

The next important lesson concerns the honesty of estimation, which can be
stated as the question to the trainer: “How can I administer three separate esti-
mates: one for the steering committee, one for my boss, and for my best guess
(correct) one?”. This is a matter of estimation culture in an organization, but
this lesson must be learned if the maturity levels of estimating are to be taken

outlined in the chapter “The Estimation Challenges.”
Tools used without the necessary expertise or knowledge cannot deliver

solid results. It is especially critical when using estimation tools that the cus-
tomizing and the estimation parameters be properly adjusted. This is too ardu-
ous a task if done with the support of a metrics specialist who knows the tool
in question very well. And the process of calibration can be done better if
historical data are available from the beginning to boost the precision of
estimates for your particular environment.

seriously. Here the remarks about estimation and bargaining apply as further

A method without tool support has little chance for survival, and will encounter

One must also keep in mind that estimation has to do with uncertainty per
se. Estimation results involving significant digits after the decimal point
deludes one into believing in a nonexistent accuracy and lulls even the most
experienced professional into deceptive safety. The results of any tool is only
ever as good as the information provided as input. It is a good and prudent
practice to reinforce estimates done with tools by performing estimates using
different methods in order to compare and improve the estimation process.

In the case of deviation between estimates, a number of learning can emerge
about the object of estimation, the evaluation of the estimation parameters, the
prerequisites of the estimation, the estimation environment, and the assump-
tions made. This can provide valuable hints for project risk assessment, too.
The importance of performing multiple estimates cannot be overemphasized,
especially when one considers the consequences of an unrealistically low esti-
mate in a fixed-price bid, which could render a project team insolvent with only
one project! Applying a variety of models to the object of estimation is similar
to getting multiple expert opinions on an important decision – it is better to
make an informed decision based on a variety of perspectives than on a single
one, especially if the one happens to be based on assumptions that turn out to
be wrong.

The experiences of the German author are based on the personal, corporate
experience at a large international insurance corporation using a specific set of
software tools. Nevertheless, this experience can easily be transferred to the
use of any other appropriate estimation tool that meets your organizational
needs. Figure 20.1 demonstrates the process of tool-based estimation.

Fig. 20.1. Tool-based effort estimation

20 Tools for Estimation 548

20.1 The Benefits of Estimation Tools

Tools for estimation can deliver many benefits: they can help the project leader
to do work more efficiently, and as well, can offer strategic benefits to the organi-
zation:

Earlier documentation about the parameters used in the estimation (tool-
based)
Transparency and consistency of input parameters
Standardization (and removal of subjectivity)
Management of complexity.

This fosters the common use of estimation methods – a major key success
factor for their acceptance. Furthermore, estimation tools assist in project over-
sight by organizing the many parameters for estimation.

Estimation tools provide operational benefits for the project leader by sup-
porting the planning in terms of the following:

Software size to be delivered
Development life cycle (tasks, phases)
Project complexity (hierarchy, classification, Work Breakdown Structure)
Resource management
Time schedules and milestones
Simulation of alternatives.

Some of the tools have interfaces to project management tools (e.g., Knowl-
edgePLAN interfaces with MS Project, and Experience® Pro provides export
files). Thus estimation tools can help to reduce planning time and to improve
planning results including the following:

Reduced time for planning and time to market
Improved results from planning
Improved user satisfaction through automation
Reduced maintenance effort.

Thus the estimation tools help the project leader to do his estimations in an
efficient and professional way and support the acceptance of estimation methods.

The major benefits (time saving, quality, and efficiency improvement) are
harvested on a project by project basis over time. Tools foster additional posi-
tive side effects, including an improvement of acceptance and transparency,
standardization, and establishing an estimation culture.

To gain the maximum benefits, one must be trained in the use of and strictly
adhere to the method on which the tool is based. To make the tool indispensable,
the organization must also supplement the tool dataset with enough historical
data (especially about project sizes and effort) from actual, completed projects.

20.1 The Benefits of Estimation Tools 549

20.2 Effort Estimation Tools

There are many software tools available for the estimation of project work
effort and out of the top 60 commercial tools, more than half of these are
Function Point based. Since 1992, nearly every month a new software estima-
tion tool has appeared on the market. By 2000, there were 50 tools in the USA
and 25 available in Europe. Many of these tools are “black boxes,” with their
mode of estimation kept hidden as intellectual property of the vendor. Some-
times, the tool supports a special estimation method, and we present a few ex-
amples here especially to show some experiences made with them.

The Measurement Laboratory of the University of Magdeburg in Germany
(http://ivs.cs.uni-magdeburg.de/sw-eng/agruppe/forschung) presents in its home-
page already more than 30 CAME-tools (CAME: Computer Assisted Software
Measurement and Evaluation), together with an accompanying book and a tool
overview categorized by application area.

Another resource for estimating tools can be found at the Data & Analysis
Center for Software (DACS): http://www.dacs.dtic.mil. From this URL one
has to proceed to cost estimation http://www.dacs.dtic.mil/databases/url/key.
hts?keycode=4 and further on to cost estimating software tools: http://www.
dacs.dtic.mil/databases/url/key.hts?keycode =4:152&islowerlevel=1.

Some smaller tools, mostly for cost estimation, are offered either for free
(download from the internet) or on a commercial basis and include tools such
as COSTAR (based on COCOMO II), CostXpert, SoftCalc, Softest, and
REVIC. See also the corresponding list with URLs of tools in the last para-
graph of this chapter. While the following list is incomplete, we provide it to
give an impression of some known tools with estimation features:

Agile COCOMO II 2.0 (USA) – http://sunset.usc.edu/cse/pub/research/
AgileCOCOMO/AgileCOCOMOII/Main.html;
AMI tool (Application of Metrics in Industry, GQM and CMMI, France)
Artemis Views (project management tool with estimation component)
Bachmann (tool for automatic Function Point counting based on require-
ments)
CA Clarity™ (formerly known as ABT Project Workbench)
Checkpoint for Windows (SPR), predecessor of KnowledgePLAN, Experi-
ence data from about 7,000 projects, Business area related database avail-
able, for example, telecommunication, insurances, etc. Note that we include
Checkpoint for windows in this book because it was the toolset used by
the International Insurance Corporation, where measurement and estimation
was successfully implemented. While Checkpoint is no longer commercially
available (replaced by KnowledgePLAN(TM)), it is the concepts that we
wish to emphasize.

20 Tools for Estimation 550

COMET (CORBA Measurement Tool, University of Magdeburg, Germany)
COSAM (Customer Satisfaction Measurement, University of Magdeburg,
Germany)
COSMOS (Cost Management with Software Metrics of Specification Tools,
The Netherlands)
COSTAR (by Softstar Systems Inc., USA), based on COCOMO II and
experience data from about 8,000 projects
DATRIX (code measurement for C, C++, Canada)
DOCTOR HTML (Evaluation of Websites, USA)
DOORS (IBM/Rational) and Rational ROSE
ESTIMACS, Planmacs, Superproject (Computer Associates)
Experience® Pro (4SUM Partners) – for estimating and scope management
of software and systems projects based on functional size measurement
(supports sizing in FiSMA FP, IFPUG FP, Mark II FP, and COSMIC Cfp,
and backfiring)
Function Point Modeler (Germany)
Function Point Workbench (Charismatek) – for administration of Function
Point counts (no estimation tool) Administration of organization wide FP
database, Interface to Checkpoint for Windows (CKWIN) and Knowledge
PLAN
LDRA Testbed (United Kingdom)
LOGISCOPE (Verilog, France)
Measurement Aglets (University of Magdeburg, Germany)
METKIT (Metrics Tool Kit, United Kingdom)
Metrics One (Rational, USA)
MJAVA (incl. Chidamber/Kemerer-metrics, University of Magdeburg,
Germany)
MOOD (Metrics for OOD, Portugal)
PRICE S (Price Systems)
Project Bridge and Project Management Workbench (Hoskyns)
QUALMS (Quality Analysis and Measurement Tool, United Kingdom)
R2ESTIMATOR™ (by r2estimating, USA)
RMS (Reading Measuring System, Germany)
SCOPE (function point repository tool by Total Metrics, Australia)
SLIM, (Quantitative Software Management) and Estimate Express (the scaled
down SLIM), SLIM Metrics and SLIM Control
SLIM Palm Tool (SLIM for the Palm handheld Computer, University of
Magdeburg, Germany)
SmallCritic (Smalltalk Measurement and Evaluation, Germany)
Smalltalk Measure (University of Magdeburg, Germany)
S.M.A.R.T. Predictor (DDB Software Inc.)
SoftCalc (Harry Sneed, Case Consult, Germany)

20.2 Effort Estimation Tools 551

SOFT-ORG (Germany)
STW-METRIC (Software Test Workbench, USA)
Synquest (Bootstrap, Switzerland)
SystemStar (by Softstar Systems) based on the COSYSMO model
Understand for C++ (SciTools)
ZD-MIS (Zuse Drabe Measurement Information System, Germany).

20.3 The Use of Estimation Tools

An international organization uses, for example, the tools shown in Fig. 20.2 in
an integrated project management environment from size measurement via esti-
mation and project management until effort management and controlling.

Fig. 20.2. Example of an integrated tool environment

Capers Jones published following information about the functional size
of tool software (IFPUG book IT Measurement – Practical Advice from the
Experts):

20 Tools for Estimation 552

Software development teams need tools with a total size of about 50,000
Function Points
Project leaders need tools with more than 30,000 Function Points
Quality assurance teams with tool support of a size of more than 10,000
Function Points delivered better quality than team with smaller sized tools
Project leaders with tool support in excess of 25,000 Function Points esti-
mate, plan, and control their projects better than those with less tool support
Artemis Views and KnowledgePLAN, for example, have each a functional
size of about 3,500 Function Points.

20.3.1 A Survey About the Usage of Productivity Measurement
Tools

An international insurance company in Germany performed a survey about the
experiences of productivity measurement tools or databases and got following
feedback from 17 organizations from all continents, except Africa:

Eleven organizations use experience databases, 6 do not
Three of the 11 use MS Access, one uses MS Excel, and two others used
their own development or historical data collection
Three did not deliver an answer to this question
The following data were reported to be collected in the databases:

Metrics of projects
Project start date and end date
Project duration in months
Actual measured effort
Function Points
Information about projects
Project leader and team
Type of project
Target environment
Programming language
Complexity of the application system
Team experience
Tool set.

20.3.2 The Process of Estimating with Tool Support

Generally the usage of estimation tools follows a process similar to the follo-
wing:

20.3 The Use of Estimation Tools 553

1. Measurement of software size (to be developed or enhanced)
2. Selection of project tasks (Work Breakdown Structure, WBS)
3. Estimation of effort
4. Planning of resources
5. Cost estimation
6. Planning of milestones.

The estimation tools use two strategies to accomplish this:

Microestimation (bottom up)
Macroestimation (top down).

Micro estimation starts from the project activities and aggregates all partial
estimations to a total. Hence this kind of estimation is more complex than
macroestimation. The advantage is that estimation errors are typically rest-
ricted to (contained within) the affected task. Since estimates can comprise
any detail of projects the microestimation is the more precise of the two appro-
aches.

Macroestimation aims at the estimation of whole projects. After estimation
of effort and duration the decomposition to the project phases is done. Macro-
estimation can be done more easily but has the disadvantage that estimation
errors can affect several (up to all) phases. To summarize: macroestimation is
well suited for quick and early estimations.

Estimation tools use, according to Capers Jones (How Software Estimation
Tools work), three fundamental relations:

1. Assignment scope: This is the size of work for which a person is responsible
2. Production rate: This is the size of work that a person can finish in a certain

time
3. Duration: This is the effort for a task divided by the number of persons

available to do it.

These three relations are normally used in estimation tools in the following
order:

1. Size divided by assignment scope delivers the number of required persons
(resources).

2. Size divided by production rate delivers the effort.
3. Effort divided by the number of persons delivers the duration.

These equations appear to be relatively simple, but can be complicated to
handle in practice since assignment scope and production rate are often not
known precisely enough to estimate acceptable results. The benefit of an esti-
mation tool thus depends on how flexible it is with respect to the input of dif-
ferent estimation parameters.

20 Tools for Estimation 554

Simulations with an estimation tool deliver the advantage of being able to
calculate the influence of single estimation parameters (productivity metrics,
quality metrics, duration, effort) regarding different goals. Thus the critical
success factors of a project can be determined quickly and easily. The expert
system KnowledgePLAN from SPR, for example, delivers a sensitivity analysis –
a “hit list” of 16 criteria, which are candidates for improvement measures. The
experience of the German author is that project leaders generally don’t use
their tools for simulations thus giving away chances for risk prevention and
project success.

Interesting to read is a comparison of estimation tools published from C.F.
Kemerer, 1993, at the Massachusetts Institute of Technology (MT). In this
comparison, ESTIMACS (Function Point based) delivered an average error of
85%, COCOMO (SLOC based) of 601%, and SLIM (SLOC based) of 701%
in estimations early in the software life cycle. In an insurance company in
Philadelphia, estimations with KnowledgePLAN and S.M.A.R.T. Predictor
were compared and showed a variance of less than 7% regarding the estimated
costs and effort. Both estimates were also close to the actual values at project
postmortem.

years ago, which they stated were capable of automatic counting of Function
Points from requirements artifacts. Such tools are seen critically since it
cannot be guaranteed that the counts are performed from user view. Also
IFPUG has to-date not certified any software capable of performing Function

will be releasing a tool in the coming months which may provide functionality
of this type.

from it. Such tools clearly follow a technical view and not the user view
demanded for the Function Point method. When the code is already available,
preferably SLOC should be counted as the quick and easy measure of software
size – this would then make more sense!

20.4 Checkpoint for Windows (CKWIN)

Note: this section on CKWIN is based on the German author’s experience at the
international insurance corporation where he used the tool extensively. Capers
Jones developed Checkpoint for windows – CKWIN in the late 1980s. Since
then it has evolved into KnowledgePLAN, which is a knowledge-based expert
system by SPR (Software Productivity Research). SPR was founded in 1985
by Capers Jones, who is best known for his many books on Software Meas-
urement, cost estimation, and observations on the software industry.

20.4 Checkpoint for Windows (CKWIN) 555

There are tools capable to check the code and deriving Function Point “counts”

Point counts according to the CPM (Counting Practices Manual). Capers Jones

The organizations Bachmann and Texas Instruments developed tools several

The difference between KnowledgePLAN and CKWIN can roughly be out-
lined as follows:

KnowledgePLAN has less estimation parameters compared to its prede-
cessor, CKWIN. Thus the estimates can be performed quicker. It is compatible
with MS Project. Hence, project plans from MS Project can be imported into
KnowledgePLAN and vice versa estimations from KnowledgePlan can be
imported in MS Project as Work Breakdown Structures. Estimations in Knowl-
edgePLAN follow the same steps as in Checkpoint for Windows. Since the
author had direct experiences with CKWIN, it is anticipated that the Know-
ledgePLAN tool would arrive at similar results.

Checkpoint for windows administrated more estimation parameters than
KnowledgePLAN and had, additionally, a comfortable benchmarking menu.
While this feature enabled a quick comparison of projects with each other, the
toolset no longer supports this in the KnowledgePLAN product.

Note: While Checkpoint for windows is no longer commercially available,
we feature it in this book because it was the tool of choice and available dur-
ing the successful measurement and estimating process implementation at the
international insurance organization based in Germany.

Table 20.1 provides an overview regarding the project type and classifica-
tion in the original knowledge base of CKWIN (now KnowledgePLAN). The
current product can be enhanced by one’s own organizational projects.

Table 20.1. Number of projects in the CKWIN project database

Project type MIS Out-
sourcing

Commercial Systems Military Other Total Percent

New 470 51 150 848 61 372 2,063 60.54
Enhancement 1,128 85 278 1,554 147 419 3,632 53.78
Maintenance 282 34 128 424 37 140 1,058 15.67
Total 1,880 170 555 2.825 245 930 6,753 100

Over the past 18 months, the knowledge base has been enhanced by the
inclusion of the International Software Benchmarking Standards Group (ISBSG)
projects into the KnowledgePLAN product.

20.4.1 Early Estimates

Checkpoint for Windows allowed early estimation in a quick estimation mode
based on the more than 6,000 projects in its database using only a few of the
estimation parameters. The parameters also cover some of the above men-
tioned application areas. As a prerequisite, a preliminary (estimated) software
size input figure is needed as well as soft and hard data (see Fig. 20.3).

20 Tools for Estimation 556

functional size measurement method to use (e.g., IFPUG, FiSMA, COSMIC,
NESMA, Mark II) or whether to use thousand lines of code (KSLOC) should

Method.” An early estimate is only as good as the input of estimated size of

The hard data needed to do any estimating (quick or detailed) includes infor-

and activities (tasks) of the Work Breakdown Structure.

software development, and project environment. The estimating tool also uses
simplified McCabe complexity factors as input parameters.

Given these inputs of hard factors, soft factors, and the estimated software
size, calculations are performed based on the database, for example, effort
(total, for the IT core project, for end user involvement, and each of this for

20.4 Checkpoint for Windows (CKWIN) 557

The soft data comprise information about personnel, technology, process of

hour (FP/h). Using this ratio, the duration of the project can then be estimated.

similar IT projects whose size in Function Points is known). The product then
computes from this a delivery rate metric in units of Function Points per

mation about project classification, project goal(s), programming language(s),

Soft
Data

Hard
Data

Estimation Tool

Experience Database

Benchmarking
Risk Assessment

Productivity
Effort

Quality
Costs

Fig. 20.3. Estimation with an expert system

be used. See also the chapter “Variants of the IFPUG Function Point Counting

The first step to determining the size of a piece of software is to decide what

the functional requirements (as far as they are known or can be derived from

all phases). Metrics for productivity and quality, schedules and costs are also
delivered as output.

In the detailed estimating mode, there are approximately 200 parameters on
which the resultant estimate is based. According to Capers Jones, these 200+
parameters are of central importance (drivers) for the quality and productivity
of software development. Capers stated that he believes that hard data alone
cannot answer the question why one IT project performed better than another –it
is only the combination of soft and hard data that makes sense.

In practical usage it was found that estimates must be done early in the soft-
ware development process if the goal of increasing the precision of estimates
and defect management is to be better controlled and improved.

20.4.2 Input: Hard Data

Hard data parameters are those input figures that are truly measurable and
determinable. These comprise, for example, the following:

The size of the application
The project classification
The project goals
The used programming languages
The Work Breakdown Structure (WBS)
The project classification describes the nature of the project (new deve-
lopment, enhancement, maintenance, or migration), the general dependen-
cies (stand alone program, module, or larger program system), the project
class (outsourcing or in house project), and the project type (e.g., interactive
database application). This information is used by the estimating tool to de-
termine that part of the knowledgebase that influences the estimation at most.

As project goals, six variants can be chosen:

1. Standard: equal mixture of time, staff, and quality
2. Shortest duration with more staff
3. Least effort with less staff
4. Highest quality with normal number of staff
5. Highest quality with shortest duration
6. Highest quality with least effort.

Changing of only a single parameter “project goals” and analyzing the pro-
ductivity and quality, the relationship between the primary goals, known as the
devils square of project management, can be simulated easily and can lead to
an impressive learning effect.

To evaluate the relative impact of a particular programming language, a
conversion table known as the “language levels” or backfiring table is used.

20 Tools for Estimation 558

A language level is, according to IBM, the number of Assembler statements
which are on average necessary to write, for example, a COBOL statement
(Assembler equivalent). CKWIN/KnowledgePLAN (and the SPR website at
www.spr.com) contains a table with more than 600 programming languages and
their Assembler equivalents. A part of this table is shown in chapter on Estima-
tion Methods. The user can choose different programming languages from the
table and estimate their percentage proportions, from which the estimating
tool calculates the resulting assembler equivalent for the chosen mixture of
languages.

In addition, the tasks/activities of the Work Breakdown Structure (WBS) can
be chosen from a list by checkboxes and according to four different levels of
the WBS: Project, phase, activity, and task. Project is the largest and task is
the smallest level. The names of the tasks, activities, and phases can be cus-
tomized with an included configuration tool, but not the relation, for example,
to which activity a task belongs.

20.4.3 Input: Soft Data

Soft data are ordinal in terms of their relative evaluation, for example, like
school grades:

1. Excellent
2. Good
3. Average
4. Mediocre
5. Poor.

The value from 1–5 delivers the most difficulties since ordinal measures
can be very subjective. For example, one can ask if the difference between 2
and 3 is the same as between 4 and 5. It can be most problematic to explain to
a project leader the difference between, for example, 3.7 and 3.8 simply and
plausibly.

To secure interproject consistency in this regard, it is recommended to do
the evaluation with more than one person, for example, with a member of the
competence center who can also transfer the experiences to other estimations.

Capers Jones distinguishes four categories of soft data critical to the evalua-
tion of software productivity and quality (see Fig. 20.4).

The input for personnel characterizes skill, the experience, and abilities of the
staff in project management, the developers, end users, and maintenance per-
sonnel.

Technology characterizes the used software tools and platforms for deve-
lopment.

20.4 Checkpoint for Windows (CKWIN) 559

Fig. 20.4. Estimation parameters for quality and productivity of software

The factors of process cover the development methods, the effectiveness of
defect removal, and the quality assurance process.

The parameters for environment ask for external factors that influence the
IT project. This comprises geographic factors, office size, and maintenance
equipment.

Table 20.2 gives an impression of how to evaluate soft data, showing one
parameter from each of the four categories with its evaluation criteria.

Evaluation Description
Personnel: Motivation of the project team
1 The project team is highly motivated
2 The largest part of the project team is motivated
3 Normal engagement and motivation
4 Motivational problems
5 Very poor morale
Technology: Stability of the development hardware
1 Stabile, highly compatible platforms of one provider
2 Standardized platform with adapted compatibility
3 Hardware from different providers with high mutual

compatibility
4 Hardware from different providers with acceptable

mutual compatibility
5 Instable, changing, incompatible platforms.
Process: Test procedures
1 Separate test department and developer and user test
2 Separate test department and developer test
3 Formalized test with comparison of results vs. known

criteria
4 Test without test goals or test criteria
5 Occasional quick test under time pressure

20 Tools for Estimation 560

Table 20.2. Evaluation of soft data

(Continued)

Environment: Office noise and interruption
1 Low office noise and few interruptions
2 Low office noise and frequent interruptions
3 Some office noise and few interruptions
4 Some office noise and frequent interruptions
5 Essential office noise and frequent interruptions

Another feature of many software estimating tools is a risk/value analysis
of the project to be estimated. The evaluation of the parameters is according
to the four aforementioned parameters. The result of these so-called special
factors is not essentially relevant for the estimation itself, but answering the
questions provides a good insight into the risk potential of the IT project com-
pared to its benefits. The result is a portfolio diagram as shown in Fig. 20.5 for
an average project.

If the dot for the project is in the left low quadrant of the square, it is to be
considered a star since its risks are low and its benefit is high. In the right
upper square are the dogs with low benefit and high risk. Projects in the other
two quadrants should be thoroughly analyzed for their risks and value.

Fig. 20.5. Risk/value analysis example

20.4.4 Estimation Modes

CKWIN/KnowledgePLAN has two usable estimation modes:
1. Quick estimate for rough estimations

20.4 Checkpoint for Windows (CKWIN) 561

2. Detailed estimate.

The quick estimate is for a first estimation at project start when there are only
a few facts known. The input comprises only some of the parameters, the so
called Required Input: Project Description, Project Classification, Project
Goals, Project Complexity, Function Sizing, Source Code, and Project Costs.
Figure 20.6 shows the according menu.

Fig. 20.6. CKWIN quick estimate menu: required input

For the detailed estimate, further parameters are required: Personnel, Tech-
nology, Process, Environment, and Special Factors. Furthermore, the Task Selec-
tion allows an estimator to select activities for the Work Breakdown Structure
and with Development Constraints some customizing can be done as, for
example, determining the number of pages of documents, the maximum num-
ber of test cases, etc.

20.4.5 Estimation Results

After input of the estimation parameters, the results can be analyzed in the
View/Totals menu. Figure 20.7 shows an example screen with the following
details:

Information about some relevant input data, Project Profile lists the chosen
evaluations for, e.g., Project nature and scope, Project class and type, and goals.

20 Tools for Estimation 562

Project duration: Schedule Months
Project effort: Person Months
Staff Headcount
Costs
Delivered Function Points
Base Function Points
Document pages

Fig. 20.7. CKWIN estimation results: view totals

Quality shows estimated
Delivered defects
Total defect removal efficiency
Productivity is shown in Function Points per person month.
Further information can be seen by scrolling down.

This screen is a summary of the estimation results. Further estimation results
can be seen in the submenus of the View screen, for example, about the distri-
bution of persons in the project phases or dates, costs and effort for many
details of the project life cycle. The unit for project effort can be chosen from
person hours, -days, -months, or -years. For benchmarking it should be set to
person hours in order to be comparable (see the chapter about “Estimation
Fundamentals,” “Time Accounting”).

20.4 Checkpoint for Windows (CKWIN) 563

Development and user shows estimations for the following:

20.4.6 Customizing and Calibrating the Software Tool

A prerequisite for tool acceptance is its calibration to company standards (cus-
tomizing). The first step for customizing is to check the precision of the esti-
mation results from your estimating tool and comparing it with historic data
from project postmortems. The historic data have to be used to determine the
necessary input for the tool and have to be compared with the estimation results.
This procedure has to be done several times, until the data deliver comparable
results. In the first iteration the results differ a lot. Mostly the estimations are
too high at the beginning. This may have the following reasons:

The available historic data were not complete.
The industrial standard of the tool database does not suit to the environment
of the organization.

The effort reported from the project leaders often comprises only the effort
of the IT core team. Hence, the end user effort was mostly neglected and
normally unpaid overtime work was likely not documented. Thus the historic
data are consistently too low.

The second challenge is that most estimating tools use – without customizing –
the industrial average, that is, the average of the database. Since many pro-
jects are from military, space, or other quality and security sensitive projects,
there are constraints that demand high quality standards in this data. Demands
for high quality software usually results in extra effort for documentation and
testing over and above less constrained software. These types of nonfunctional
requirement must be carefully checked with and adapted to the organization’s
own development environment and process during customization. The best
approach is to develop one’s own organizational templates from suitable simu-
lations at the beginning.

Since for every estimation, one can typically store several variants or simu-
lations of the estimates, the last one with the actual data at project postmortem
should be stored for comparison with earlier variants. From this comparison
much can be learned and this last estimation should be used to create future
portfolios and templates. This enables continuous process and estimation pre-
cision improvement.

The most important challenge is the establishment of a consistent time
accounting process. Large organizations normally calculate a productivity of
about 75% for effective project work of the personnel. Twenty-five percent
are for vacation, training, sickness, and other not directly project-oriented
work in the organization. Estimating tools such as CKWIN/KnowledgePlan
allows the adjustment of these fundamental parameters in the Setup menu as
standards in the beginning. The best situation for facilitating comparisons is a

20 Tools for Estimation 564

time accounting process based on person hours, since this avoids the incom-
patibility of person months or person years between different organizations.

Other standards to be customized may include the work breakdown structure
(with a specific set of deliverables and tasks) as well as documentation and
quality requirements. Some tools support the customization of this standard.

Once the historic data give precise results, it can be started to estimate future
projects. Projects (with historic data) of about the same size and nature can be
gathered in a portfolio and this can be used as the basis for future estimations,
too. With more new projects, the organizational database and experience increases
and the estimations will be more precise. Then the portfolios can be enlarged
and differentiated and templates can be derived from “good” portfolios.

20.4.7 Simulations of Estimates with an Automated Tool

A very useful application of CKWIN (or any other estimation tool that has this
feature) is simulations in order to answer questions for process improvement
and study the influence of single estimation parameters (estimation metrics,
quality metrics, duration, effort). Questions such as how project durations can
be reduced by reduction of requirements creep and project complexity can then
be investigated. The criteria for these influential factors for project duration
will be shown. But these criteria will only lead to shorter project duration, if
adequate measures for the improvement of these criteria can be performed.
CKWIN supported simulations with a sensitivity analysis computing a hit list
of 16 criteria that mostly influence the effort of the actual estimation.

CKWIN also supported simulations by variation of its input parameters by
supporting the administration of variants of project estimations. Once senior
management asked to perform simulations with the concrete goal to find the
most effective parameters affecting project duration using the historical esti-
mation of a typical IT project. This simulation of a project with the goal to
determine factors for shorter project duration is described in the following.
The simulation team proceeded in following steps:

The project simulation started with the sensitivity analysis in order to see
from the automated tool the parameters that had the greatest influence on pro-
ject duration. With the sensitivity analysis the tool showed the 16 strongest
parameters for the project goals: duration, effort, productivity, and quality. The
result was a hit list of parameters mostly influencing the matching goal, inde-
pendent of the actual parameter value. For the demanded investigations only
the goal project duration was of relevance.

Next these parameters were improved successively by about one unit at a
time, documented in tables and reset afterwards. For the evaluation of the para-
meters CKWIN used a scale ranging from 1 to 5. On this scale a value between

20.4 Checkpoint for Windows (CKWIN) 565

1.00 and 2.99 gave a positive result, and between 3.00 and 5.00 a negative in-
fluence for the estimation results. The default was N/A (Not Applicable), and
the value 3.00 was considered to be the industry (database) average. The val-
ues could be set in hundreds. But this precision makes no sense since
one cannot explain, for example, the difference between 2.75 and 2.76, and the
difference in the results would also be marginal. In some cases there were
used halves, for example, 3.5 in cases when it could not be decide between,
for example, 2.00 and 3.00.

When modifying the parameters, according to the hit list of the sensitivity
analysis, it was found that 3 of the 16 parameters could not be used for shorter
durations since they had the best values (=1.00) from the start on.

The hit list of parameters is sorted in decreasing order. The first parameter
has the most effect for shorter duration. The last parameter delivered astonish-
ingly a three-day longer duration. The next step was the summation of the para-
meters, followed by step-by-step improvement to the best evaluation 1. All
simulations were documented in analogous tables, which are not shown here.

The software tool also provided an alternative for the improvement of an
IT project with the report on weaknesses. In this case the weaknesses are the
parameters with values between 3.50 and 5.00. Again, these parameters were
modified step-by-step and in sum.

Figure 20.8 gives an overview regarding the results of the simulations by
stepwise improvement of the parameters.

The most important for the demanded goal is the column “Time Reduction”
that relates to the line 1 (Basic Value) of column “Duration,” with a duration
of 914 days. This was estimated with the standard goals: equal mixture of time,
staff, and quality. Alternatively, there were simulations with the goal: shortest
duration with more staff. The values computed are shown both in absolute days
and proportional percentages. Figure 20.8 thus shows that already with the
change of the goal, the duration could have been reduced by 32.6% with equal
quality and more staff (138 persons instead of 86) without changing any other
parameters.

For better evaluation of potential side effects and determination of runaways
also the target parameters effort, team size, and quality were documented. Also
the quality in delivered defect and the defect removal rate were recorded. A low
number of delivered defects is an appreciated goal. For calculation of person
months the person days were divided by 20. This was necessary since CKWIN
delivered effort and duration either in days or months

20 Tools for Estimation 566

Fig. 20.8. Simulation results overview example

The simulations clearly demonstrated that there were a large number of ways
to finish projects earlier. But not all parameters can be influenced by senior
managers, project mangers, or the project team, as, for example, the involve-
ment of the users.

The lesson learned is that tools should be used more frequently for simula-
tions. This rule also proved to be valid for project planning tools. Experiences
in daily project life showed that this rule is almost neglected by project leaders,
leaving them without an essential aid for project survival.

20.4.8 Estimation Portfolios and Templates

One of the most important tasks for preservation of the organizational estima-
tion know how is the customizing of the estimation tool by the development of
own estimated project portfolios and templates in addition to the delivered
basis of projects inherent in the tool. The tool vendors normally are proud to
publish the number of the inherent projects used for the deliverance of the
results, but they never deliver the details, as, for example, the ISBSG does,
selling the database together with analysis tools. The ISBSG (since 2006) inclu-
des the Reality Checker as part of its database release (http://www. isbsg. org).

20.4 Checkpoint for Windows (CKWIN) 567

Hours Time Hours Time Hours Time Hours Time Hours Time
(Days) (Days) (Days) (%) (Days) (%) (PM) (PM) (#) (#) (#) (#) (%) (%)

1 Basic Value 914 616 298 32.60 852.7 835.1 86 138 1255 1235 78.75 78.55
Individual Office Environment 843 577 71 7.77 337 36.87 807.7 791.4 86 141 1255 1335 78.75 78.55

2 Development Personnel Experience 864 591 50 5.47 323 35.34 773.4 756,0 86 132 1188 1263 78.58 78.29

3 Office Noise and Interruption
Environment

880 597 34 3.72 317 34.68 828.8 811.6 86 141 1255 1335 78.75 78.55

4 Project Organization Structure 886 594 28 3.06 320 35.01 845.3 828.2 86 138 1255 1335 78.75 78.55
5 Product Memory Utilization

Restrictions
890 604 24 2.63 310 33.92 836.5 819.7 86 138 1255 1335 78.75 78.55

6 Product Performance/Execution
Speed Restrictions

890 604 24 2.63 310 33.92 836.5 819.7 86 138 1255 1335 78.75 78.55

7 Development Personnel Tool and
Method Experience

890 604 24 2.63 310 33.92 837.4 820.3 86 138 1255 1335 78.75 78.55

8 Tool, Equipment and Supplies 891 604 23 2.52 310 33.92 838.4 821.2 86 138 1255 1335 78.75 78.55
9 Functional Novelty 895 606 19 2.08 308 33.70 825.8 808,0 86 145 1186 1260 78.54 78.26

10 New Data Complexity 898 596 16 1.75 318 34.79 774.2 759,0 84 138 1161 1240 77.83 77.56
11 New Code Complexita 903 596 11 1.20 318 34.79 731.7 714.4 79 130 1051 1127 76.49 76.27
12 New Problem Complexity 903 596 11 1.20 318 34.79 731.7 714.4 79 130 1051 1127 76.49 76.27
13 Design Automation Environment 917 611 -3 -0.33 303 33.15 815.5 795.3 86 135 1119 1178 77.51 76.98

Team Size Quality

Hours Time

Goal Measures

PARAMETER

Duration
The according

Parameters enlarged by 1 each
Defect

Removal
Rate

Delivered
Defects

Time Reduction Effort

It is of vivid importance for an organization to group equal projects into a
portfolio. This is done based on the idea that projects of similar kind will also
show similar behavior and thus can be estimated in the same manner (with
similar estimation parameters). Automated software tools such as CKWIN
deliver the functionality to group projects into a portfolio in order to compare
other projects with this portfolio (the average of the projects in that portfolio).
A next step is to extract an estimation template from such a portfolio in order
to use this template for the estimation of further projects. Such a template is
like an own database of the estimation tool.

Now, what are similar projects or, asked in another manner, which projects
should be put together in a portfolio? Looking into the literature you will find
a lot of project characteristics that can be candidates for categorizations, for
example, the following:

Kind of development
New program development
Enhancement
Migrations
Project post mortems

Platform
Batch systems
PC systems
Client/server systems
Data warehouse applications
OO systems
web applications.

The kind of development and the platform were used as categorizations and
the projects were grouped according to size (small, medium, large). A prereq-
uisite was to find out all the projects of a common category. The tool was not
of much help in finding out which projects fit together in one portfolio, since it
just showed each single project. It displayed the projects according to the
categories and thus allowed to evaluate which projects should be taken into a
portfolio. This was an important enhancement to the estimation tool, since from
then on own templates for estimation could be created easily.

Figures 20.9–20.13 give an overview of some of the categories from the
estimating add-on tool CKWIN Reader/Writer, showing estimation parameters
of, for example, kind of development and platform with productivity, quality,
and staff. All figures show in the first four columns the project scope (Project-
classification: new program development, enhancement, maintenance), the plat-
form (host, PC, C/S, DW), the Project short name, and the start date of the
project.

20 Tools for Estimation 568

Figure 20.9 shows all ten project postmortems in the German international
insurance project database in CKWIN with the estimation figures of the CKWIN
assessment estimation:

Person hours
Function Points, environment
Assessment index (Index: refers to all attribute questions in personnel, process,
technology, environment sections)
Personnel
Process
Technology
Benefit
Risk.

Fig. 20.9. Project postmortems

The CKWIN figures ranged from 1 to 5 with the database average of 3.0.
Thus figures above 3.0 are better than the average and the larger ones show
worse results.

20.4 Checkpoint for Windows (CKWIN) 569

There are five PC new development projects and four host enhancement
project postmortems; the PC projects having sizes of 281, 736, 3,335, and
546,395 Function Points. The host projects have a size of 3,047 and 1,249
and 1,464 and 712 Function Points, respectively.

Figure 20.10 shows all templates (the estimation figures of CKWIN are 0
since this are templates to be used for start of an estimation).

There are six new program development and five enhancement templates:
nine for host (four new program developments) and each two for PC and C/S
environment.

Figure 20.11 shows all 13 new program development projects on PC platform
with the estimation figures of the CKWIN productivity estimation parameters:

Person hours
Function Points
Productivity (Function Points per person day)
Speed of delivery (Function Points per scheduled day)
Scheduled hours
Programming language.

Fig. 20.10. Templates

20 Tools for Estimation 570

Fig. 20.11. New program development PC – productivity parameters

Fig. 20.12. New program development PC – quality parameters

20.4 Checkpoint for Windows (CKWIN) 571

Fig. 20.13. Enhancement host – staff parameters

Figure 20.12 shows the same projects as in Fig. 20.11, but this time with the
estimation figures of the CKWIN quality estimation parameters:

Person hours
Function Points, defects per Function Point (Fehler/FP)
Total defect removal efficiency in percent (Fehlerentfernungsrate)
Delivered defects (ausgelieferte Fehler).
Productivity (Function Points per person day)
Number of maintenance staff (Wartungs-MA)
Number of enhancement staff (WE-MA).

Since the time during which this tool is used, it can be easily discussed with
the project leader which project or template he should use for the estimation of
his projects. This is a valuable aid since they often come with the notion of
“my projects is one half (or one third) of project x”. The overview also sup-
ports the acceptance of the tool-based estimations since the project leaders see
that there is some know how present and that the others used the help of tool-
based estimation, too.

20 Tools for Estimation 572

20.5 Experience® Pro Project Sizing, Estimating, and Scope
Management Software

Experience® Pro is a software tool that supports the functional size measure-
ment, estimating, progress reporting, closing, and organizational learning
(learning from completed projects) for software development and enhance-
ment projects. The tool supports a variety of ISO/IEC conformant functional
size measurement methods, as well as a backfiring model, and has three esti-
mating modes:

First estimate (this can be initiated before requirements and updated until
the first baseline requirements are measured)
Improved estimate (based on version 1 of the estimate which is the output
of the First estimate step above. Each subsequent estimate is done based on
receipt of progress reported by the project team or accepted changes to the
baseline. Each estimate becomes an incremental version of the prior one)
Final review (for closing a completed project and entering project actual data)
Additionally, Experience® Pro provides a project portfolio management
mode that facilitates portfolio project reporting.

Experience® Pro software is owned by 4SUM Partners based in Finland
with offices in the USA and emerging locations globally (www.4sumpartners.
com). The estimating modes are supported by a high quality database of over 800
completed projects (validated by approximately a dozen university researches
over the past decade), as well as a version of the ISBSG database. Figure 20.14
shows the concepts behind estimation used in Experience® Pro.

20.5.1 Experience® Pro First Estimate

This mode creates an initial estimate of work effort based on more than a dozen
input parameters including project classifiers, development language, func-
tional size parameters (early), business area, project type, situational analysis
(ND21, new development 21 factors), etc. Only one initial estimate per project
(version 1.0) can be created for a project.

Fig. 20.15 depicts the Project Initiating Screen where the basic project
classification and other elements are selected to perform the first estimate as
depicted in the model of Fig. 20.14. This screen is the first screen to appear
when the user selects “First Estimate” from the Experience® Pro starting
menu.

20.5 Pro Project Sizing, Estimating, and Scope Management Software 573

The output of the first estimate process will be a version 1 estimate screen
similar to the one shown in Fig. 20.16 (but the version number will be 1) and
the progress will show 0%.

20.5.2 Experience® Pro Improved Estimate

The first estimate is used as the basis for the improved estimate mode (for
which multiple subsequent versions can be created as the project progresses).
In this estimating mode, additional and more detailed parameters (such as situ-
ation analysis) are input into the software tool, and analogies such as ISBSG
and the Experience® database can be used as a comparator to gauge the reality
of the estimate. This mode creates a second to nth estimate and the user can
enter the progress (in %) for each function that is worked on since the lastes-
timate. Reports will provide an analysis of the partial (to date) delivery of the
user functionality (base functional components) that is complete when the
data is entered. When functionality is canceled part-way through the project
(i.e., partial completion of the function), Experience® Pro keeps track of the
incremental changes and partial delivery (based on functional size measure-
ment). Approved changes are also entered by their functional type, and their
delivery is then tracked over the rest of the project through to completion.

Fig. 20.16 summarizes the functionality of the Improved Estimate mode.

Fig. 20.14. Experience®Pro estimating model

20 Tools for Estimation 574

Fig. 20.15. Project initiating screen (before the First estimate is performed) in Experience® Pro

Fig. 20.16. Experience® Pro improved estimate mode

20.5 Pro Project Sizing, Estimating, and Scope Management Software 575

20.5.3 Experience® Pro Final Review

At the completion of the project (typically all functions will be indicated as
being 100% complete in the improved estimate or a partial completion if the
function was cancelled prior to delivery), the project is closed by entering it
into the final review mode of Experience® Pro. Once a project has been put into
the final review mode, it can no longer be updated in the improved estimate mode.

Actual effort hours, as well as the actual allocation of effort across labor
categories is entered into the tool, as well as other project completion data.
The purpose of closing the project in this manner is twofold:

1. To permit organizational learning based on the project completion
2. To facilitate project reporting.

Figure 20.17 depicts the final review mode screen.

20.5.4 Experience® Pro Project Portfolio Management

In this mode, various versions of the project estimates can be compared, reported,
and reviewed. A number of reports are available, with a sampling shown in the
screen in Fig. 20.18.

Fig. 20.17. Experience® Pro final review (closed and completed project)

20 Tools for Estimation 576

Fig. 20.18. Experience® Pro project portfolio management

20.5.5 Experience® Pro Application Maintenance Estimating

Experience® Pro also supports application maintenance estimating. For further
information and details about this mode and the use of the MT22 maintenance
situation analysis see the Appendix and the chapter on Estimating Maintenance.
For further product information visit www.4sumpartners.com.

20.6 Other Estimation Tools

There were already early table calculation sheets developed for ordered docu-
mentation of Functional Size Measurements and estimations. They can easily
be enhanced with macro programming or VBA (Visual Basic for Applications)
to become small applications.

Interesting is the tool PC-CALC from Harry Sneed, Case Consult Gmbh
(former SES: Software Engineering Service GmbH). It supports four estima-
tion methods: Data Point method, Function Point method, COCOMO, and Com-
ponent Analysis. It thus delivers four different estimations since Harry Sneed

20.6 Other Estimation Tools 577

considers one estimation not to be secure enough. The user can compare the
results and evaluate them for decisions. A prerequisite is that he is fit in all
four estimation methods and that he performs the estimation with all four
methods. The predecessor of PC-CALC was the tool Soft-Calc, which can
be downloaded free of cost from the DASMA homepage – for members only
(http://www.dasma.org).

Another promising new tool is r2ESTIMATOR from r2estimating (USA).
It provides multiple model emulation (r2SEF, COCOMO Jensen, NPR),
exports to MS Project, and features interactive dynamic graphics. Visit www.
r2estimating.com for further details.

20.7 Tools that Support Functional Size Measurement

20.7.1 The Function Point Workbench (FPW)

The Function Point Workbench (FPW) is an award winning software tool with
a worldwide customer base. It is developed and distributed by Charismatek
Software Metrics Pty Ltd. of Australia (www.charismatek.com). It aims at
administering Function Point counts according to the IFPUG standard, and
since 1998 it has been certified as type 1 software by IFPUG.

The documentation of the counts can be visualized by reports, lists and
graphics, and exports in different formats. The main advantage is that it enables
a centralized administration and thus an overview of the functional know how
of an organization about its processes and applications, and provides an easy-
to-use graphical interface. Figure 20.19 shows the Function Point Counting
approach used in FPW.

The FPW is used for support of Function Point Counting and for structured
documentation of the user requirements on application-, project-, and phase-
level. The Function Point counter usually visits the end user with the FPW on
his Laptop and documents the business cases directly with tool support. He
thus can discuss the diagrams and documentation online with the end user and
transfer the count to a central database afterwards. That is most effective require-
ments documentation delivering automatic overview on organizational level.

The FPW uses an imbedded method for guided counting of Function Points
and thus enables reuse of existing functions in other projects. With in FPW’s
functionality, import or export function data can be exchanged in different
formats, for example, .csv. CKWIN and KnowledgePlan tools both have an
import feature for FPW counts.

20 Tools for Estimation 578

Fig. 20.19. Function Point Workbench approach to IFPUG function point counting

Figures 20.20 and 20.21 show FPW screen samples of a hierarchy diagram
and the classification of a transaction. The software application is entered in
the FPW in a tree structure by drag and drop. The root of the tree is the whole
application system and its leaves are the transactions. Thus the business case
is documented on the lower level of the structural tree (right hand side of
Fig. 20.20). A very convenient feature is that the counts for any part of the tree
can be seen at once.

This supports immediate overview over the whole or parts of the functiona-
lity when the system structure is entered. That is especially an advantage when
the functional size of a changed (modified or new or deleted) function has to
be determined during an enhancement project. Practical use showed that also
the functional size of very small changes could be found within a few mouse
clicks. A prerequisite is the proper use and documentation along the menus
and user view of the applications.

20.7 Tools that Support Functional Size Measurement 579

The business cases (transactions) can be shown automatically in a list or
grouped by functions. All reports can be produced in paper, screen, Excel tables
or HTML. This is a support for basic documentation for the user for estima-
tion, programming, test case determination, and enhancement as well as for
training material for new hires.

The FPW can already be used in the user departments for definition and
modeling as well as documentation of the business cases. They can be related
to a project, can be described and grouped, and files and data can be associ-
ated with them. End users and IT developers can jointly work with this cen-
tralized data. Development stages can be frozen and archived in different
phases. Thus, the requirements can be agreed and documented jointly, changes
can be seen and agreed, and goals can be committed. The FPW supports with
this abilities the improvement of the quality of the IT development and enables
early warnings, helps to avoid misunderstandings, and improves cooperation
between end users and IT developers.

Fig. 20.20. FPW hierarchy diagram

20 Tools for Estimation 580

Fig. 20.21. FPW classification of a transaction

20.8 Tools for Object Oriented Metrics and Estimation

20.8.1 A Tool for Cost and Effort Estimation of OO Software
Projects

K. Jantzen presented in the Informatik Spektrum of the German GI in February
2003 the estimation tool Tassc:Estimator (http://www.tassc-solutions.com) for
cost and effort estimation of object-oriented, web-based, or component-based
software projects. Project risks can also be evaluated with it. The tool can be
used as standalone or as add-in, for example, in the Rational Rose tool or in the
Together tool. Their system models can be imported into Tassc: Estimator, which
can also produce input data for MS Project. As with all tools, a customizing
before its use is a necessary prerequisite.

The basis of the Tassc:Estimator estimations are Use Cases, classes, subsys-
tems, interfaces, components scripts, web pages that are all classified with dif-
ferent qualificators. A Use Case, for example, has the qualifiers: functional size,

20.8 Tools for Object Oriented Metrics and Estimation 581

complexity, reuse and reusability. Their values are determined from a 4- or 5-
figure scale.

Besides that many other parameters, for example, programming language
and productivity metrics influence the estimation. It is distinguished between
software effort and production tasks. For calculation of costs and end date
parameters for the available budget as well number and skills of the project
team have to be classified.

One of the authors of this publication found a 20% overestimation in a sec-
ond estimation done with Tassc:Estimator.

20.8.2 Tools for Object Oriented Quality Metrics

The ISO/IEC standard 9126 defines following six quality attributes of a soft-
ware product:

1. Functionality
2. Reliability
3. Usability
4. Efficiency
5. Maintainability
6. Portability.

Abran et al., studied Java and C++ source code tools for measuring the
quality of object-oriented software and found four candidates for closer inves-
tigation:

CodeCheck
Datrix
Insure++
Logiscope.

Insure++ visualizes the program flow and works as compiler and thus is no
static analysis tool. It aims to defect in storage, storage loss, and storage address-
ing. The other three can be used for static analyses and rule checking.

Logiscope consists basically of three components, an audit module for the
analysis of quality and structure, a rule checker for controlling the usage of pro-
gramming standards, and a test checker for measurement of the test coverage.

Besides other programming languages, ADA, C, C++, and Java are sup-
ported. It supports static and dynamic analyses and provides criticality predic-
tions for source code.

20 Tools for Estimation 582

Table 20.3. Tools and object oriented quality attributes

Tool Metric ISO/IEC 9126 quality attribute
 Reliability Efficiency Maintainability Portability

Insure++ I/O-errors Yes
Storage defects Yes
Storage loss Yes
Storage addressing Yes
Program optimization Yes

Logiscope Direct recursion Yes Yes
Indirect recursion Yes Yes
Average coupling
between objects

 Yes

Coupling between
classes

 Yes

Coupling between
objects

 Yes

Datrix Class attributes Yes
Class methods Yes
Class inheritance
coupling

 Yes

Class documentation Yes
Data coupling Yes
Coupling between
routines

 Yes

Dimension and
complexity of
routines

 Yes

Programming
standards of routines

 Yes

Testability of routines Yes
Co-
deCheck

Initialization of array,
structure, and union

 Yes

Bit fields-standards Yes
Commentaries in
macro definitions

 Yes

Leading blanks in
enclosed field names

 Yes

Lex_nonstandard Yes
Lex_trigraph Yes
Nested name tags Yes
System variable Yes
Blanks in preproces-
sor commands

 Yes

20.8 Tools for Object Oriented Metrics and Estimation 583

The static analysis performs a syntactic and semantic analysis of the source
code, is programming language-dependent, and delivers the input for complex-
ity measurements, call graphs, control graphs, quality reports, etc.

During the dynamic analysis during execution of the measured program,
there are permanently written data into a log file that are used later to calculate
test coverage and support test data generation as well as measurement of the
test status.

The quality model of Logiscope delivers regarding C++ reports on program-,
class-, and function level.

Both authors report that there was no metric found during their research,
which measured the quality attribute usability (partial characteristics: under-
standability, learn-ability, applicability, attractivity). Table 20.3 shows the four
tools and their relation to four of the six quality attributes.

This source code analyses deliver a large number of metrics that can directly
be used for documentation, structuring, and improvement of software.

As examples, two relations between the above metrics and quality attributes
are commented here:

A strong coupling, especially between routines and global variables, always
indicates that components are not independent from each other. This directly
influences maintainability.

Inheritance coupling indicates directly how good the object-oriented concept
of inheritance is used. The same holds for the usage of recursions.

20.9 Website URLs for Estimation Tools

This overview cannot be complete and actual after date of publication.
Thus, the authors deny any responsibility for risks and side effects from
broken links!

20 Tools for Estimation 584

Table 20.4. Website URLs for estimation tools

Tool Organization URL
CAME Universität of

Magdeburg, Software
Measurement
Laboratory

http:/ivs.cs.uni-magdeburg.de/
sw-eng/agruppe/forschung

Cicero.Test,
Cicero.Tracker

Cicero Consulting
Gmbh, Klagenfurt

http://w4.cicero-consulting.com/

Construx Cost
Estimation
Software

Construx Software
Builders Inc.

http://www.construx.com

CostXpert Cost Xpert Group, Inc.,
San Diego, CA

http://www.costxpert.com

Estimacs Computer Associates http://www.cai.com
Experience® Pro 4SUM Partners http://www.4sumpartners.com
Function Point
Workbench (FPW)

Charismatek Software
Metrics Pty Ltd.
(Australia)

http://www.charismatek.com.

KnowledgePlan
(formerly
Checkpoint for
Windows)

Software Productivity
Research (SPR),
Hendersonville, NC

http://www.spr.com

Logiscope Verilog http://www.verilogusa.com/home.htm
McCabe McCabe & Associates http:/www.mccabe.com
PC CALC Case Consult GmbH,

Flachstr. 13, 65197
Wiesbaden

E-Mail:
harry.sneed@caseconsult.com

PQMPlus Q/P Management Group http://www.qpmg.com
PriceS (Price
Estimating Suite)

Price, Mount Laurel, NJ http://www.pricesystems.com

R2ESTIMATOR r2Estimating,
Scottsdale, AZ

http://www.r2estimating.com

SCOPE Total Metrics http://www.totalmetrics.com
SEER Galorath Inc. http://www.galorath.com
SLIM QSM, McLean, Virginia http://www.qsm.com
Tassc:Estimator Tassc Software

Solutions, East Kilbride,
Scotland

http://www.tassc-solutions.com

20.8 Tools for Object Oriented Metrics and Estimation 585

20.10 Management Summary

A science is as mature as its measurement tools. (Louis Pasteur)
A method without tool support has only a little chance for survival and

cannot find the necessary acceptance for widespread use.
A fool with a tool still remains a fool!
The first lesson learned in trainings is for the project leaders that the tool

does not do their job of estimation.
Tools used without expertise cannot deliver solid results.
Estimation results with decimal points delude a not existing accuracy and

lull the user in deceptive safety.
The major benefits (time saving, quality, and efficiency improvement) are

harvested project per project over time and thus summon up accordingly in an
organization. Besides this there emerge positive side effects as, for example,
improvement of acceptance and transparency, standardization, and an estimation
culture.

Microestimation starts from the project activities and aggregates all partial
estimations to a total.

Macroestimation aims at the estimation of whole projects. After estimation
of effort and duration, the decomposition to the project phases is done.

Macroestimation is well suited for quick and early estimations.
Simulations with an estimation tool deliver the advantage to calculate the

influence of single estimation parameters (productivity metrics, quality metrics,
duration, effort) regarding different goals. Thus the critical success factors of a
project can be determined.

In practical usage it was found that estimations must be done early in the
software development process if precision of estimation and defect manage-
ment shall be better controlled and improved.

A prerequisite for tool acceptance is its calibration to company standards
(customizing).

The lesson learned is that tools should be used more frequently for simul-
ations. This rule is also valid for project planning tools. Experience in daily
project life showed that this rule is almost neglected by project leaders, leav-
ing them without an essential aid for project survival.

One of the most important tasks for preservation of the organizational esti-
mation know how is the customizing of the estimation tool by the develop-
ment of own estimated project portfolios and templates in addition to the
delivered basis of projects inherent in the tool.

20 Tools for Estimation 586

Appendix

A.1 A Logbook for Function Point Counts

Note: the following logbook example is an adapted version from the IT
department of an international insurance company.

A.1.1 Organizational Information

Table A.1. Header for inclusion in the corporate logbook

Application System ZAR
Date: May 2006
Reason for Count: Enhancements per Release April 2006

Mrs. Carolus Counter:
Mr. Alarus
Mrs. Miller Application Specialist:
Mr. Stones

A.1.2 Documentation (Input) for the Function Point count

Documentation for the FP count included the following documents:

From the Function Point Workbench™ the version »1st count 05.2001«
was taken as the basis. Following the quality assurance check and final pro-
ject delivery, the version »Correction of count 05.2001« was elaborated and
stored.
In the Visio-file ZAR.vsd, the boundary of the system ZAR was illustrated.
This logbook was used as a basis and was stored for future reporting.
In the document ZAR-Applications.doc were listed all ZAR-applications
with production cycles and jobs (e.g., each PMS-list produced represents an
EO from the user perspective).
The data model in version 3.4 according to the Case Tool xyz was con-
sulted to determine the appropriate data groupings for the ILFs and EIFs.

588

A.1.3 Architecture, Boundary

Fig. A.1. Example application boundary of ZAR for inclusion in the corporate logbook

A.1.4 Comments Relevant to the Function Point Count

The following text is provided for illustration purposes:

The log-file from the online portion of the application was counted as an EI.
In the batch portion of the application, some listings were crossed out to
symbolize that they were counted only once (they were duplicates). See
also FP LINK NOTES for the listings.
The OPC-application CK72B#SPLIT implemented in the fall of 2003 had no
new functions from the user perspective. Therefore, this OPC-application
was not documented together with the Function Point Application ZAR.
It is recommended that the Function Point Applications ZAR and AR be in-
tegrated.
Both systems maintain the same databases that were accordingly counted as
ILFs in both applications. Typically, however, a database is only primarily
owned and maintained by one application. It was determined that these two
applications, while they appeared to be separate from a physical standpoint,
actually supported a single set of user functionality and therefore should be
counted as one.
Applications with less than 200 adjusted Function Points deliver outliers in
benchmarking, according to our metrics competence center. We know that
the rules of thumb can only be used with much care (actually ZAR has 129
adjusted FPs and AR also has 129 adjusted FPs).

Appendix

CKZAR

CKBEARBFALL
CKSYZAR

ZAR

Monitor

EO

MEMOZAR-Listen

EO

Batch EI'sEIEQOnline EI's/EQ's

Auskunft Historie=n
Auskunft Historie=J
Auswahl B Anzeige
Auswahl B zufügen

System Start up
Täg.Update ZAR,AR
Monatl. Update CK01

CK01

CKALTERUNGS

CK09

EIF

CKPTERG

EIF

CKTARIFDB

EIF

CK40

techn. bedingtes
Lesen

DV04

EIF

Queries:
-History = n
-History = J
Selects:
-B Show
-B Add

System Start up
Daily Update ZAR, AR
Monthly Update CK01

589

A.1.5 Results

Fig. A.2. Example count result of application ZAR for inclusion in the corporate
logbook

A.2 Checklists

Note: the following checklist examples are adapted and enhanced versions
based on existing checklists from the IT department of an international
insurance company.

A.2.1 Checklist for Function Point Count Kickoff

Experiences show that to perform a project FP count an average of 1.5–2 days
effort should be planned (based on an “average” size project of 500–1,000 FP). A
prerequisite to counting is the gathering and assembling of the documentation
to support the count (e.g., project documents that describe the functionality
from the user perspective). We have found that the most efficient way to do
the count is with two persons and a laptop.

Additional people are not necessarily more efficient or productive to the
counting process, and can actually detract from the effort if there is wide dis-
agreement about what constitutes the functionality (sometimes it is a status issue
to be involved in all meetings on all topics. Do not allow yourself to be drawn
into this unproductive situation).

A.2 Checklists

590

Table A.2. FP count kickoff checklist

Necessary
Documentation

Possible Sources Annotations

Overview,
characterization
of the application

For example,
project manual,
Intranet

The focus is on the question which user
(groups) uses the application and how they
use it.

Architecture
of the application
and system
environment

For example,
context diagram,
boundary diagram

Most important are the (logical) user
interfaces.

Data model For example,
UDM, data
dictionary,
segment catalogue,
EAR; DB2-
catalogue, etc.

If there is no data model available, the
database model can be referenced. It must
be consulted if there are other functional
files that are part of the
application that are outside of the
database, for example, VSAM-files, etc.
(These may actually end up being EIs,
EOs, or EQs if they do not meet the
requirements for an ILF or EIF).

Functionality
(online and batch)

Model of functions,
list of
business use cases

The list of business use cases (highest
hierarchical level of functionality)
often delivers hints for definition of
project structuring.

Online
functionality

Direct viewing of
the screens, report
layouts, user
manual

The granularity of the Function Point
count aims at »user related elementary
processes« (e.g., create, change, etc.);
which are often implemented in practice
as menus or initiated via PF-keys.

Batch parts Model of
functions, user
manual

The batch parts of the application must be
regarded from user view.
Often it is helpful to examine the batch
portion of the application by
results, e.g.:
–Output processing, printed output (lists,

reports, letters, output files, or datasets)
–Letters for advertisement campaigns
–Data stores (e.g. administrations, partner

organizations), forwarding
letters

–Annual reports or other actualizations
–Maintenance of central data,

consolidations of data
Additionally, a view on the changing
counting scope during project progress)
can help to secure the functional
completeness of the batch part for the
Function Point count: which batch func-
tions run daily, monthly, annually, etc.

Appendix

591

The application specialist should have detailed knowledge about the appli-
cation as viewed by the user(s). Note that knowledge of the physical and
architectural (programming) details are not conducive to the FP count but
knowledge of the data model definitely is.

The main criterion for preparation of the count is the availability and cur-
rency of the necessary documentation that describes the user requirements for
functionality.

A.2.2 Checklist for Function Point Count Assessment

Table A.3. FP count assessment checklist
Allocated resource responsible for the FP
count (expertise and process):
Application system-number, Application
name, department:
Project-number, -name/department:
Phase completed when this FP count is to
be done (Study, requirements, actualization,
project postmortem):
Type of count (Project: new development,
enhancement, migration; application
system: base count, postenhancement base):
Date of the FP count:
Date of assessment:

 Prerequisites for the FP count
Quality criteria o.k. not

o.k.
1.1 Has the FP counter attended a FP course?
 Or
1.2 Does the person performing the count consulted with and se-

cured the availability of a member of the competence center?
 Reason (only when not o.k. or if the question is not applicable):
2.1 Is the FP counter a project team member (for the project or ap-

plication being counted)?
 Reason (only when not o.k. or the question is not applicable):
2.2 Did the project team participate in the FP count?
 Reason (only when not o.k. or the question is not applicable):
3.1 Has the FP counter more than one year’s worth of participation

or knowledge about the basic application system?
3.2 Was the task of »Function Point Counting« included in the pro-

ject plan?
 Reason (only when not o.k. or the question is not applicable):
4.1 Is a FP count of the basic application system documented in the

Function Point Workbench™? Where:
 Or

 (Continued)

A.2 Checklists

592

4.2 There was adequate written documentation about the basic sys-
tem? Where:

 –Screen documentation
 –Transaction documentation
 –Interface documentation
 –Database documentation
 –Output documentation (e.g. Print documentation)
 Or
4.3 Was the basic system knowledge obtained through documented

interviews?
 Reason (only when not o.k. or the question is not applicable):
5.1 Is the logbook of the FP count up to date? Where:
 Reason (only when not o.k. or the question is not applicable):
5.2 Are the assumptions, suggestions, restrictions, and unanswered

questions about the project/application documented?
 Reason (only when not o.k. or the question is not applicable):
6.1 Is the migration (if there is one) counted and separately docu-

mented?
 Reason (only when not o.k. or the question is not applicable):
6.2 Are outsourced parts (if there are) counted and separately docu-

mented?
 Reason (only when not o.k. or the question is not applicable):

 Process during FP count
Quality Criteria o.k. not

o.k.
1. Was the FP count done according to the current IFPUG release

(n.n)?
 Reason (only when not o.k. or the question is not applicable):
2. Was there a system diagram with the system boundary and data

flows? Where:
 Reason (only when not o.k. or the question is not applicable):
3. Are the EIs, EOs, and EQs determined by the system boundary

and data flows?
 Reason (only when not o.k. or the question is not applicable):
4. Is there an overview about the data files (entities)?
 Reason (only when not o.k. or the question is not applicable):
5. Are the ILFs and EIFs determined by the data files?
 Reason (only when not o.k. or the question is not applicable):
6. Are the Function Points of the EIs, EOs, EQs, ILFs, and EIFs

correctly counted (e.g., in case of an enhancement count)
 Reason (only when not o.k. or the question is not applicable):
7. Are the 14 GSCs classified according to the organizational stan-

dard?
 Reason (only when not o.k. or the question is not applicable):
8. Did the VAF change?
 Reason (only when not o.k. or the question is not applicable):

 (Continued)

Appendix

Table A. 3. (Cont.)

593

9. Were the 14 GSCs compared to the quality attributes?
 Reason (only when not o.k. or the question is not applicable):
10. Are the 14 GSCs consistent with each other?
 Reason (only when not o.k. or the question is not applicable):
11. Did the requirements change compared to the last FP count?
 Reason (only when not o.k. or the question is not applicable):
12. Are the results consistent with other comparable projects in

terms of size or with other sizing methods (e.g., SPR-method,
number of dialogues 10, rules of thumb, FP-Prognosis), if
available?

 Reason (only when not o.k. or the question is not applicable):
13. Did the requirements change (for a delivered project) since the

first FP count?
 Reason (only when not o.k. or the question is not applicable):

 Documentation of the FP count
Quality criteria o.k. Not

o.k.
1.1 Is the FP Count documented in the Function Point Workbench™

and can it be clearly understood? Where is it stored?
 Reason (only when not o.k. or the question is not applicable):
1.2 Is the description in the Function Point Workbench™ com-

pletely answered (per the company standard)?
 Reason (only when not o.k. or the question is not applicable):
2. Is the number of EIs, EOs, EQs, ILFs, and EIFs from the system

diagram identical to what the counter has recorded in the Func-
tion Point Workbench™?

 Reason (only when not o.k. or the question is not applicable):
3. Are the annotations from the FP count documented? Where:
 Reason (only when not o.k. or the question is not applicable):
4. Are the assumptions and counting decisions for the FP count

documented in the logbook? Where?
 Reason (only when not o.k. or the question is not applicable):
5. Are the figures/results comparable to other projects of similar

type?
 Reason (only when not o.k. or the question is not applicable):
6. Are the percentages of the EIs, EOs, EQs, ILFs, and EIFs consis-

tent with the rules of thumb?
 Reason (only when not o.k. or the question is not applicable):

Are there any open questions that have to be answered:
Nr. Question Who With

whom?

 Name Signature
Done by:
Checked by:
Released by:

A.2 Checklists

594

A.2.3 Checklist for Project Postmortem of IT-Projects

Table A.4. Project postmortem checklist

Name or person responsible for the project
postmortem (for functionality and for the
process):
Project number, -name/department:
Type of project (new development, en-
hancement, migration):
Development platform (Host, PC, C/S,
Data Warehouse, Web):
Date of project postmortem:
Date of quality assurance:

 Documentation of the FP Count
Quality Criteria Yes No

1. Is there an actual/final FP count documented in the Function Point
Workbench™? Where?

 Reason (only in case of No):
2. Is there a first FP count from specification phase or earlier

besides the project postmortem (delivered) FP count?
 Reason (only in case of No):
3. Was the size of the project tracked during the project progress (re-

quirements creep), i.e., was the delivered FP count compared to
the first FP count?

 Reason (only in case of No):

 Comparison of Estimate to Actual Effort
Quality Criteria Yes No

1. Was the original estimate compared with the actual project effort
at delivery?

 Reason (only in case of No):
2. Were the differences from the original estimate and the actual

effort measured and analyzed together with the competence
center?

 Reason (only in case of No):
3. Is the Checkpoint/KnowledgePLAN™ file completed for the

project delivery (in particular, the classification of the soft
factors, and the project classification completed at the end of
the project)?. Was the file delivered to the competence center?

 Reason (only in case of No):

 Analysis of the Actual Project Effort
Quality Criteria Yes No

1. Are the records in the time accounting system consolidated and
complete?

 Reason (only in case of No):
 (Continued)

Appendix

595

2. Was the actual effort analyzed for IT core team, interfaces,
support, and end user participation? What are the percentages of
effort for each group?

 Reason (only in case of No):
3. Was the actual effort analyzed by phase (study, specification,

etc.)? What are the percentages of effort for each phase?
 Reason (only in case of No):

 Quality Assurance, Reuse
 Quality Criteria Yes No
1. Is there a list of all detected defects and are they all documented?

Where?
 Reason (only in case of No):
2. Was there any analysis done to project how many defects may oc-

cur during maintenance? Where is it documented?
 Reason (only in case of No):
3. Were checklists and procedures developed during the project? If

yes, were they presented to the competence center so that they can
be reused on future projects?

 Reason (only in case of No):
4. Were programs and concepts developed in the project? If yes, were

they presented to the competence center so that they can be reused
on future projects?

 Reason (only in case of No):
5. Were checklists, processes, procedures, programs, etc. developed

for reuse presented to the staff for communication to the rest of the
IT department (e.g., via Intranet, project presentation, organizational
newspaper, etc.)?

 Reason (only in case of No):

 Metrics of the Project
Quality Criteria Yes No

1. Was the productivity of the total project calculated in FP per
person month? What was it?
Note for users who prefer the speed of delivery (PDR) instead:
Was the speed of Delivery (PDR) calculated with FP per person
month? What was it?

 Reason (only in case of No):
2. Was the delivery rate for the project calculated per calendar day

(FP per calendar day)? What was it?
 Reason (only in case of No):
3. Was the cost ratio of the project measured in US-$ per FP?
 Reason (only in case of No):

 (Continued)

A.2 Checklists

596

4. Were the costs analyzed by the following criteria?
Costs of internal staff
Costs of external staff
Costs of central resources (computing center, administration, etc.)
Costs of purchased tools, software-packages, etc.

 Reason (only in case of No):
5. Was there an analysis done related to “on-time” delivery as

[abs(actual days – planned days)]? What was the deviation?
 Reason (only in case of No):
6. Was the actual defect density calculated (number of defects

detected to date post-delivery per FP)? What is it?
 Reason (only in case of No):

Project post-mortem
This section pertains to the analysis of the most important problems and crises of the
project (3–7 topics) are reviewed in order to deliver preventive and improvement
recommendations.
Problem, description of crisis or
situation:
Actions taken to mitigate crisis:
Effectiveness of these actions:
Post-project evaluation of the
situation and recommendations
of future actions:

Are there any open questions that have to be answered:
Nr. Question Who (with whom) Date

 Name Signature
Done by:
Checked by:
Released by:

A.2.4 Checklist for Assessment of Estimation

Table A.5. Estimation assessment checklist

Name of person responsible for the
estimation (for functionality and for
the process):
Project number, -name/department:
Phase (Study, requirements, actuali-
zation, project postmortem):

 (Continued)

Appendix

Table A. 4. (Cont.)

597

Type of project (new development,
enhancement, migration):
Development platform (Host, PC,
C/S, Data Warehouse, Web):
Date of project postmortem:
Date of quality assurance:

 Prerequisites for the estimation
Quality Criteria o.k. Not

o.k.
1.1 Did the estimator have a Checkpoint/KnowledgePLAN™-

training?
 Or
1.2 Did the estimator have the counsel and availability of a member

of the competence center?
 Reason (only when not o.k. or the question is not applicable):
2. Was the estimator a member of the project team?
 Reason (only when not o.k. or the question is not applicable):
3. Is there a quality-assured first FP count from the end of the

requirements phase?
 Reason (only when not o.k. or the question is not applicable):

 Process of Estimation
Quality criteria o.k. Not

o.k.
1. Is the logbook of the estimation completed? Where?
 Reason (only when not o.k. or the question is not applicable):
2. Did the estimate include a description of the phases it included?
 Reason (only when not o.k. or the question is not applicable):
3. Are the assumptions, decisions, and open questions docu-

mented?
 Reason (only when not o.k. or the question is not applicable):
4. Was the appropriate template for the project estimate been cho-

sen? Which one?
 Reason (only when not o.k. or the question is not applicable):
5. Was the appropriate estimation mode chosen (Quick, Detailed

Estimate)? Which one?
 Reason (only when not o.k. or the question is not applicable):
6. Is the Setup correct (according to the organizational Time

Accounting)?
 Reason (only when not o.k. or the question is not applicable):
7. Are the hard factors classified and are they plausible?
 Reason (only when not o.k. or the question is not applicable):
8. Are the soft factors classified and are they plausible?
 Reason (only when not o.k. or the question is not applicable):
9. Have changes to the restrictions of the hard factors as compared

to the last estimate been considered?

 (Continued)

Reason (only when not o.k. or the question is not applicable):

A.2 Checklists

598

10. Have changes to the restrictions for personnel compared to the

last estimate been considered?
 Reason (only when not o.k. or the question is not applicable):
11. Have changes to the restrictions for technology compared to the

last estimate been considered?
 Reason (only when not o.k. or the question is not applicable):
12. Have changes to the restrictions for the process compared to the

last estimate been considered?
 Reason (only when not o.k. or the question is not applicable):
13. Have changes to the restrictions for environment compared to

the last estimate been considered?
 Reason (only when not o.k. or the question is not applicable):
14. Have changes of the restrictions for risks compared to the last

estimate been considered?
 Reason (only when not o.k. or the question is not applicable):
15. Was a sensitivity analysis performed?
 Reason (only when not o.k. or the question is not applicable):
16. Was a comparison made between versions of the estimate?
 Reason (only when not o.k. or the question is not applicable):
17. Is the actual project effort documented? Where?
 Reason (only when not o.k. or the question is not applicable):

 Documentation of the Estimation
Quality Criteria o.k. Not

o.k.
1. Was the estimate done using KnowledgePLAN™ or another

estimating tool (specify which one)?
 Reason (only when not o.k. or the question is not applicable):
2. Can the actual relevant estimate be identified from the version

description in Checkpoint/KnowledgePLAN™?
 Reason (only when not o.k. or the question is not applicable):
3. Is the documentation of the distribution of effort with the

Excel-sheet available (total effort, project duration)?
 Reason (only when not o.k. or the question is not applicable):
4. Are the results compared to similar projects plausible?
 Reason (only when not o.k. or the question is not applicable):

Are there any open questions that have to be answered:
Nr. Question Who With

whom

 Name Signature
Done by:
Checked by:
Released by:

Appendix

Table A. 5. (Cont.)

599

A.3 FiSMA Situation Analysis Model MT22

The purpose of the Experience situation analysis method MT22 is to help
to estimate annual maintenance and modification projects. The model consists
of 22 standard productivity factors. They are classified into four categories:
Organization (6 factors), Process (5 factors), Product (6 factors) and People
(5 factors). Each factor in each category has five alternative values. The basic
idea in rating is that “the better the circumstances for the maintenance are, the
more positive rating the factor gets.”

“++” = Excellent situation, circumstances much better than in average case
“+” = Good situation, circumstances better than in average case
“+/ ” = Normal situation in the productivity point of view
“ ” = Bad situation, circumstances worse than in average case

Rating of each factor is weighted based on experience data. The ideal or
target weights should be 1.10, 1.05, 1.00, 0.95, and 0,90 (from to ++) and
they should be distributed normally, 5–20–50–20–5%.

Table A.6. Categories and names of MT22 productivity factors

Organization Release and version policy
Organization Resource availability for future needs
Organization Contracting procedure
Organization Number of stakeholders
Organization Priority setting and control of changes
Organization Organizational culture
Process Source code edition methods and tools
Process Testing methods and tools
Process Documentation methods and tools
Process Communication methods and tools
Process Roll-out methods and tools
Product Functionality requirements
Product Reliability requirements
Product Usability requirements
Product Efficiency requirements
Product Maintainability requirements
Product Portability requirements
People Development environment skills of staff
People Application knowledge of staff
People Networking skills of staff
People Motivation and responsibility of staff
People Team atmosphere

Note that FiSMA also supports the ND21 (New Development) situation analysis for gauging the
productivity factors on new development projects. See www.fisma.fi/in-english/methods to download
this and the MT22 situation analysis presented below.

A.3 Experience Situation Analysis Model MT22

“ ” = Very bad situation, circumstances much worse than in average case.

600

A.3.1 Organization Factors

Release and Version Policy

The clarity, formality, internal integrity, and long-term planning of future
releases and versions.

Table A.7. Release and version policy factors

Many different customer specific versions and delivery packages, which are
built case by case after required modifications.
Many customer specific versions and release packages, and their installation
and deployment is allocated to end-users.

+/ Some customer-specific versions and releases of the same delivery.
+ All customers get the same standard delivery. New versions are released

according to future needs.
++ All customers get the same standard delivery. Future releases are planned and

agreed for the foreseen future.

Resource Availability for Future Needs

Adequacy of resources and systematic allocation of staff, hardware, software,
work space, and required skills for the planned maintenance period.

Table A.8. Resource and availability for future needs factors

Organization has no defined rules and practices in resource management.
Applications have no responsible person. Continuous lack of resources.
Organization has mechanism for workload management, and it is at least par-
tially in use. Each application has responsible person, but he/she has many
other responsibilities. Availability of resources is uncertain.

+/ Organization has defined mechanism to manage critical resources. Each appli-
cation has responsible person(s). Some delays to get other resources.

+ Organization has well-defined mechanism to manage all resources, and it is
followed largely. Responsibilities are fully allocated to suitable person(s) and
also required back up resources are nominated. Other resources are available on
request with short notice.

++ Organization has well-defined mechanism to manage all resources, and it is
followed fully. All required responsibilities and back up resources are nomi-
nated and their availability is well ensured. Also other resources are available
on request.

Contracting Procedure

Consistency, completeness, and granularity of maintenance contract to define
each service type and/or service transaction, mutual responsibilities, level of
services, acceptance criteria of deliveries, and other required contract condi-
tions.

Appendix

601

Table A.9. Contracting procedure

Maintenance service is not based on any contract or other documented practice.
Maintenance service is performed according to continuous framework agree-
ment, but separate services and deliveries are not identified.

+/ Maintenance service is based on continuous framework agreement, and each
service transaction is recorded by supplier and accepted at least orally by
customer/end user.

+ Maintenance service is based on separate service agreements and each service
delivery is based on mutually accepted documents.

++ Each service type is based on documented mutual agreement, and is an element
of continuous framework agreement. Each delivery is based on mutually
approved specification document.

Number of Stakeholders

Number of people and/or organizations involved in management and decision
making of maintenance service and deliveries

Table A.10. Number of stakeholders

Number of people and organizations involved in implementation and decision
making of change requests is high (both more than 5).
Either the number of people or organizations involved in implementation
and decision making of change requests is high (either number of people or
organizations more than 5).

+/ Number of people and organizations involved in implementation and decision
making of change requests is typical/average (both 2–4).

+ Either the number of people or organizations involved in implementation
and decision making of change requests is low (1–2) and the other is not high
(not more than 5).

++ Number of people and organizations involved in implementation and decision
making of change requests is low (both 2 or less).

Priority Setting and Control of Changes

Classification and analysis of change requests by defined criteria (for example,
criticality, urgency, and cost) to prioritize change requests and decide on req-
uired actions of both parties.

Table A.11. Priority setting and control of changes

No agreed classification for errors, failures, and change requests.
Only application specific error classification is in use.

+/ Organization wide error and failure recording and classification is in use
and it is used to prioritize fixing actions

+ Organization has classified each application by business criticality
and classifies also each error and failure, respectively. Each change request is
analyzed by benefit/cost method.

 (Continued)

A.3 Experience Situation Analysis Model MT22

602

++ All applications and error and failure types have widely known criticality
classification and consistent benefit/cost analysis method. All responsible
persons (operators etc.) are fully aware of all problem situations and required
actions.

Organizational Culture

Common attitudes among staff and appreciation of maintenance at company
level, appropriate awarding mechanism, and other cultural factors.

Table A.12. Organizational culture

Organization and people are enthusiastic of new technologies and projects
only. New development projects are highly appreciated, maintenance “just
must.” No visibility for maintenance work, no awarding mechanism for main-
tenance projects and services.
Importance of maintenance is known, but not shown. No communication and
awarding mechanism for maintenance.

+/ Organization values maintenance but does not motivate people in maintenance
work in any means. Maintenance is mentioned in top management presenta-
tions and is part of company-wide measurement program.

+ Maintenance has good image in company as a key long-term success factor
and profit maker. Maintenance is a profession, and is part of recruiting cam-
paigns

++ Maintenance has good image in company and has strong motivation and
commitment among top management and staff. People want maintenance re-
sponsibilities and activities. Maintenance is measured at organizational deliv-
ery and individual levels and is part of awarding mechanism.

A.3.2 Process Factors

Source Code Edition Methods and Tools

The level and impact of code editors, translation tools, code libraries, and code
integrity tools and procedures.

Table A.13. Source code edition methods and tools

Development environment and tools are not in proper use and widely known.
Several hardware platforms
Development environment and tools are in moderate use, but are immature and
new versions are needed frequently. Some guidelines and standards are in par-
tial use.

+/ Development environment and tools are in common use. Guidelines, proce-
dures, and standards are created, but only in partial use.

+ Development environment and tools are well known and in common use.
Guidelines, procedures, and standards are in use and easily accessible.

 (Continued)

Appendix

Table A. 11. (Cont.)

603

++ Environments and tools are an integrated set, and automate major parts of man-
ual tasks. Simple, well-known development environment and only one hard-
ware platform.

Testing Methods and Tools

Level and impact of tools and procedures to manage test cases and materials,
test activities, regression tests, and test results.

Table A.14. Testing methods and tools

No testing practices and standards. Test materials are derived separately each
time when required.
Testing activities and standards exist, but test case derivation and reuse is diffi-
cult. All data is file-based, only manual handling of files and data.

+/ Testing is well performed and largely supported by standards. Test data is
managed with appropriate tools and/or scripts.

+ One test material package, which can be modified for different test situations.
Testing process and appropriate tools are well documented and in proper use.

++ Each application/software component has well-defined test suite (scripts and
materials) for all defined testing phases. Regression testing is tool-supported,
where appropriate.

Documentation Methods and Tools

Level and impact of tools and procedures to create, manage, and distribute re-
quired application documents for maintenance staff and end users.

Table A.15. Documentation methods and tools

No common procedure and widely used professional practices for documentation.
No common guidelines and procedures for any documentation, only some version
and change control in use.

+/ Good documentation of each application, change request, and error/failure.
Follow-up of documented changes, errors, and failures is in use.

+ Application documents are well managed, controlled, and maintained. Mostly
manual documentation.

++ Well-defined process for documentation of each application. Documentation is
tool-based and in wide, firms use.

Communication Mechanisms

Level and impact of methods, tools, and procedures to record, communicate,
and handle change requests, errors, and failures.

A.3 Experience Situation Analysis Model MT22

604

Table A.16. Communication mechanisms

No defined approach for communicating. Required information is distributed
for all potential parties to avoid “communication gap.” Many kinds of media
are in use.
Communication mechanism is defined, but only in partial use. Some guidelines
are available.

+/ Communication mechanism is documented, and in proper use. It is not
integral part of maintenance process.

+ Communication is well integrated with maintenance activities and process.
No tools, but some templates and distribution lists are in use.

++ Multiple tools for communication are in proper use and well aligned with
actual work processes. Templates support major part of communication.

Roll-Out Methods and Tools

Level and impact of tools and procedures to roll-out modified programs/
applications and related data to operation environment.

Table A.17. Roll-out methods and tools

No defined approach for rollouts. Deployment is work intensive and depends on
key staff.
Some documents about rollouts are made and in use. Some separate tools in
use.

+/ Roll-out is a well-defined process and it is followed largely. One dominant tool
to perform roll-out and record roll-out status. No easy traceability and version
status of rollouts.

+ Well-established work process for roll-out. Good version control and traceabil-
ity.

++ Roll-out and version control has already long history in organization and is
fully automated.

A.3.3 Product Factors

Functionality Requirements

Variety and complexity of the requirements and business rules, level of inter-
faces.

Table A.18. Functionality requirements

Virginal and complex application area, security critical big (thousands of FPs)
multitier system for various, multicultural users. Many authorization levels for
users. Some complex, algorithmic functions.
Various user groups and access levels to applications and data. Many interfaces
with other systems. Some business rules require special application knowledge
from developers and testers.

 (Continued)

Appendix

605

+/ Some user groups with slightly different access control. Mostly simple business
rules.

+ Only a couple of user groups, only some interfaces with other systems. All busi-
ness rules are relatively simple.

++ Only one user group, all have same access control. No interfaces with other
systems. Functionality is simple data movement to and from user (screens,
reports).

Reliability Requirements

Severity of failures and impact of failures to users and operation.

Table A.19. Reliability requirements

Operation faults may endanger human lives or cause great economic or envi-
ronmental losses, the application must recover without losing any data in any
case.
Failures can cause major economic loss and image suffering, can lead to nega-
tive news in mass media.

+/ Faulty operation can cause harm for some hundred users, can reflect negatively
in operation of 2–3 other applications.

+ Failures can cause harm for some tens of users, but they can tolerate short op-
eration breaks even daily. Some impacts in max one other application.

++ Failure has impacts only in some users. Maximally weekly or monthly opera-
tion period, error can be fixed without operational losses. No impacts on any
other applications

Usability Requirements

Number of users, support for various skill levels of users, continuous opera-
tion, special requirements to attract users.

Table A.20. Usability requirements

A very big number of different types of end-users all over the world, with dif-
ferent levels of experience at software usage, a high-level customization and
help facilities required. 24 h/day, 7 days/week operation requirement.
2–3 different types of users with various skills and languages, requiring auto-
mated multilevel help function, the use of software during interactive customer
service. 24 h/day operation requirement.

+/ Limited number of regular users, who can be trained in advance. Mostly in
back-office use, sometimes in direct customer service. Max 20 h/day operation.

+ Application for small number of users. Only in back-office functions. Opera-
tion in working hours is required.

++ Only few expert users or one team, all located at one site, not very frequent use.

A.3 Experience Situation Analysis Model MT22

606

Efficiency Requirements

Requirements for response and transaction processing time, differences in
operational and computer load, transaction and data volumes.

Table A.21. Efficiency requirements

Very big volume of real-time transactions, big differences in operation load,
need for simultaneous online and batch processing. Millions of records in data-
base, many kinds of nonpredictable inquiry needs.
Hundreds of simultaneous end-users in multiple sites, most of response time
requirements critical, queuing in transaction processing causes operational loss
for services.

+/ Max one hundred simultaneous end-users. Response time requirements are
flexible but critical for work efficiency, mostly only predefined inquiry needs.

+ Simple database, straightforward, and predictable data requests from few simul-
taneous end-users.

++ Simple and small database, no simultaneous end-users or complex data re-
quests, total number of transactions not more than tens per day.

Maintainability Requirements

Stability of the environment, standardized code and component structures,
clarity of architecture, pressure for changes.

Table A.22. Maintainability requirements

Very large strategic (target lifetime more than 20 years) software at a volatile
business area with frequent changes of laws and standards and business rules.
Also the maintenance speed is essential, logging and the defect messages must
be clear, exact, and instructive for developers
Large software (target lifetime from 10 to 20 years), frequent changes of laws
or standards or business rules. Time to analyze defect messages, change the
programs and test them is always some hours but not more.

+/ Average size tactical (target lifetime from 5 to 10 years) software, monthly
changes of laws, standards and business rules. Maintenance timing is reasona-
bly flexible, a couple of days rather than hours, an application specific error log
needed.

+ Rather small rarely changing software (target lifetime from 2 to 5 years), no
application specific diagnostics needed.

++ Temporary software (target lifetime less than 2 years) with no intention to
enhance for new requirements.

Portability Requirements

Adaptability and installability to different environments, openness of architec-
ture and structural components, volatility of platforms and environments.

Appendix

607

Table A.23. Portability requirements

Users of the software are located in many kind of organizations, with various
platforms (hardware, browsers, operating systems, middleware, data communi-
cation protocols, etc), various versions, and various upgrading frequencies.
The software must operate on many different platforms (hardware, browsers,
operating systems, middleware, data communication protocols, etc) and on sev-
eral versions of them.

+/ Every version of the software must run on several versions of a certain plat-
form (hardware, browser, operating system, middleware, data communication
protocol, etc), the upgrading frequencies of the users are rather predictable.

+ The software must run on a certain platform (hardware, browser, operating sys-
tem, middleware, data communication protocol, etc), for which the software is
tested. Only one “latest version” of software is required. Some customers or
user groups may use older versions, but they do not need to be interoperable
with new version.

++ The software must run only on a certain platform (hardware, browser, operat-
ing system, middleware, data communication protocol, etc) in which upgrading
process is completely manageable (for example, most of the mainframe envi-
ronments). Several tens of similar applications are running on the same plat-
form.

A.3.4 People Factors

Development Environment Skills of Staff

Experience and knowledge of maintenance staff in development environment,
tools, and platforms (design, implementation, testing, version control, opera-
tion, documentation, communication)

Table A.24. Development environment skills of staffskills of staff

Development environment and tools are new for the whole maintenance staff.
The average experience time is less than 3 months. Special expertise is difficult
to get. Training needs are not satisfied.
At least one responsible person has reasonable knowledge of environments
(3 months to 2 years). Special knowledge is difficult to get. Training is partially
available.

+/ At least one of some responsible persons has good knowledge of environments
(several years). Average experience is 1–3 years. Special knowledge is largely
available on request. Training is available on essential tools.

+ All responsible persons know well the environments and tools (2–5 years).
Some persons can give hands-on support in tools. Training is available on all
tools.

++ The software must run only on a certain platform (hardware, browser, operating
system, middleware, data communication protocol, etc), which upgrade process.
The whole maintenance staff knows all the tools very well (>5 years experience).
Support available for the specific needs of the project. No need for training.

A.3 Experience Situation Analysis Model MT22

608

Application Knowledge of Staff

Knowledge of the maintenance staff in the applications and interfacing sys-
tems (both the supplier and the customer).

Table A.25. Application knowledge of staff

The business area knowledge of maintenance staff is very small, less than 12
months. No expertise on interfacing systems.
The application experience is small on vendor side, and software knowledge is
small on customer side. Maintenance staff has no special knowledge on inter-
facing systems.

+/ Maintenance staff has quite good experience of the business area and appli-
cation domain, 1–3 years in average. At least some people have good overall
understanding of the application portfolio.

+ The business area and application domain experience is good both on the sup-
plier and the customer sides. The experience is 3–6 years in average, some
have >5 years experience.

++ Both the supplier and the customer representatives know the business area and
application domain very well (in average >5 years), including the understand-
ing of the business as total. Good understanding of application portfolio among
the whole maintenance staff.

Networking Skills of Staff

Level of team building and networking among maintenance staff, ability to
cooperate with partners.

Table A.26. Networking skills of staff

Maintenance staff consists of new people, no mutual working history and experi-
ences. Responsible persons have no common language. No connection with
external stakeholders.
Part of maintenance staff has common working history, max 2 years. Manage-
ment and experts have mutual communication and understanding problems.
Ad hoc connections with stakeholders.

+/ Maintenance staff has some year’s common working history (2–5 years).
Mutual communication is open and works quite well. Cooperation with stake-
holders is done when required.

+ Maintenance staff has long common working history (>5 years). No mutual
communication problems between management and experts. Regular coopera-
tion with stakeholders.

++ Maintenance staff has very long common working history (>10 years). No
communication problems between management and experts. Stable and con-
tinuous cooperation with stakeholders, even when responsibilities are allocated
to new staff.

Appendix

609

Motivation and Responsibility of Staff

Personal motivation to develop application and customer business

Table A.27. Motivation and responsibility of staff

Maintenance staff has no interest to develop application. Maintenance is con-
sidered as mandatory extra duty, which should be avoided. Easy to transfer
responsibility to other staff members.
Maintenance staff members are not interested to develop application, expect
some limited responsibilities that are explicitly allocated to them.

+/ Maintenance staff members are performing maintenance activities according to
plan and take the development responsibility.

+ Maintenance staff members are interested to develop application and take per-
sonal responsibility over the whole application area, as defined.

++ Maintenance staff is interested to develop customer’s business, like introduc-
tion of new technology, competitive position of applications, and new changes
in interfacing systems. Real responsibilities are far over the minimal require-
ments defined in maintenance contract.

Team Atmosphere

Influence on working conditions, self-learning, professional career opportu-
nities.

Table A.28. Team atmosphere

Maintenance staff feels that their work effort is highly underappreciated. Con-
tinuous lack of resources. No influence on daily work and working conditions.
Unfair or unknown feedback on work.
Maintenance staff feels that their work is underappreciated, and leads to at least
temporary resource conflicts and inadequate training. Only some influence on
daily work at individual level, weak feedback on work results.

+/ Maintenance staff feels that their work is moderately appreciated. Resourcing
and training are quite adequate. Mostly good influence on daily work, some-
times resource conflict with continuous responsibilities and project duties.

+ Maintenance work and results are well appreciated. Resourcing and training are
adequate. Each individual has good influence on daily working arrangements.
Good feedback from work, fair awarding.

++ Excellent feelings about maintenance work among the whole staff and manage-
ment. Resourcing and training are adequate. Good knowledge on all feedback
from management and customer, awarding is fair. Full responsibility and self-
control at individual level on personal working conditions and satisfaction of
new professional requirements.

A.3 Experience Situation Analysis Model MT22

Abran, A., Dumke, R., Desharnais, J., Ndyaje, I., Kolbe, C., A Strategy for a
Credible & Auditable Estimation Process Using the ISBSG International Data
Repository, in Dumke et al. (Ed.): Software Measurement and Estimation,
Shaker Verlag, Aachen, 2002, pp. 246–258

Abran, A., Gil, B., Lefebvre, E., Estimation Models based on Functional
Profiles, in: Proceedings of the International Workshop on Software Metrics and
DASMA Software Metrik Kongress, IWSM/MetriKon 2004, November 2–5,
2004, Königs-Wusterhausen, Germany, Software Measurement – Research
and Application, Shaker Verlag, Aachen, 2004, pp. 195–212, ISBN 3-8322-
3383-0

Abran, A., Nguyenkim, H., Measurement of the maintenance process from a
demand based perspective, in: Journal of Software Maintenance and Evolu-
tion: Research and Practice, 1993, 5: pp. 63–90

Abran, A., Robillard, PN., Function point analysis: An empirical study of
measurement processes, in: IEEE Transactions on Software Engineering,
1996, 22(12): pp. 895–903

Abran, A., Desharnais, J. -M., Aziz, F., From Function Points to COSMIC-
FFP, in: Proceedings of the 15th International Workshop on Software Meas-
urement, Innovations in Software Measurement, September 12–14, 2005,
Montréal, Canada, pp. 227–240, Shaker Verlag, Aachen, 2005, ISBN 3-8322-
4405-0

Abran, A., Silva, I., Primera, L., Field studies using functional size meas-
urement in building estimation models for software maintenance, in: Journal
of Software Maintenance and Evolution: Research and Practice, 2002, 14: pp.
1–34

Al Qutaish, R. E., Abran, A., An Analysis of the Design and Definitions of
Halstead’s Metrics, in: Proceedings of the 15th International Workshop on
Software Measurement, Innovations in Software Measurement, September
12–14, 2005, Montréal, Canada, pp. 337–352, Shaker Verlag, Aachen, 2005,
ISBN 3-8322-4405-0

Albrecht, A. J., Measuring Application Development Productivity, Proceed-
ings of Joint SHARE, GUIDE, and IBM Application Development Sympo-
sium, White Plains, New York, October 1979, pp. 83–93

Antoniol, G., Calzolari, F., et al., Adapting Function Points to Object Ori-
ented Information Systems, in: Proceedings of CAiSE ’98, 1998

Literature

612

April, A. A., Al-Shurougi, D., Software Product Measurement for Supplier
Evaluation, in: Proceedings of the FESMA Conference 2000, Madrid

ASMA, Sizing in Object-Oriented Environments, Australian Software Met-
rics Association, Victoria, Australia, 1994

Ayers, M., Critical Success Factors for Developing and Implementing a
Contractual Metrics Program, in: IFPUG, IT Measurement – Practical Advice
from the Experts, Addison-Wesley Pearson Education Inc., Indianapolis,
2002, ISBN 0-2017-4158-X, pp. 445–454

Azzouz, S., Abran, A., A PROPOSED Measurement Role in the Rational
Unified Process and its Implementation with ISO 19761: COSMIC-FFP, in:
Proceedings of the Software Measurement European Forum 2004 (SMEF2004),
Rome, Istituto di Ricerca Internationale S.r.l., Milano, 28.–30.1.2004, S. 356–
368, ISBN 8-8866-7433-3

Basili, V., Caldiera, G., Rombach, H., Goal question metric paradigm, in:
J. J. Marciniak, (Ed.): Encyclopedia of Software Engineering, Wiley, New
York, 1994, pp. 528–532

Bayer, S., Tolomei, V., The Role of Functional Metrics in B2B E-Commerce
Project Success, in: IFPUG, IT Measurement – Practical Advice from the
Experts, Addison-Wesley Pearson Education Inc., Indianapolis, 2002, ISBN
0-2017-4158-X, pp. 655–676

Beckett, D., Llorence, P. C., Metrics in Support of Estimating in a Large
Software Services Company, in: IFPUG, IT Measurement – Practical Advice
from the Experts, Addison-Wesley Pearson Education Inc., Indianapolis,
2002, ISBN 0-2017-4158-X, pp. 323–336

Beyers, C. P., Estimating Software Development Projects, in: IFPUG, IT
Measurement – Practical Advice from the Experts, Addison-Wesley Pearson
Education Inc., Indianapolis, 2002, ISBN 0-2017-4158-X, pp. 337–362

Bierfert, H., Verinnerlichung als Start und Ziel von Metriken – SW-Metriken
zwischen Akzeptanz und Relevanz, in: Dumke, R. R. (Hrsg.): Software-
Metriken in der Praxis, Tagungsband (Proceedings) (Proceedings) des DASMA
Software Metrik Kongresses MetriKon 2001, Shaker Verlag, Aachen, 2002,
ISBN 3-8322-0470-9

Boehm, B. W., Characteristics of Software Quality, North Holland, Ams-
terdam, 1978

Boehm, B. W., Software Engineering Economics, Prentice Hall, New York,
1981

Boehm, B. W., Wirtschaftliche Softwareproduktion, Prentice Hall, NewYork,
1986

Boehm, B. W., et al., Software Cost Estimation with COCOMO II, Engle-
wood Cliffs, NJ, Prentice Hall, 2000

Boehm, B. W., Requirement-Led Project Management, Discovering David’s
Slingshot by Robertson, Suzanne and James, Pearson Education, 2005

Braungarten, R., Kunz, M., Farooq, A., Dumke, R., Towards Meaningful
Metrics Data Bases, in: Proceedings of the 15th International Workshop on

 Literature

613

Software Measurement, Innovations in Software Measurement, September
12–14, 2005, Montréal, Canada, pp. 1–34, Shaker Verlag, Aachen, 2005,
ISBN 3-8322-4405-0

Briand, L. C., El Emam, K., Bomarius, F., COBRA: A Hybrid Method for
Software Cost Estimation, Benchmarking, and Risk Assessment, in: Proceed-
ings of the 20th International Conference on Software Engineering, April
1998, pp. 390–399

Brooks, F., The Mythical Man Month 2nd Edition (20th anniversary edition),
Addison Wesley, Reading, MA, 1995 ISBN 3-8266-1355-2)

Büren, G., Bundschuh, M., Dumke, R. (Hrsg.), Software-Messung in der
Praxis – Tagungsband (Proceedings) des DASMA Software Metrik Kongresses
METRIKON 2003, Shaker Verlag, Aachen, 2003, ISBN 3-8322-2146-8

Büren, G., Hopf, H. -G., Softwaremetriken als notwendige Voraus-setzung
für Projektcontrolling in der Software-Entwicklung, in: Software-Metriken
in der Praxis, Tagungsband (Proceedings) des DASMA Software Metrik
Kongresses MetriKon 2001, Shaker Verlag, Aachen 2002, ISBN 3-8322-
0470-9

Büren, G., Kroll, I., First Experiences with the Introduction of an Effort
Estimation Process. In: CONQUEST’99: Quality Engineering in Software
Technology, Conference on Quality Engineering in Software Technology.
Nuremberg (1999), pp. 132–144

Buglione, L., Abran, A., The Software Measurement Body of Know-ledge,
in: Proceedings of the Software Measurement European Forum 2004
(SMEF2004), Rome, Istituto di Ricerca Internationale S.r.l., Milano, 28.–
30.1.2004, S. 84–94, ISBN 8-8866-7433-3

Bundschuh, M., Aufwandschätzung als Voraussetzung für die Projekt-
planung, in: Bernecker, M., Eckrich, K., Handbuch Projektmanagement, R.
Oldenbourg Verlag, München, 2003, ISBN 3-4862-7444-9, S. 239–259

Bundschuh, M., Die Function Point Methode im praktischen Einsatz bei
Softwareprojekten, in: Schelle et al., Projekte erfolgreich managen, BDU, 13.
Aktualisierungs- und Ergänzungslieferung, November 1999

Bundschuh, M., Estimation of Maintenance Tasks, in: Dumke, R. et al.,
Software Measurement and Estimation – Proceedings of the 12th International
Workshop on Software Measurement, 2002, Shaker Verlag, Aachen, 2002,
ISBN 3-8322-0765-1, pp. 125–136

Bundschuh, M., Function Point Prognosis, in: Metrics News, Vol, 3, Nr. 2,
December 1998

Bundschuh, M., Function Point Prognosis Approved, in: Metrics News,
Vol, 7, Nr. 1, July 2002

Bundschuh, M., Software Measurement and -Metrics in external Enter-
prises, in: Metrics News, Vol, 7, Nr. 2, December 2002

Bundschuh, M., Peetz, W., Siska, R., Aufwandschätzung mit der Function
Point Methode, TüV Rheinland GmbH, Köln, 1991, ISBN 3-8858-5982-3

 Literature

614

Card, D., What Makes a Software Measure Successful, in: American Pro-
grammer, September 1991

Card, D., The Role of Measurement, in: Software Engineering, July 1998
Cartwright, M., Shepperd, M., Building Predictive Models from Object-

Oriented Metrics, in: Proceedings of the 8th ESCOM Conference, Berlin,
1997, pp. 51–55

Catherwood, B., Sood, M., Armour, F., Continued Experiences Measuring
Object Oriented System Size, in: Proceedings of the 8th ESCOM Conference,
Berlin, 1997, pp. 56–61

Chidamber, S. R., Kemerer, C. F., A Metrics Suite for Object Oriented
Design, MIT Sloan School of Management, 1993

Chidamber, S. R., Kemerer, C. F., A Metrics Suite for Object Oriented
Design, IEEE Transactions on Software Engineering, Vol. 20, No. 6, June
1994, pp. 476–493

Clark, E., Tracking Software Progress, in: IFPUG, IT Measurement –
Practical Advice from the Experts, Addison-Wesley Pearson Education Inc.,
Indianapolis, 2002, ISBN 0-2017-4158-X, pp. 223–236

Coley, D., Considerations for getting Maximum Benefit from an Enterprise-
Wide Metrics Repository, in: IFPUG, IT Measurement – Practical Advice
from the Experts, Addison-Wesley Pearson Education Inc., Indianapolis,
2002, ISBN 0-2017-4158-X, pp. 455–462

Combes, H., Peeters, B., van Huysduynen, M. H., Proceedings of the 1998
FESMA Conference, Antwerpen, 6.–8.5.1998, ISBN 9-0760-1903-7 COSMIC

consortium,
Case Studies with ISO 19761 (2003), C(course) Registration

2003.html, 2008
Cowderoy, A., (Editor), Proceedings of the 1997 ESCOM Conference,

Berlin, 26.–28.5.1997
Crosby, P. B., Quality is Free, Mentor Books, New York, NY, 1979
Curtis, B., Krasner, H., Shen, V. Y., Iscoe, N., On Building Software Pro-

Da Silveira, M. L. B., EDS Brazil Metrics Program: Measuring for
Improvement, in: IFPUG, IT Measurement – Practical Advice from the
Experts, Addison-Wesley Pearson Education Inc., Indianapolis, 2002, ISBN 0-
2017-4158-X, pp. 85–96

ICSSEA 2006, Dec. 5, 2006, Paris, France http://deptinfo.cnam.fr/CMSL/
icssea/icssea2006/icssea2006_US/progra-full.html

Dekkers, C. A., Guide to Software Measurement Start-up one-day work-

Dekkers, C. A., How and When Can Functional Size Fit with a
Measurement Program?, in: IFPUG, IT Measurement – Practical Advice from

 Literature

System:http:
//www.lrgl.uqam.ca/cosmic-ffp/casestudies_with_ISO_ 19761 _

ISBN 0-2017-4158-X, pp. 161–169
the Experts, Addison-Wesley Pearson Education Inc., Indianapolis, 2002,

Dekkers, C. A., Not Your Father’s Function Points, in: Proceedings of the

shop, Quality Plus Technologies, Inc., www.qualityplustech.com, 2000-current.

cess Models Under the Lamppost, ICSE 1987, pp. 96–105

615

Dekkers, C. A., Secrets of Highly Successful Measurement Programs,
Cutter IT Journal, Vol. 12, No. 4, pp. 29–35, 1999

Dekkers, C. A., Tackling software measurement? try proverbs, backtalk
column, crosstalk in: the Journal of Defense Software Engineering, May 2005,
www.stsc.hill.af.mil/crosstalk

Dekkers, C. A., Forselius, P., Increase ICT Project Success with Concrete
Scope Management, in Proceedings of the Project Management Institute 2007
Asia Pacific (Hong Kong) and 2007 North American (Atlanta) congresses,
2007

Dekkers, C. A., Gunter, I., Using “Backfiring” to Accurately Size Software:
More Wishful Thinking than Science?, IT Metrics Strategies, Cutter Informa-
tion Corp., November 2000, Volume VI, No. 11, Cutter Consortium, www.
cutter.com/consortium/.

Dekkers, C. A., Lundquist, G., The proof is in the ratios: Turning raw data
into meaningful software metrics, in: The Journal of The Quality Insurance In-
stitute, July 1996

Dekkers, C. A., McQuaid, P., The Dangers of using software metrics to
(mis)manage, IEEE IT Professional, Mar/April 2002.

Dekkers, T., Funktionalgrößen Meßmethoden sind auch in Verb-esserun-
gsprojekten anwendbar, in: Software-Messung in der Praxis, Tagun-gsband
(Proceedings) des DASMA Software Metrik Kongresses MetriKon 2003, 10.–
11. November 2003, Neu-Ulm. Shaker Verlag, Aachen, 2003, S. 55–67, ISBN
3-8322-2146-8

Dekkers, T., Benchmarking is an Essential Control Mechanism for Man-
agement, in: Proceedings of the International Workshop on Software Mea-
surement, September 12–14, 2005, Montréal, Canada, pp. 107–122, Shaker
Verlag, Aachen, 2005, ISBN 3-8322-4405-0

DeMarco, T., Controlling Software Projects, Prentice Hall, Englewood
Cliffs, NJ, 1982, ISBN 0-9170-7232-4

DeMarco, T., Warum ist Software so teuer? ... und andere Rätsel des
Informationszeitalters, Carl Hanser Verlag, München Wien, 1997, ISBN
3-4461-8902-5

DeMarco, T., Why Does Software Cost So Much? And other puzzles of the
information age, Dorset House, New York, NY, 1995, ISBN 0-9326-3334-X

DeMarco, T., Lister, T., Peopleware 2nd Edition, Dorset House, New York,
NY, Feb 1999, ISBN 0-9326-3343-9

Dery, D., Abran, A., Investigation of the Effort Data Consistency in the
ISBSG Repository, in: Proceedings of the International Workshop on Soft-
ware Measurement, September 12–14, 2005, Montréal, Canada, pp. 123–136,
Shaker Verlag, Aachen, 2005, ISBN 3-8322-4405-0

Doyle, J., Standardizing a SLOC Counting Tool to Support ISO and CMM
Requirements, in: IFPUG, IT Measurement – Practical Advice from the
Experts, Addison-Wesley Pearson Education Inc., Indianapolis, 2002, ISBN
0-2017-4158-X, pp. 569–576

 Literature

616

Dreger, J. B., Function Point Analysis, Prentice Hall, Englewood Cliffs,
NJ, 1989

Dueck, G., Ein Indikatorenhoch über Deutschland! Starke Triebwinde, in:
Informatik Spektrum, Band 26, Heft 1, February 2003, S. 39–44

Dumke, R., Softwareentwicklung nach Maß – Schätzen – Messen –
Bewerten, Vieweg, Wiesbaden, 1992

Dumke, R., Abran, A., Software Measurement – Current Trends in Re-
search and Practice, Deutscher Universitäts Verlag, Wiesbaden, 1999, ISBN
3-8244-6876-X

Dumke, R., Bundschuh, M., (Hrsg.), Software-Metriken in der Praxis –
Tagungsband (Proceedings) des DASMA Software Metrik Kongresses
MetriKon 2002, Shaker Verlag, Aachen, 2002, ISBN 3-8322-0470-9

Dumke, R., Foltin, E., Koeppe, R., Winkler, A., Softwarequalität durch
Meßtools, Vieweg, Wiesbaden, 1996

Dumke, R., Zuse, H., (Hrsg.), Theorie und Praxis der Softwaremessung,
Deutscher Universitäts Verlag, Wiesbaden, 1994, ISBN 3-8244-2061-9

Dumke, R., et al., Software Measurement and Estimation in Proceedings of
the 12th International Workshop on Software Measurement, 2002, Shaker
Verlag, Aachen, 2002, ISBN 3-8322-0765-1

Ebert, C., Dumke, R., Software-Metriken in der Praxis, Springer, Berlin,
1996, ISBN 3-5406-0372-7

Ebert, C., Dumke, R., Bundschuh, M., Schmietendorf, A., Best Practices in
Software Measurement – How to Use Metrics to Improve Project and Process
Performance, Springer, 2004

End, W., Gotthardt, H., Winkelmann, R., Softwareentwicklung, 4. Auflage,
Berlin München, 1984

Estol, C., Measurements Necessary to Support an IT Balanced Scorecard:
IT Indicators, in: IFPUG, IT Measurement – Practical Advice from the
Experts, Addison-Wesley Pearson Education Inc., Indianapolis, 2002, ISBN
0-2017-4158-X, pp. 473–489

Fenton, N., Software Metric: A rigorous Approach, Chapmann & Hall,
London, 1991

Fenton, N., Software Quality Assurance and Measurement, International
Thomson Computer Press, Boston, MA, 1997, ISBN 1-8503-2174-4

Fetcke, T., The warehouse software portfolio, a case study in functional size
measurement, Technical report no. 1999-20, Département d’Infor-matique,
Université du Quebec á Montréal, Canada, 1999

Fetcke, T., Abran, A., Nguyen, T., Function Point Analysis for the OO-
Jacobson Method: A Mapping Approach, in: Proceedings of the FESMA Con-
ference 1998, Antwerp, pp. 395–402

Finck, M., Hampp, T., Eine Untersuchung zum Metrikeinsatz in der
Industrie, in: Tagungsband (Proceedings) des DASMA Software Metrik
Kongresses MetriKon 2005, Shaker Verlag, Aachen, 2005, pp. 33–42, ISBN
3-8322-4615-0

 Literature

617

Finnish Software Measurement Association (FiSMA), FiSMA 1.1 Func-
tional Size Measurement Method, Helsinki, Finland, www.fisma.fi, 2008

Foltin, E., Schmietendorf, A., Estimating the Cost of Carrying out Tasks
Relating to Performance Engineering, in: Dumke, R., Abran, A. (Eds.): New
Approaches in Software Measurement, Proceedings of the 10th International
Workshop IWSM 2000, Springer, Berlin Heidelberg New York, 201, pp. 55–
72, ISBN 3-5404-1727-3

Forselius, P., Discipline to Software Development – Learn to Distinguish
Project Management from Other Management Levels, in: Proceedings of the
19th IPMA Global congress, New Delhi, India, November 2005

Forselius, P., Dekkers, C., Karvinen, M., Kosonen, M., Program Manage-
ment Toolkit – for software and systems development, Finnish Information
Processing Association (FIPA), Talentum, Finland, April 2008, ISBN 978-
952-14-1338-4

Frallicciardi, L., Measuring the Usability of E-Commerce Applications, in:
IFPUG, IT Measurement – Practical Advice from the Experts, Addison-Wesley
Pearson Education Inc., Indianapolis, 2002, ISBN 0-2017-4158-X, pp. 677–
687

Galorath, D. G., Effectively Utilizing Software Metrics: Project Metrics, in:
IFPUG, IT Measurement – Practical Advice from the Experts, Addison-
Wesley Pearson Education Inc., Indianapolis, 2002, ISBN 9-780201-741582,
pp. 237–254

Gantner, T., Schneider, K., Zwei Anwendungen von GQM: Ähnlich, aber
doch nicht gleich, in: Software-Messung in der Praxis, Tagungsband (Pro-
ceedings) des DASMA Software Metrik Kongresses MetriKon 2003, 10.–11.
November 2003, Neu-Ulm. Shaker Verlag, Aachen, 2003, S. 19-33, ISBN 3-
8322-2146-8

Garmus, D., Enhanced Estimation: On Time, Within Budget, in: IFPUG, IT
Measurement – Practical Advice from the Experts, Addison-Wesley Pearson
Education Inc., Indianapolis, 2002, ISBN 9-780201-741582, pp. 363–375

Garmus, D., Herron, D., Measuring the Software Process, Yourdon Press,
Prentice Hall, Englewood Cliffs, NJ, 1995, ISBN 0-1334-9002-5

Gencel, C., Demirors, O., Yuceer, E., A Case Study Using Functional Size
Measurement Methods for Real Time Systems, in: Proceedings of the Interna-
tional Workshop on Software Measurement, September 12-14, 2005, Montréal,
Canada, pp. 159–178, Shaker Verlag, Aachen, 2005, ISBN 3-8322-4405-0

Goldensen, D., Jarzombek, J., Rout, T., Measurement and Analysis in Soft-
ware Process Improvement, in: IFPUG, IT Measurement – Practical Advice
from the Experts, Addison-Wesley Pearson Education Inc., Indianapolis,
2002, ISBN 9-780201-741582, pp. 577–604

Goldfarb, S., Introduction to Metrics in Outsourcing, in: IFPUG, IT Meas-
urement – Practical Advice from the Experts, Addison-Wesley Pearson Edu-
cation Inc., Indianapolis, 2002, ISBN 9-780201-741582, pp. 519–535

 Literature

618

Goodman, P., Practical Implementation of Software Metrics, McGraw-Hill,
New York, 1993

Grady, R. B., Practical Software Metrics for Project Management and Proc-
ess Improvement, Prentice Hall, Englewood Cliffs, NJ, 1992, ISBN
0-1372-0384-5

Granja, C., Oller, A., Function Points Analysis Based on Requirement
Specification, a Case Study, in: Proceedings of the 14th International Work-
shop IWSM 2004/Metrikon, Shaker, Aachen, 2004, pp. 473–481 ISBN
3-3822-3383-0

Großjohann, R., Über die Bedeutung des Function-Point-Verfahrens in
rezessiven Zeiten, in: Dumke, R., Zuse, H. (Hrsg.), Theorie und Praxis der
Softwaremessung, S. 20–34, Deutscher Universitäts Verlag, Wiesbaden, 1994,
ISBN 3-8244-2061-9

GUFPI-ISMA, Proposals for Project Collection and Classification from the
Analysis of the ISBSG Benchmark 8, in: Proceedings of the 14th International
Workshop IWSM 2004/Metrikon, Shaker, Aachen, 2004, pp. 547–573 ISBN
3-3822-3383-0

Gupta, R., Gupta, S. K., Object Point Analysis, in: IFPUG 1996 Fall Con-
ference, Dallas, Texas, 1996

Habela, P., Glowacki, E., Serafinskli, T., Subieta, K., Adapting Use Case
Model for COSMIC-FFP Based Measurement, in: Proceedings of the Interna-
tional Workshop on Software Measurement, September 12–14, 2005, Mon-
tréal, Canada, pp. 195–207, Shaker Verlag, Aachen, 2005, ISBN 3-8322-4405-0

Hamann, D., Beitz, A., Müller, M., Solingen, R. van, Using FAME Assess-
ments to Define Measurement Goals in: Reiner Dumke, Alain Abran (Eds.):
New Approaches in Software Measurement, Proceedings of the 10th Inter-
national Workshop, IWSM 2000, Berlin, Germany, October 2000, Springer,
Berlin Heidelberg New York, 2001, pp. 220–232, ISBN 3-5404-1727-3

Hall, T., Baddoo, N., Wilson, D., Measurement in Software Process Im-
provement Programmes: An Empirical Study, in: R. Dumke, A. Abran (Eds.):
New Approaches in Software Measurement, Proceedings of the 10th Inter-
national Workshop, IWSM 2000, Berlin, Germany, October 2000, Springer,
Berlin Heidelberg New York, 2001, pp.73–82, ISBN 3-5404-1727-3

Halstead, M. H., Elements of Software Science, Elsevier North-Holland,
New York, NY, 1977

Heemstra, F. J., Software cost estimation, in: Information Software Techno-
logy, 1992, 34(10): pp. 627–639

Henderson-Sellers, B., Object-Oriented Metrics – Measures of Complexity,
Prentice Hall, Englewood Cliffs, NJ, 1996, ISBN 0-1323-9872-9

Herrmann, O., Kalkulation von Softwareentwicklungen, München Wien,
1983

Hindel, B., Qualität ist meßbar: Software-Metriken, in: Design & Elektronik,
Nr. 24 vom 26.11.1996, S. 50–55

 Literature

619

Höglund, M., Project Metrics Using Effort Metrics For Tracking, in: IT
Measurement – Practical Advice from the Experts, Addison-Wesley Pearson
Education Inc., Indianapolis, 2002, ISBN 9-780201-741582, pp. 255–269

Hongxing, L., What Can Function Point Analysis Do to Support CMM?, in:
IFPUG, IT Measurement – Practical Advice from the Experts, Addison-
Wesley Pearson Education Inc., Indianapolis, 2002, ISBN 9-780201-741582,
pp. 605–611

Hürten, R., Function-Point Analysis – Theorie und Praxis, Expert, Renningen-
Malmsheim, 1999, ISBN 3-8169-1676-7

Hufschmidt, B., Software Balanced Scorecards: The Icing on the Cake, in:
IFPUG, IT Measurement – Practical Advice from the Experts, Addison-
Wesley Pearson Education Inc., Indianapolis, 2002, ISBN 9-780201-741582,
pp. 493–502

Humphrey, W. S., Managing the Software Process, Addison-Wesley,
Reading, MA, 1989

IEEE Computer Society: Software and Systems Vocabulary (SE VOCAB),
http://www.computer.org/sevocab ,2008

IFPUG, Website Certification Page: www.ifpug.org/certification/software.
htm, 2008.

NJ, January 2004, ISBN 0-963-1742-9-0
IFPUG, Counting Practices Manual, Release 4.1, IFPUG, Princeton Junc-

tion, NJ, January 1999, ISBN 0-963-1742-9-0
IFPUG, IT Measurement – Practical Advice from the Experts, Addison-

ISBSG, Practical Project Estimation 2nd Edition, ISBSG, Warrandyte, Vic-
toria, 2005, ISBN 0-9577-2011-4

Iorio, T., IFPUG Function Point analysis in a UML framework, in: Pro-
ceedings of the Software Measurement European Forum 2004 (SMEF2004),
Rome, Istituto di Ricerca Internationale S.r.l., Milano, 28.–30.1.2004, S. 356-
368, ISBN 8-8866-7433-3

ISBSG, Software Project Estimation – A Workbook for Macro-Estimation
of Software Development Effort and Duration, ISBSG, Melbourne, Victoria,
1999, ISBN 0-9577-2010-6

ISBSG, The Benchmark, Release 5, ISBSG, Warrandyte, Victoria, 1998
ISBSG, The Benchmark, Release 6, ISBSG, Warrandyte, Victoria, 2000,

ISBN 0-9577-2016-5
ISBSG, The Benchmark, Release 8, ISBSG, Warrandyte, Victoria, 2004,

ISBN 0-9577-2018-1
ISBSG, The Benchmark, Release 10, ISBSG, Warrandyte, Victoria, March

2008, ISBN 0-9577201-3-0
ISBSG, Application Development and Enhancement Data Repository Release

10, Warrandyte, Victoria, Feb. 2007, www.isbg.org

 Literature

IFPUG, Counting Practices Manual, Release 4.2, IFPUG, Princeton Junction,

Wesley Pearson Education Inc., Indianapolis, 2002, ISBN 9-780201-741582

620

ISBSG, Report on Release 10 Repository Demographics January 2007: CD
R10, ISBSG, Warrandyte, Victoria, www.isbsg.org

ISBSG, The Software Metrics Compendium, ISBSG, Warrandyte, Victoria,
2002, ISBN 0-9577-2012-2

ISBSG, Special Analysis Report: Planning projects – project phase ratios,
March 2007, Warrandyte, Victoria, www.isbsg.org

Iorino, T., IFPUG Function Point Analysis in a UML Framework, in: Pro-
ceedings of the Software Measurement European Forum 2004 (SMEF2004),
Rome, Istituto di Ricerca Internationale S.r.l., Milano, 28.–30.1.2004, S. 150–
159, ISBN 8-8866-7433-3

ISO/IEC, ISO/IEC 14143-6: Guide for the use of ISO/IEC 14143 series and
related international standards, 2006, ISO Geneva, Switzerland

Jantzen, K., Kosten- und Aufwandsschätzung von Softwareprojekten –
Projektschätzung mit Tassc:Estimator, in: Informatik Spektrum, Band 26, Heft
1, Februar 2003, S. 47–52

Jeffery, R., Software Models, Metrics, and Improvement, in: Proceedings of
the 8th ESCOM Conference, Berlin, 1997, pp. 6–11

Jones, C., Applied Software Measurement, McGraw-Hill, New York, 1996,
ISBN 0-0703-2826-9

Jones, C., Assessment and Control of Software Risks, Prentice Hall,
Englewood Cliffs, NJ, 1994, ISBN 0-1374-1406-4

Jones, C., Estimating and Measuring Object-Oriented Software, Technical
Report, Software Productivity Research Inc., Burlington, MA

Jones, C., Estimating Software Costs: Bringing Realism to Estimating, 2nd
Edition, McGraw-Hill, New York, 2007, ISBN-13: 979-0-07-148300-1

Jones, C., Geriatric Issues of Aging Software, March 17, 2007
Jones, C., How Software Estimation Tools work, Technical Report, Soft-

ware Productivity Research Inc., Burlington, MA, April 6, 2002
Jones, C., Patterns of Software Systems Failure and Success, International

Thomson Computer Press, Boston, MA, 1995, ISBN 1-8503-2804-8
Jones, C., Programming Productivity, McGraw-Hill, New York, 1986,

ISBN 0-0700-32811-0
Jones, C., Software Quality, International Thomson Computer Press, Boston,

MA, 1997, ISBN 1-8503-2867-6
Jones, C., The Expanding Roles of Function Point Metrics in: IFPUG, IT

Measurement – Practical Advice from the Experts, Addison-Wesley Pearson
Education Inc., Indianapolis, 2002, ISBN 9-780201-741582, pp. 3–30

Jones, J., Metrics in E-Commerce: Function Point Analysis and Com-
ponent-Based Software Measurement, in: IFPUG, IT Measurement – Practical
Advice from the Experts, Addison-Wesley Pearson Education Inc., Indiana-
polis, 2002, ISBN 9-780201-741582, pp. 689–714

Kan, S. H., Metrics and Models in Software Quality Engineering, Addison
Wesley, Reading, MA, 1995, ISBN 0-2016-3339-6

 Literature

621

Kaner, C., Bach, J., Nguyen, H. Q., Falk, J., Testing Computer Software,
3rd Edition, Volume 3 (Manager’s Volume), in preparation, 2002. (A similar
series of questions was proposed in the talk “Measurement of the Extent of
Testing”, Proceedings of the Pacific Northwest Software Quality Conference,
Portland, Oregon, October 17, 2000.)

Karner, G., Metrics for Objectory. Diploma Thesis, University of Linköping,
Sweden, No. LiTHIDA-Ex-9344:21, 1993

Kearns, D. T., as quoted by Beth Enslow, American Programmer, (now
Cutter IT Journal), 1992

Kemerer, C. F., Reliability of Function Point Measurement: A Field Experi-
ment, in Communications of the ACM (CACM), 36(2), 1993, S. 85–87

Kindler, A., von Schneyder, W., Aufwandschätzung von Projekten –
zwischen Fehlanzeige und Perfektion, in: Software-Messung in der Praxis,
Tagungsband (Proceedings) des DASMA Software Metrik Kongresses
MetriKon 2003, 10.–11. November 2003, Neu-Ulm. Shaker Verlag, Aachen,
2003, S. 107–119, ISBN 3-8322-2146-8

Kitchenham, B., Software Metrics, Blackwell Publication, Cambridge, MA,
1996

Kitchenham, B., The certainty of uncertainty, in: Proceedings of the European
Software Measurement Conference (FESMA) 1998, S. 17 ff., Technologisch
Instituut, Antwerp, Belgium, ISBN 9-0760-1903-7

Koch, S., Verwendung der Data Envelopment Analysis im Kontext von
ERP Implementierungsprojekten: Vergleich und Aufwandschätzung, in:
Tagungsband (Proceedings) des DASMA Software Metrik Kongresses
MetriKon 2005, Shaker Verlag, Aachen, 2005, pp. 19–32, ISBN 3-8322-4615-0

Landmesser, J. A., Enhanced Estimation, in: IFPUG, IT Measurement –
Practical Advice from the Experts, Addison-Wesley Pearson Education Inc.,
Indianapolis, 2002, ISBN 9-780201-741582, p. 379

Lederer, A. L., Prasad, J., Information systems software cost estimating:
A current assessment, in: Journal of Information Technology, 1993,(8): pp.
22–33

Löper, S., Zehle, M., ESMIT-Evaluation of Software Metrics in the Design
Phase and their Implication on Case Tools, Master Thesis, Blenkinge Institute
of Technology, Sweden, 2003

Lorenz, M., Object Oriented Software Development – Practical Guide,
Prentice Hall, Englewood Cliffs, NJ, 1993

Low, G. C., Jefferey, J. R., Function Points in the Estimation and Evaluation
of the Software Process, in: IEEE Transactions on Software Engineering,
1990, 16(1): pp. 64–71

Lubashevsky, A., An Early Estimation of Software Reliability Based on
the Size Estimation and the Software Process Assessment of Large Telecom
Systems, in: IFPUG, IT Measurement – Practical Advice from the Experts,
Addison-Wesley Pearson Education Inc., Indianapolis, 2002, ISBN 9-780201-
741582, pp. 171–182

 Literature

622

Magiera, E., Comparison of Function Point Analysis and COSMIC-FFP for
Web-Applications, in: Proceedings of the Software Measurement European
Forum 2004 (SMEF2004), Rome, Istituto di Ricerca Internationale S.r.l.,
Milano, 28.–30.1.2004, S. 369–376, ISBN 8-8866-7433-3

Mah, M., IT Organization, Benchmark Thyself, in: IFPUG, IT Measure-
ment – Practical Advice from the Experts, Addison-Wesley Pearson Education
Inc., Indianapolis, 2002, ISBN 9-780201-741582, pp. 31–51

Marthaler, V., Keim, S., Establishing Central Support for Software Sizing
Activities in a Large Organization, in: IFPUG, IT Measurement – Practical
Advice from the Experts, Addison-Wesley Pearson Education Inc., Indianapo-
lis, 2002, ISBN 9-780201-741582, pp. 183–196

Maxwell, K. D., Software Development Productivity, in: Advances in Com-
puters, Vol. 58, Elsevier Science, ISBN 0-1201-2158-1

Maxwell, K. D., Applied Statistics for Software Managers, Prentice Hall,
Upper Saddle River, NJ, 2002

McCabe, T. J., A Complexity Measure, IEEE Transactions on Software
Engineering Vol. SE-1, No. 3 (1976), S. 312–327 ff.

McConnell, S., After the Gold Rush, 2004 Software and Systems Techno-
logy Conference, Salt Lake City, UT, 19.-22. April 2004

McKinlay, M., The Top Ten (Or So) Reasons For Not Implementing EVM,
IPMA/ICEC European Conference April 2006, Ljubliana, Slovenia

Melton, A., (Editor), Software Measurement, Thomson Computer Press,
Boston, MA, 1996, ISBN 1-8503-2178-7

Meli, R., Early and Quick Function Point Analysis from Summary User Re-
quirements to Project Management, in: IFPUG, IT Measurement – Practical
Advice from the Experts, Addison-Wesley Pearson Education Inc., Indianapolis,
2002, ISBN 9-780201-741582, pp. 417–441

Meli, R., Santillo, L., Function Point Estimation Methods: A Comparative
Overview, in: Proceedings of the FESMA Conference 1999, Amsterdam,
ISBN 90-76019-07-X, pp. 271–286

Morris, P., Function Points as Part of a Measurement Program, in: IFPUG,
IT Measurement – Practical Advice from the Experts, Addison-Wesley Pear-
son Education Inc., Indianapolis, 2002, ISBN 9-780201-741582, pp. 197–220

Moses, J., Farrow, M., A Consideration of the Variation in Development
Effort Consistency Due to Function Points, in: Proceedings of the Software
Measurement European Forum 2004 (SMEF2004), Rome, Istituto di Ricerca
Internationale S.r.l., Milano, 28.–30.1.2004, S. 247–256, ISBN 8-8866-7433-3

Muller, M., Abran, A., (Editors), Metrics in Software Evolution, R.
Oldenbourg, München, 1995, ISBN 3-4862-3589-3

Myerson, B., Email posting on now-defunct CRI List-serv about Unified
Modeling Language and IFPUG Function Point, June 16, 1999. Quantimetrics,
South Africa.

Nagano, S., Ajisaka, T., Improvement of analysis model by removing im-
proper parts based on functional size measurement, in: Proceedings of the 15th

 Literature

623

International Workshop on Software Measurement, Innovations in Software
Measurement, September 12-14, 2005, Montréal, Canada, pp.241–254, Shaker
Verlag, Aachen, 2005, ISBN 3-8322-4405-0

Natale, D., et al., GUFPI-ISMA, Proposals for Project Collection and Clas-
sification from the Analysis of the ISBSG Benchmark 8, in: Proceedings of
the 14th International Workshop IWSM 2004/Metrikon, Shaker, Aachen, 2004,
pp. 547–573 ISBN 3-3822-3383-0

NASA: NASA Cost Estimating Handbook, April 2002, http://eclipse99.
ksc.nasa.gov/shuttle/nexgen/Nexgen_Downloads/NASA_CEH_Final_Product
ion_Copy_April_2002.pdf, 183 pages.

Nelson, M. M., Clark, J., Spurlock, M. A., Curing the Software Require-
ments and Cost Estimating Blues: The Answer is Easier than you Think, PM,
November–December 1999, pp. 54–60.

NESMA, Function Point Analysis for Software Enhancement, Guidelines
Version 1.0, 2002, http://www.nesma.org

Nevalainen, R., Peeters, B., Poels, G. van Huysduynen, M.H., Proceedings
of the 1999 FESMA Conference, Amsterdam, 4.–8.10.1999

Nishiyama, S., On More Effective Uses of Function Point Analysis, in: Pro-
ceedings of the FESMA Conference 1998, Antwerp, Belgium, pp. 525–532

Noth, T., Kretzschmar, M., Aufwandschätzung von DV-Projekten, Springer,
Berlin Heidelberg New York,1984, ISBN 3-5401-2904-9

Pace, D., Calavaro, G., Cantone, G., Function Point and UML: State of the
Art and Evaluation Model, in: Proceedings of the Software Measurement
European Forum 2004 (SMEF2004), Rome, Istituto di Ricerca Internationale
S.r.l., Milano, 28.–30.1.2004, S. 138–149, ISBN 8-8866-7433-3

Pastor, O., Abrahao, S. M., Molina, J. C., Torres, I., A FPA-like Measure
for Object-Oriented Systems from Conceptual Models, in: Reiner Dumke and
Alain Abran (Eds.): Current Trends in Software Measurement, Proceedings of
the IWSM 2001, Shaker Verlag, Aachen, 2001

PMI – Project Management Institute, A Guide to the Project Management
Body of Knowledge, 3rd Edition. (PMBOK Guides), PMI, Newton Square,
PA, USA, 2004

Punter, T., Software Messen und Bewerten mit GQM Light, in: Software-
Messung in der Praxis, Tagungsband (Proceedings) des DASMA Software
Metrik Kongresses MetriKon 2003, 10.–11. November 2003, Neu-Ulm. Shaker
Verlag, Aachen, 2003, S. 35–44, ISBN 3-8322-2146-8

Putnam, L. H., Myers, W., Measures for Excellence – Reliable Software On
Time, Within Budget, Yourdon Press – Prentice Hall, Englewood Cliffs, NJ,
1992, ISBN 0-1356-7694-0

Putnam, L. H., Myers, W., The Core of Software Planning, in: IFPUG, IT
Measurement – Practical Advice from the Experts, Addison-Wesley Pearson
Education Inc., Indianapolis, 2002, ISBN 9-780201-741582, pp. 53–65

Reifer, D. J., Web Development: Estimating Quick-to-Market Software, in:
IEEE Software, November/December 2000, pp. 54–67

 Literature

624

Rösler, P., Warum prüfen oft 50 mal länger dauert als Lesen und andere
Überraschungen aus der Welt der Software-Reviews, in: Tagungsband
(Proceedings) des DASMA Software Metrik Kongresses MetriKon 2005,
Shaker Verlag, Aachen, 2005, pp. 251–261, ISBN 3-8322-4615-0

Rosner, P., Hall, T., Mayer, T., Measuring object-orientedness: The invocation
profile, in Dumke, R., Abran, A. (Eds.): New Approaches in Software Meas-
urement, Proceedings of the 10th International Workshop IWSM 2000,
pp. 18–28, Springer, Berlin Heidelberg New York, ISBN 3-5404-1727-3

Rubin, H., Software Benchmark Studies For 1995, Howard Rubin Associ-
ates, Pound Ridge, NY, 1995

Rubin, H., Work Output Measurement: IT Work Units, in: IFPUG, IT
Measurement – Practical Advice from the Experts, Addison-Wesley Pearson
Education Inc., Indianapolis, 2002, ISBN 9-780201-741582, pp. 67–82

Ruede, P., Theorie und Praxis der Function-Point-Methode, BIFOA
Fachseminar “Schätzung der Software-Kosten und Verbesserung der Produkti-
vität der Softwareentwicklung”, BIFOA, Köln 1985

Ruhe, M., The Accuracy and Early Effort Estimation of Web Applications,
Diplomarbeit (Thesis), Universität Kaiserslautern, Fachbereich Informatik,
August 2002

Rule, G., “Small project’, ‘medium-size project’ and ‘large project’: what
do these terms mean? PowerPoint presentation. Software Measurement Ser-
vices Ltd. (SMS), copyright 2004-2005, 124 High Street, Edenbridge, Kent,
United Kingdom, TN8 5AY.

Russac, J., Cheaper, Better, Faster: A Measurement Program That Works,
in: IFPUG, IT Measurement – Practical Advice from the Experts, Addison-
Wesley Pearson Education Inc., Indianapolis, 2002, ISBN 9-780201-741582,
pp. 147–158

Salvador, R. J., Litigation, The Product of Not Practicing Function Point
Metrics, in: IFPUG, IT Measurement – Practical Advice from the Experts,
Addison-Wesley Pearson Education Inc., Indianapolis, 2002, ISBN 9-780201-
741582, pp. 537–551

Santillo, L., ESE: Enhanced Software Estimation, in: IFPUG, IT Mea-
surement – Practical Advice from the Experts, Addison-Wesley Pearson Edu-
cation Inc., Indianapolis, 2002, ISBN 9-780201-741582, pp. 391–406

Santillo, L., Functional details visualization and classification in the
COSMIC FSM framework, in: Proceedings of the 15th International Work-
shop on Software Measurement, Innovations in Software Measurement,
September 12-14, 2005, Montréal, Canada, pp. 255–266, Shaker Verlag,
Aachen, 2005, ISBN 3-8322-4405-0

Santillo, L., Size & Estimation of Data Warehouse Systems, in: Proceedings
of the FESMA Conference 2001, Heidelberg, pp. 315–326

Schmietendorf, A., Dumke, R., Kostenverteilung im IT-Life Cycle, in:
Software-Messung in der Praxis, Tagungsband (Proceedings) des DASMA

 Literature

625

Software Metrik Kongresses MetriKon 2003, 10.–11. November 2003, Neu-
Ulm. Shaker Verlag, Aachen, 2003, S. 121–134, ISBN 3-8322-2146-8

Schneider, G., Winters, J., Applying Use Cases – A Practical Guide,
Addison-Wesley Longman, Inc. 1998

Sengupta, K., The Experience Trap, Harvard Business Review, February
2008, hbr.org, pp. 94–101

Shackelton, S. K., Keeping a Well-Balanced Scorecard, in: IFPUG, IT
Measurement – Practical Advice from the Experts, Addison-Wesley Pearson
Education Inc., Indianapolis, 2002, ISBN 9-780201-741582, pp. 503–516

Shepperd, M., Mair, C., Forselius, P., An Empirical Analysis of Software
Productivity, in: Proceedings of the Software Measurement European Forum
(SMEF) 2006, Rome, Italy

Simon, D., Simon, F., Das wundersame Verhalten von Entwicklern beim
Einsatz von Quellcode-Metriken, in: Tagungsband (Proceedings) in DASMA
Software Metrik Kongress: MetriKon 2005, Shaker Verlag, Aachen, 2005, pp.
263 –272, ISBN 3-8322-4615-0

Sirma, E., Ist-Analyse des Benchmarking im IT-Ressort eines Versi-
cherungsunternehmens, Diplomarbeit (Thesis), Fachhochschule Köln, Fach-
bereich Informatik, Campus Gummersbach, Juli 2003, DASMA student thesis
award November 2003, http://www.dasma.org

Sneed, H. M., Aufwandschätzung für Web-basierte Informationssysteme
und die Struktur der Softwareindustrie, in: Wirtschaftsinformatik, Nr. 3, 2002,
S. 202–205

Sneed, H. M., Schätzung der Entwicklungskosten von objektorientierter
Software, in: Informatik Spektrum 19, S. 133–140, Springer, 1996

Sneed, H. M., Software-Qualitätssicherung für kommerzielle Anwen-
dungssysteme, R. Müller, 1983

Software Engineering Institute (SEI), The Capability Maturity Model Inte-
gration (CMMI®) for development version 1.2, Carnegie Mellon University,
Pittsburgh, PA, www.sei.cmu.edu/cmmi, August 2006

Software Productivity Consortium, The Software Measurement Guidebook,
Thomson Computer Press, Boston, MA, 1996, ISBN 1-8503-2195-7

Standish Group, The CHAOS Report, 25.3.2003,http://www.standishgroup
.com

Stutzke, R., Estimating Software-Intensive Systems: Project, Products, and
Processes, Addison-Wesley, copyright 2005 by Pearson Education, Inc. Upper
Saddle River, NJ, ISBN 0-201-70312-2

Symons, C. R., Software Sizing and Estimating, Mark II Function Point
Analysis, Wiley, Chichester, 1991, ISBN 0-4719-2985-9

Thaller, G. E., Software Metriken, Heinz Heise, Hannover, 1994, ISBN
3-8822-9038-2

Theden, P., Kennzahlen für Qualitätstechniken, 11.6.2003, http://www.
symposion.de/qw/qw_09.htm

 Literature

626

Tran-Cao, D. Lèvesque, G., Meinier, J.G., A Field Study of Software Func-
tional Complexity Measurement, in: Proceedings of the 14th International
Workshop IWSM/MetriKon 2004, Shaker, Aachen, 2004, pp. 175–193, ISBN
3-3822-3383-0

Uemura, T., Kusumoto, S., Inoue, K., Function Point Measurement Tool for
UML Design Specification, in: Proceedings of the METRICS ’99, Florida,
USA, 1999, pp. 62–69

UKSMA, Measuring Software Maintenance and Support, Version 0.5,
Draft, July 1st, 2001, http://www.uksma.co.uk

UKSMA, MK II Function Point Analysis Counting Practices Manual, Ver-
sion 1.3.1, http://www.uksma.co.uk, 1998

UKSMA and ISBSG, Quality Standards: Defect Measurement Manual,
V1.a, http://www.uksma.co.uk/public/defstan1a.pdf, October 2000

UQAM, Full Function Points Measurement Manual, Version 2.0, http://
saturne.info.uqam.ca/recherche/index.html, 1999

van Solingen, R., Berghout, E., The Goal Question Metric Method, McGraw
Hill, New York, 2000

Vergilio, S. R., Chaves, L. B., Object Oriented Software Metrics and the
Testing Activity: Some Empirical Results, in: Proceedings of the FESMA
Conference 2000, Madrid

Vogelezang, F., Dekkers, T., One year experience with COSMIC-FFP, in:
Proceedings of the Software Measurement European Forum 2004 (SMEF2004),
Rome, Istituto di Ricerca Internationale S.r.l., Milano, 28.–30.1.2004, S. 346–
355, ISBN 8-8866-7433-3

Vogelezang, F., Lesterhuis, A., Applicability of COSMIC-FFP in admini-s-
trative environment Experiences of an early adopter, Sogeti Netherlands B.V.,
2003

Vollmann, S., Aufwandschätzung im Software Engineering, IWT, Vaters-
tetten bei München, 1990, ISBN 3-8832-2277-1

Weinberg, Dr. G., Quality Software Management, Dorset House, New
York, NY, 1992, ISBN 0-9326-3322-6

Weller, E. F., Applying Statistical Process Control to Software, in: IFPUG,
IT Measurement – Practical Advice from the Experts, Addison-Wesley Pear-
son Education Inc., Indianapolis, 2002, ISBN 9-780201-741582, pp. 629–651

Whitmire, S. A., Applying Function Points to Object-Oriented Software
Models, in: Keynes, J., (Ed.): Software Engineering Productivity Handbook,
McGraw-Hill, New York, 1992, pp. 229–244

Wittmann, W., Unternehmung und unvollkommene Information, Köln,
Opladen, 1959

Wolle, B., Analyse von ABAP- und JAVA-Anwendungen im Hinblick
auf die Software-Wartung, in: Software-Messung in der Praxis, Tagungsband
(Proceedings) des DASMA Software Metrik Kongresses MetriKon 2003, 10.–
11. November 2003, Neu-Ulm. Shaker Verlag, Aachen, 2003, S. 45–54, ISBN
3-8322-2146-8

 Literature

627

Wolverton, R. W., The Cost of Developing Large-Scale Software, IEEE
Transactions on Computers Vol. C-23, No. 6, June 1974, pp. 615–636

Woodward, S. M., Using Project Metrics to More Efficiently Manage
Projects, in: IFPUG, IT Measurement – Practical Advice from the Experts,
Addison-Wesley Pearson Education Inc., Indianapolis, 2002, ISBN 9-780201-
741582, pp. 271–292

Xenos, M., Stavrinoudis, D., Zikouli, K., Christodoulakis, D., Object-Oriented
Metrics – A Survey, in: Proceedings of the FESMA Conference 2000, Madrid,
Spain.

Zuse, H., Software Complexity – Measures and Methods, DeGruyter, Berlin,
New York, 1991

Zuse, H., A Framework for Software Measurement, DeGruyter, Berlin,
New York, 1997, ISBN 3-1101-5587-7

Zuse, H., Resolving the Mysteries of the Halstead Measures, in: MetriKon
2005 Praxis der Softwaremessung, pp.107 – 122, Shaker Verlag, Aachen
2005, ISBN 3-8322-4615-0

 Literature

90% finished syndrome, 202, 231

A

acceptance, 5, 85, 96, 98, 101, 102,
105, 106
the king’s road to, 85, 98, 103,

192
adaptive maintenance, 161
algorithms, 123
Analogy Method, 138, 139
application

base, 72
boundary, 70, 71, 80, 456
boundary diagram, 410
enhancement, 340

Function Point count, 352
portfolio, 89
registry, 61
specification, 67
structuring, 66

architecture diagram, 71, 80, 416
architecture diagram example, 421

210
average FP component

complexity, 417

B

backfiring, 110, 133, 134, 135,
136, 215, 295

bad fixes, 220
Balanced Scorecard, 198, 266,

267, 268

implementation, 268
model, 267

baseline, 61, 62, 88, 89, 455
bathtub curve, 169, 418
benchmarking, 79, 138, 268, 280,

289, 296, 329, 336
acceptance, 292
benefits, 293
data quality, 294, 295, 296
database survey, 297
experiences, 293, 294, 295, 296
experiment, 146
external, 291, 296
implementation, 291
internal, 291, 296
management support, 292, 293
peer group, 296
process, 290, 292
providers, 296
surveys, 292, 294, 296, 303
time accounting, 69

benchmarking organizations, 317
links, 318

C

CAME tools, 550
case study

comparison, 531
case study COSMIC, 533, 534,

535, 536, 538, 539
boundary, 536, 537
data groups, 537
data groups, 499
data movements, 539, 540
functional processes, 501

Index

APQC, 291, 318

Assembler equivalent, 133, 134,

enhancement count, 352

Index630

layers, 536
result, 502
triggers, 498
use case diagram, 493
use cases, 484
user requirements, 533, 534
user requirements, 483, 484

case study FiSMA
KISS quick, 511, 512
KISS quick results, 512
measurement process, 510, 511
results, 514
user requirements, 510, 511,

512
case study IFPUG, 541, 542, 543,

544
data functions, 516, 517
measurement process, 516
requirements, 542
result, 522, 531
transactional functions, 519,

520
use cases, 519, 520
user requirements, 519

case study Mark II
result, 524

case study NESMA
transactional functions, 528
use cases, 528

CER, 232
change metrics, 201
CHAOS Report, 233, 327
checklist, 35

estimation, 38
estimation assessment, 596
Experience Situation Analysis

Model MT22, 599
FP count assessment, 591
FP count kickoff, 590
Function Point count, 354
Function Point count

assessment, 355, 356
project post mortem, 591, 594

Chidamber and Kemerer, 244, 247
class metrics, 242, 243, 244, 248,

250
CMMI®, 14, 57, 58, 186, 261,

262, 263, 264
homepage, 261
level 2, 13, 187, 217, 227, 263,

278
level 3, 27, 227, 263
level 4, 263
level 5, 263
levels, 262
manual, 261

CMMI®-DEV, 263
CoBRA method, 446, 447
COCOMO II, 67, 119, 144, 145,

215, 233, 447
Application Composition

Model, 145
cost drivers, 447
Early Design Model, 145, 448
embedded mode, 144
organic mode, 144
Post Architecture Model, 145
semidetached mode, 144
tool, 145
variants, 145

COCOMO-M, 167
code size adjustment factor, 135,

136
communication, 85, 96, 104
Compass benchmarking database,

35
Compass method, 296
Compass metrics, 198
competence center, 7, 8, 89, 93,

95, 96, 98, 99, 105, 190, 296,
339
benefits, 96

Computer Measurement Group
(CMG), 269

consultants, 101
continual improvement, 56

631

contract metrics, 329, 330, 331
arbitration, 331
examples, 331

conversion - see migration, 72
core metrics, 193, 197, 199
corrective maintenance, 161
COSMIC, 130, 269, 271, 412

CFP, 371
counting process, 369, 370
CPM, 269
data movements, 370, 371, 372
elementary process, 371
goals, 369
IFPUG FPM comparison, 375,

376
Implementation Guide, 270, 369
layers, 371, 372, 373, 374
layers examples, 372, 373
measurement model, 370
MPM, 270, 367, 368
team, 368
UML, 253
website, 368

COSMIC Function Points, 167,
269, 270

COSMIC Method, 13, 38, 121,
270, 271, 333, 368, 369
advantages, 369, 374

cost
challenges, 233
correcting factor, 234
data, 232, 233
excess, 233
overrun, 233, 234
per Function Point, 233, 234

cost estimating, 232
cost metrics, 232
COTS software, 72, 73, 74
counterarguments, 98
customizing, 72, 73
cybernetic control circuit, 47, 53,

199
cyclomatic complexity, 167

D

DACS, 297, 550
dashboard metrics, 292
DASMA, 25, 273
data collection, 89, 90, 92
data complexity, 222, 223
data conversions, 109
Data Point Method, 121
data quality, 418
Data Warehouse System (DWS),

433, 434
defect metrics, 217, 219, 220

benefits, 217
examples, 217
ISBSG, 220

defect potential, 218
defect rates, 217, 219, 220

examples, 218
rule of thumb, 218

defect removal, 219, 220
defect severity levels, 219
Definitions

actor, 323
adaptive maintenance, 161
aggregation/consolidation, 437
application, 340, 341
application boundary, 456
backfiring, 133
benchmarking, 290, 291
corrective maintenance, 161
COSMIC BFC, 370
COSMIC data movements, 369,

370
COSMIC layers, 373
COTS software, 72
counting scope, 456
customizing, 72
defect potential, 218
DET, 345
DI, 350
Dimensions, 437
drill down, 437

Index

Index632

duration, 315
efficiency, 231
effort, 226
EI, 347, 461
EIF, 345, 458, 460
enhancement, 159, 455
EO, 347, 461
EQ, 347, 462
estimation process, 124
expansion rate, 133
expert estimation, 11
FiSMA BFC, 377, 378
FSM, 365
FSM Method (FSMM), 366
FTR, 349
functional size, 121, 323, 365
functional size measurement

(FSM), 365
functional user requirements

(FUR), 121, 323, 365
GSC’s, 350
Hierachy, 437
Hierarchy Dimensions, 437
ILF, 345
indicators, 181, 183
language level, 133
maintain, 458
maintenance, 159, 161, 164
measures, 180, 181, 182
metrics, 181, 182, 183, 186
new development, 455
OLAP, 437
PDR, 313
perfective maintenance, 161
process metrics, 225
product metrics, 208
productivity, 226
RET, 345, 346
rework, 228
rol up, 437
rule of thumb, 419
size, 208
Star Scheme, 435
system boundary, 342

system complexity, 222
TDI, 350
time accounting, 68
user, 323
VAF, 350
VAFA, 352
value, 181, 182

degree of completion, 202
Delphi Method, 137
Desharnais study, 376
development costs, 330
devils square, 49, 50, 56, 222
direct metrics, 207
documentation, 27, 87, 99, 222

effort for, 222
documentation metrics, 222
DoD, 261, 262
DoD ARF dataset, 297
DWS

FP count, 434
ISBSG FP component

proportions, 434
OLAP Design, 437
Star Scheme, 435
system boundary, 434

E

early estimation, 87
early Function Points, 409, 411

benefits, 416, 417
formulae, 411

early warning
indicators, 183
signs, 150
system, 29, 110

Earned Value Method, 110, 201,
202

efficiency, 198, 231, 314
PDR, 232

effort, 77, 226
distribution, 77, 79, 118
maintenance, 418
VW formula, 418

elementary process, 347

Index 633

end-user efficiency, 100
end-user engagement, 327
enhancement, 159, 161, 164, 166,

168
effort, 163
NESMA standard, 163
supermarket analogy, 159
tasks, 165

enhancement project, 71, 72, 73,
109, 160, 166, 170, 340, 342,
343, 392
examples, 352
FP’s, 351, 352

ERP systems, 72, 73, 74, 443
ESA database, 67
ESA/INSEAD database, 297, 298
ESMIT survey, 198
estimation, 1, 9, 13, 14, 15, 22, 24,

26, 45, 71
acceptable, 58
acknowledgement, 124, 125
add on’s, 62, 75
awareness, 89
bargaining, 32, 547
best case, 76, 137
challenges, 1, 90
checklist, 61, 62, 74
concepts, 8
conference, 36, 60, 66, 75
consciousness, 16
controllable, 30
controlling, 45, 46
cost drivers, 447
culture, 8, 32, 36, 37, 43, 88,

547
cybernetic control circuit, 53
documentation, 30, 47, 74, 75,

80, 138
early, 1, 31, 59, 120, 212, 310,

409, 410, 412, 417
effort for, 93, 99
equations, 126, 127, 128
errors, 31

experience, 60, 74, 76, 80, 89,
95, 96, 138

experience curve, 126, 127, 128
expert system, 129, 131, 132
factors, 14
goals, 56, 58, 85, 105, 107
heuristic methods, 137
honesty, 36, 37, 547
implementation, 57, 85, 87, 89,

98, 105, 106
Internet Links, 39
introducing, 56
logbook, 80
manual, 87, 109
methods, 118, 137
methods survey, 119
milestones, 59, 60, 61
minimum size, 366
most important themes, 8
motivation, 37
object, 13, 14, 19, 20, 21, 36,

66, 117
of costs, 118
of effort, 13, 15, 16, 117, 119,

120, 126, 128, 129, 130, 137,
138, 139

of packages, 72, 73
paradox, 5
parameters, 47, 48, 49, 56, 57,

76, 80, 566
planning, 31, 47
political, 32
pragmatic rules, 16
precision, 16, 18, 19, 23, 150,

151, 153, 358, 447
precision study, 152, 153, 154
preparation, 65, 66, 76
prerequisites, 31
process, 15, 30, 39, 76, 77, 117,

118
quality, 31, 50
repeated, 22, 29, 59, 61
right time for, 58

Index634

risk add on’s, 62, 76
risk-oriented, 58
risks, 11, 31
rules, 29
rules of thumb, 412
scenarios, 80
strategic, 47, 56
tool support, 59, 60, 73, 75, 76,

80, 547, 548
tracking, 23, 29, 31, 60, 61
training, 38
trimmed, 32
uncertainty, 11, 31, 548
validation, 76
worst case, 76, 137

estimation conference, 449
estimation coordinator, 96, 98
estimation methods

acceptance, 148
evaluation, 147, 149, 150, 151

estimation process
example, 124

estimation tools, 6, 7, 8, 26, 88, 89,
119, 123, 124, 131, 547
acceptance, 549, 572
assignment scope, 554
basic relations, 554
benefits, 549
comparison, 555
customization, 564
duration, 554
effort, 550
estimation improvement, 564
estimation modus, 561
Experience® Pro, 573, 574,

576, 577
for OO projects, 581, 582, 583
Function Point Workbench

(FPW), 578, 580
hard data, 558
input parameters example, 562
integration, 552, 553
Internet resources, 584

KnowledgePLAN, 555, 556,
559

list, 550
Logiscope, 582, 583, 584
macro estimation, 554
micro estimation, 554
output example, 562, 563
overestimation, 564
planning support, 549
process, 553
production rate, 554
project portfolios, 564, 565,

567, 568
project portfolios example, 568,

569, 570, 572
sensitivity analysis, 555
simulations, 555, 564, 567
simulations benefits, 565
simulations example, 565, 566,

567
size, 552
soft data, 559
soft data example, 560
Soft-Calc, 578
time accounting, 565
usage, 553

exchange of experiences, 88, 105
expansion rate, 133, 135
experience database, 76
expert estimation, 10, 11, 12, 137
external metrics, 207

F

Feature Point Method, 121, 123,
130

feed forward, 25, 62, 188
feedback, 53, 90, 91
feedback loop, 54, 56
Fetcke study, 376
financial metrics, 267
FiSMA, 15, 160, 271, 366

BFC, 379, 380, 381, 382, 383,
384, 385, 386

635

database, 272, 377, 386
manual, 380
measurement process, 379

FiSMA Method, 123, 124, 130,
271, 376, 386
scope, 379
team, 387

FP components, 343
complexity, 344
proportions, 413, 415

FP counting scope, 341
Fraunhofer IESE, 273, 446
FSM, 260, 268, 274, 366
Function Point components, 447
Function Point coordinator, 97, 98
Function Point count, 24, 60, 62,

72, 76, 87
assessment, 355
assessment checklist, 355, 356,

591
checklist, 354
DET example, 424, 425, 426
documentation, 353, 354
effort for, 170, 332, 356, 357
EI example, 422, 423, 425, 426
EIF, 422
EIF example, 422
EO example, 425, 426
EQ example, 427, 428, 429
FTR example, 427
ILF example, 421
logbook, 416
logbook contents, 355
logbook example, 587, 588, 589
precision, 152, 358
prerequisites, 338, 339
repeated, 337, 340
tools, 354
types, 339, 340, 343

Function Point counter, 97, 98
Function Point estimation, 409,

410
Function Point Method, 9, 66, 118,

215, 323, 325, 326

advantages, 120, 333, 336
application areas, 329, 332, 333
benefits, 326, 328, 329
boundaries, 358
disadvantages, 335
evaluation, 334, 335, 358
goals, 336
history, 325, 326
implementation, 356, 357
Internet resources, 324
prejudices, 336, 337
problems, 121, 122
variants, 405

Function Point Prognosis, 59, 338,
410, 414, 417
formulae, 410, 411, 412
from documents, screens and

files, 412
from files, 412
from ILFs, 389
from transactions, 409, 410, 412

Function Points, 89, 133, 211
adjusted, 52, 344
automatic counting, 212, 213,

555
average, 414, 415, 417
conversion formulae, 306, 376,

388
counting, 211
counting experiences, 25
EI complexity, 349
EO and EQ distinction, 462
EO/EQ complexity, 349
files, 343, 344, 345, 346, 347
files complexity, 345, 346
files complexity example, 347
governmental regulation, 268
installed, 71
object-oriented, 122
one file model, 309, 414
OO PDR, 251
OOA, 242, 251
OOD, 242
packages, 72, 73, 449

Index

Index636

price evaluations, 329, 330
primary intent, 347
reuse, 24, 327, 328, 449
risk assessment, 333
test cases, 24
transactions, 343, 347
transactions AUDIO set, 309,

414
transactions complexity, 348,

350
transactions example, 348, 349
UML, 253
unadjusted, 343
usage, 121, 122
use case, 242, 252

functional requirements, 47, 50
functional size, 339
Functional Size Measurement

(FSM), 258, 259, 260, 324, 344
Functional User Requirements

(FUR), 369
functionality, 13, 323, 340, 341

G
GI Interest Group on Software

Metrics, 273, 274, 410
goal conflicts, 32
Goal Question Metric (GQM), 264
GQM, 185, 264, 265, 266, 268

effort, 265
example, 265, 266
phases, 265
tools, 265

GSC’s, 51, 52, 53, 325, 326, 344,
446

GSC’s comparisons, 416

H
Halstead’s metrics, 223, 224
historical data, 5, 15, 28, 54, 59,

73, 76, 109, 110, 129, 132, 136,
138, 547, 565

homeostasis, 54

I

IEEE, 120
standard 1045 LOC counting,

120, 136
standards, 180, 181

IFPUG, 38, 40, 269, 274, 324, 325
case studies, 275
Case Study 3 OO environment,

122, 241, 251
CFPS, 96, 268, 274, 275
CFPS exam, 275, 276, 277
COSMIC comparison, 375, 376
counting overview, 454
counting rules, 453
CPM, 274, 276, 277, 325, 350,

358, 453, 459
CSMS, 275
enhancement, 159
maintenance, 159, 160, 161
NESMA comparison, 389, 390,

391, 392
IFPUG FPM, 13, 38, 51, 123, 333,

341, 358, 371, 420
goals, 324

IFPUG rules
adjusted FP’s, 468
application boundary, 456, 457
application count, 480
Complex Processing, 474, 475
counting scope, 456
Data Communications, 470
data function types, 458
DET, 459, 465
DET for EO and EQ, 467
DI, 468, 470
Distributed Data Processing,

470, 471
EI, 461
EI classification, 468
EIF, 458, 460
End-User Efficiency, 473
enhancement, 455, 478, 479

Index 637

EO, 461, 466
EO and EQ classification, 468
EO and EQ primary intent, 466
EQ, 462, 466
Facilitate Change, 477
files classification, 460
files FP’s, 460
FTR, 465
FTR for EO, 467
FTR for EO and EQ, 467
GSC’s, 468, 469
Heavily Used Configuration,

471, 472
ILF, 458, 459
Installation Ease, 475, 476
maintenance, 480
Multiple Sites, 477
new development, 455, 479
omissions, 463
Online Data Entry, 472, 473
Online Update, 474
Operational Ease, 475, 476
Performance, 471
primary intent of transactions,

462
processing logic, 463
processing logic of transactions,

463
RET, 459
Reusability, 475
Transaction Rate, 472
user view, 456
VAF, 468
VAFA, 479
VAFB, 479

implementation process, 87, 89,
93, 106

Indicative Function Point
Counting, 389

indicators, 183, 184, 185, 209
indirect metrics, 207
inheritance metrics, 245
interfaces, 70, 72, 73, 77, 78

internal metrics, 207
IPMA, 125
ISBSG, 15, 53, 270, 277, 278,

280, 299
benchmarking analysis, 303
benchmarking database, 67,

278, 280, 281, 290, 296, 299,
303

benchmarking database r10,
229, 230, 251, 278, 299, 303,
419

benchmarking database r5, 415
benchmarking database r6, 419
benchmarking database r8, 213,

270, 450, 451
COSMIC projects, 374
data collection form, 303
development methods, 305
development platforms, 305
development techniques, 305
development type defect density

r8, 451
development type PDR r8, 451
development type phase

proportions r8, 450
duration, 315
duration and effort, 316
duration and size, 316
Early estimate checker, 302,

420
effort, 79, 310, 311
effort ratios, 311, 313
enhancements r10, 166
Estimation Workbook, 434
FP component ratios, 308, 310,

311
FSMM’s, 367
goals, 279
language generations, 304
M&S database, 278, 303
members, 279
mission, 279
new development projects, 307

Index638

PDR, 314, 317
PDR by branches, 314
PDR by development platform,

315
PDR by languages, 315
phases, 312
Practical Project Estimation,

278, 440
precision study, 154
programming languages, 304
project size, 305, 306
publications, 278, 280, 330
r8 effort formulae, 311
Reality Checker, 146, 419, 567
regional distribution, 309
Software Metrics Compendium,

166, 226, 230, 278
surveys, 296, 297
team productivity r6, 419
team size, 316, 317
team size formulae, 317
The Benchmark, 278, 280, 303

ISBSG database
application hints, 301, 302
enhancement projects, 166

ISO, 280, 281, 282
ISO Framework for Measurement,

258, 259
ISO SQuaRE, 216
ISO standards, 261, 263, 281

benefits, 258, 281
ISO/IEC

12207 Software life cycle
processes, 143, 259

14143 Functional size
measurement, 121, 257, 258,
259, 260, 270, 282, 323, 325,
365, 366, 367

14756 Measurement and rating
of performance, 259

14764 Software Maintenance,
160

15504 IT Process assessment, 58,
259

15939 Software measurement
process, 259, 262, 266

17024 Conformity Assessment,
125

19761 COSMIC-FFP, 121, 123,
270, 325, 367, 368

20926 IFPUG 4.1, 119, 121,
274, 325

20968 Mark II, 121, 325, 387
24570 NESMA Method, 121
24570 NESMA Method, 325
29881 FiSMA 1.1, 121, 123,

325, 377
9126 Quality Attributes, 51, 52,

53, 129, 216, 217, 259, 260,
351

FSM standards, 365, 366, 367
standards, 365

ISO/IEC 9126 Quality Attributes,
582, 583, 584

IT metrics, 90, 98, 100
initiative, 85
organizations, 105
program, 85, 89, 93

IT work unit, 231
ITMPI, 318
IWSM, 105, 273

K

Key Performance Indicators (KPI),
263

KLOC see SLOC, 119
knowledge transfer, 86

L

language level, 123, 133, 134
legacy systems, 28, 135
LOC see SLOC, 119

M

MAIN, 105, 282, 283
maintenance, 28, 88, 159, 161,

164, 166, 167, 353, 392
adaptive, 161, 164

Index 639

corrective, 161, 164
costs, 159
effort after delivery, 169
effort estimation, 159, 167, 170
effort estimation study, 170,

171
effort estimation tool, 170, 171,

172, 173, 174, 176
effort for, 168, 170, 333
FiSMA standard, 160
IEEE standards, 161
measured effort, 168
measurement, 161
metrics, 168, 169
parameters, 167
perfective, 161
preventive, 164
standards, 160
tasks, 165, 170
UKSMA/ISBSG standard, 164

maintenance projects
study, 168

management support, 88, 106,
190, 192, 410

Mark II FP
advantages, 387, 388
complexity factors, 388
CPM, 387

Mark II Method, 38, 121, 123, 130,
152, 269, 387, 388

McCabe, 224, 557
Complexity Design Metric, 123,

224
cyclomatic complexity, 224,

225
measured data, 108
measurement, 9, 15, 22, 23, 26,

29, 183
activities, 24
benefits, 188
efficiency, 266
effort for, 92
implementation, 101, 102, 105,

106

of effort, 17, 23, 24, 25, 26, 28
of size, 9, 10, 12, 16, 22, 109,

112, 117, 119, 126
planning, 353
prerequisites, 190
requirements, 260
tracking, 150

measurement program, 188
measurement scaffolding, 25, 27
measurement system, 267
measures, 182

characteristic factors, 194, 196
examples, 182

metrics, 183, 186, 187
benefits, 187, 189
categories, 184
characteristics, 180
contracting, 189
data, 188
goals, 187, 188
overview, 184
relevance, 179
survey, 198
the Aspirin Metric, 203
the Pizza Metric, 203
viewpoints, 179

metrics database, 95, 96, 186, 190
benefits, 197
implementation, 196, 197

metrics initiative, 185, 186, 193
costs, 188
implementation, 190, 191, 192,

193, 209, 210
implementation strategy, 209,

210
prerequisites, 190, 193, 194

Metrics News, 274, 410
metrics organizations, 268, 274,

282, 283, 285
metrics standards, 61, 257, 258

overview, 259
metrics survey, 198
metrics system, 183, 186

contents, 199

Index640

starter set, 200
structure, 198, 199

migration (conversion), 61, 72,
73, 75, 136, 352

MIT, 20
MOOSE, 244
motivation, 102
motivational system, 102, 103
MT22

application knowledge staff,
608

communication mechanisms,
604

contracting procedure, 601
Development environment

skills of staff, 607
documentation methods and

tools, 603
efficiency requirements, 606
functionality requirements, 604
maintainability requirements,

606
motivation, 609
networking skillsstaff, 608
number of stakeholders, 601
organizational culture, 602
portability requirements, 607
priority setting and control of

changes, 601
productivity factors, 599
release and version policy

factors, 600
reliability requirements, 605
resource and availability for

future needs factors, 600
roll-out methods and tools, 604
source code edition methods

and tools, 602
team atmosphere, 609
testing methods and tools, 603
usability requirements, 605

Multiplicator Method, 147

N

NASA, 232
SEL, 22, 61

NASA Benchmarking
Clearinghouse, 318

NASA/SEL dataset, 297
NESMA, 38, 269

Enhancement Function Points,
163, 393

Enhancement Guide, 163, 392
IFPUG FPM comparison, 389,

390, 391, 392
Test Function Points, 163

NESMA Method, 123, 130
new development project, 71, 339

FP’s, 351
northernSCOPE, 271, 272

O

Object Point Method, 121
Object Points, 243
object-oriented metrics, 241, 242,

243, 245, 250
example, 246, 247
relevant, 243

OLAP Design
DET count, 438, 439
EI count, 438
EIF count, 436
EO count, 438, 439
EQ count, 438, 439
FP component proportions, 436
FP count, 436, 439
FTR count, 439
ILF count, 438
RET count, 438

OO Metrics Suite, 244, 247
OOD metrics, 244
OTOBOS, 198
overestimation, 8, 33, 35

efficiency, 34

Index 641

factors, 34
productivity, 12

overtime work, 18, 23, 28, 32, 67,
70, 295

P

Parametric Cost Estimation
Handbook, 232

parametric estimation equations,
143

participation, 105
PDR, 57

business type, 230
conversion to productivity, 229
Finnish database, 229, 230
ISBSG June 2002, 230

Percentage Method, 77, 79, 118,
137, 141, 142, 313
ISBSG database, 143

perfective maintenance, 161
Performance Enhancement

Program (PEP), 296
Pi Times Thumb Method, 35, 137,

138
planning metrics, 201, 203
PMBOK, 45, 125
portfolio planning, 410
preventive maintenance, 167
problem complexity, 222
process capability, 232
process improvement, 57

parameters, 201
process maturity models, 262, 264
process metrics, 202, 207

examples, 207
product metrics, 203, 207

examples, 207
productivity, 89, 198, 200, 211,

419
analysis, 418, 419
baseline, 193
comparisons, 227, 228

higher, 231
in Europe, 200
in USA, 200

lower, 230
measurement, 89, 226, 227
measurement example, 227
of enhancements, 89
of projects, 89
PDR conversion, 313

productivity metrics, 200
acceptance, 228, 419

productivity rates, 227
project

cancellation, 70
complexity, 48
controlling, 46, 53
crisis, 111
leader, 4
objectives, 49, 65
plan, 21
planning, 9, 12, 14, 23, 24, 27,

90
portfolios, 568
post mortem, 59, 60, 61, 62, 70
productivity, 81
requirements, 65, 66
risks, 21, 99
size, 47, 71, 79

Project Delivery Rate (PDR), 57
project duration, 235, 236

COCOMO II formulae, 235
ISBSG r10, 235
ISBSG r8 formulae, 235

project management, 56, 60
effort, 57
effort for, 75
manual, 47
operative, 45, 46
strategic, 45, 56

project metrics, 203
report example, 188, 189

Index642

project size
classes, 213
GUFPI-ISMA/ISBSG, 213

Putnam Formula, 143

Q

quality, 200, 215, 216
quality assurance, 56, 99

measures, 51
quality attributes

external, 216
internal, 216

quality metrics, 198, 200, 207,
216, 217

R

r9 effort, 79
re-design, 449
re-development, 450

ISBSG FP components r8, 450
ISBSG r8, 450

re-implementation, 449
Relation Method, 139
requirements creep, 11, 21, 22, 35,

59, 62, 72, 76, 235, 337, 340
resistance, 12, 36, 86, 101, 102
re-test, 450
reuse, 449, 450
rework, 449
risk assessment, 548
risk awareness, 36
ROI, 449
rules of thumb, 414
SEI, 261, 262, 264, 266
size

functional, 209
technical, 209

S

SLIM, 144, 146
SLOC, 119, 120, 133, 136, 210,

211, 245
counting, 136, 211
paradox, 211

problems, 119, 120
usage, 120

SMLab, 274
software boundary, 21
Software Maturity Index, 168
software measurement, 90, 91, 92,

94, 100
software measurement database,

274
software metrics, 179
Software Process Improvement

(SPI), 261
software product quality, 100
software quality metric, 186
source code metrics, 209
SPEC, 284
SPI, 261
SPICE, 58, 265, 278
SPR, 133
standard software

implementation, 74
implementation duration, 74
implementation effort, 74

Star Scheme
EI count, 436
EIF count, 435
EO count, 436
EQ count, 436
FP count, 439
ILF count, 435, 436

structural complexity, 222, 223
students’ thesis award (DASMA),

273, 297, 446
SWEBOK, 12, 13
system boundary, 341, 342, 355,

443
system complexity, 222, 223
system metrics, 242, 250

T

TDI, 344
technical complexity, 222
The Benchmarking Center, 318
Three Point Method, 137, 138

Index 643

time accounting, 68, 69, 226
tool expertise, 547
tool support, 6, 7, 95, 148, 193,

196, 265, 356
TPC, 284
tracking metrics, 201, 203
tree metrics, 242, 243, 250

U
UKSMA, 38, 152, 163, 387
UKSMA/ISBSG

Maintenance standard, 164
UKSMA/ISBSG Defect

Measurement Manual, 220
underestimation, 8, 32, 33, 154

costs, 35
effort, 33, 34
factors, 33
of size, 154
time, 35

UQAM, 412
use case metrics, 247
Use Case Points, 248, 249, 404

environmental complexity
factor, 404

technical complexity factor, 404
user comfort, 148
user requirements, 21, 260
user satisfaction, 327
user view, 211, 212, 323, 342, 345

V
VAF, 344

experiences, 416

W

Web development, 439
architecture, 441
architecture diagram, 442
COSMIC, 439, 441
DET count, 445
EI count, 443, 444, 445
EIF count, 444
elementary processes, 443
enhancement, 440, 441
EO count, 444
EQ count, 444, 445
estimation, 441
estimation challenges, 441, 443,

444
expert estimation, 441, 443
files count, 443
FP component proportions, 444
FP count example, 444
FP counting, 441, 443, 444
FTR count, 445
IFPUG FPM, 440, 441
ILF count, 444
measures of usability, 442
productivity, 440, 441
productivity ISBSG report, 440
transactions count, 443
VAF, 446

Web Object components, 447, 448
Web Objects, 447
WEBMO method, 447, 448
Weights Method, 139, 140, 141
Wolverton Method, 147

Measurement and estimation of software projects has been extremely difficult for
both technical and sociological reasons. The technical reasons include scores of

code” metrics users have been at odds with the “function point” metrics users.

metrics.

cons are noted.

needs to be measured and how to go about it. Although there is still antagonism
among the various rivals, this new book by Dekkers and Bundschuh is likely to be

metrics were trying to accomplish.

Capers Jones
Chief Scientist Emeritus

Software Productivity Research LLC

Carol Dekkers and Manfred Bundschuh have written an excellent book, which

followers of rival metrics and measurement practices. For many years the “lines of

workers throughout the world.
should be added to the collections of all software managers and software metrics

poorly-defined and incompatible metrics, gaps or “leakage” from historical data,
and the rather sparse collection of accurate benchmarks available to the general
software community.

The sociological reasons center around the adversarial relationships between

qand goal- uestion metrics also have supporters and tend to ignore other forms of
Several other forms of measurement such as earned value, balanced scorecards,

In recent years the situation has become even more complex. As of 2008 there have

Dekkers and Bundschuh navigate this tricky area with clarity and objectiveness.

been at least 24 function point variants, 5 methods for counting lines of code, and
perhaps 15 other forms of measurement such as use case points, story points,

All of the major metrics variants are discussed and explained, and their pros and

object-oriented metrics, and others too numerous to cite.

among the rival metrics camps and achieve some kind of consensus on what

useful in leading to common goals and mutual understanding of what the various

q

The book also discusses the organizations that are trying to eliminate competition

metrics to learn about the other possibilities. While there are many books that discuss
IFPUG function points, COSMIC function points, goal- uestion metrics , balanced
scorecards, and all the others, this is the first book to try and show all of the major

Prior to the publication of this book, there was no easy way for followers of various

metrics in one volume.

Engineering - A Practitioner’s Approach, Steve Kan’s Metrics and Models in
Software Engineering, and my own books Estimating Software Costs and Applied

This new book is a worthy companion to older books such as Barry Boehm’s Soft-
ware Engineering Economics, Steve McConnell’s Software Estimation, Richard

relationships among wide-ranging topics, as does this new book by Dekkers and
and Bundschuh.

Software Measurement. All of these books attempt to show the synergistic

Stutzke’s Estimating Software-Intensive Systems, Roger Pressman’s Software

